Investigating the best automatic programming method in predicting the aerodynamic characteristics of wind turbine blade

dc.authorid0000-0003-3626-553Xtr
dc.authorid0000-0003-2464-6466tr
dc.contributor.authorArslan, Sibel
dc.contributor.authorKoca, Kemal
dc.date.accessioned2024-02-28T12:20:39Z
dc.date.available2024-02-28T12:20:39Z
dc.date.issued03.05.2023tr
dc.departmentEğitim Bilimleri Enstitüsütr
dc.description.abstractAutomatic programming (AP) is a subfield of artificial intelligence (AI) that can automatically generate computer programs and solve complex engineering problems. This paper presents the accuracy of four different AP methods in predicting the aerodynamic coefficients and power efficiency of the AH 93-W-145 wind turbine blade at different Reynolds numbers and angles of attack. For the first time in the literature, Genetic Programming (GP) and Artificial Bee Colony Programming (ABCP) methods are used for such predictions. In addition, Airfoil Tools and JavaFoil are utilized for airfoil selection and dataset generation. The Reynolds number and angle of attack of the wind turbine airfoil are input parameters, while the coefficients 𝐢𝐿, 𝐢𝐷 and power efficiency are output parameters. The results show that while all four methods tested in the study accurately predict the aerodynamic coefficients, Multi Gene GP (MGGP) method achieves the highest accuracy for 𝑅2 Train and 𝑅2 Test (𝑅2 values in 𝐢𝐷 Train: 0.997-Test: 0.994, in 𝐢𝐿 Train: 0.991-Test: 0.990, in 𝑃𝐸 Train: 0.990-Test: 0.970). By providing the most precise model for properly predicting the aerodynamic performance of higher cambered wind turbine airfoils, this innovative and comprehensive study will close a research gap. This will make a significant contribution to the field of AI and aerodynamics research without experimental cost, labor, and additional time.tr
dc.identifier.doi10.1016/j.engappai.2023.106210en_US
dc.identifier.scopus2-s2.0-85151296946en_US
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0952197623003949
dc.identifier.urihttps://hdl.handle.net/20.500.12418/14418
dc.identifier.wosWOS:000969649600001en_US
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElseviertr
dc.relation.ispartofEngineering Applications of Artificial Intelligenceen_US
dc.relation.publicationcategoryUluslararasΔ± EditΓΆr Denetimli Dergide Makaletr
dc.rightsinfo:eu-repo/semantics/openAccesstr
dc.titleInvestigating the best automatic programming method in predicting the aerodynamic characteristics of wind turbine bladeen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
YΓΌkleniyor...
KΓΌΓ§ΓΌk Resim
Δ°sim:
FullPaper.pdf
Boyut:
1.97 MB
BiΓ§im:
Adobe Portable Document Format
AΓ§Δ±klama:
Lisans paketi
Listeleniyor 1 - 1 / 1
KΓΌΓ§ΓΌk Resim Yok
Δ°sim:
license.txt
Boyut:
1.44 KB
BiΓ§im:
Item-specific license agreed upon to submission
AΓ§Δ±klama: