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In this paper, fractional-order chaotic systems in an analog-based platform are realized using

¯eld programmable analog arrays (FPAA) hardware. With the help of this work, we aim to

increase the complexity of chaotic systems. Approximated transfer functions in frequency do-

main are obtained by analyzing di®erent values of fractional-order integrator with the Charef
approximation method. In this study, fractional-order numerical calculation of Rssler and

Sprott type-H chaotic systems is carried out. MATLAB Simulink model for chaotic systems that

satisfy the conditions of chaos in the boundaries of fractional order value is schematically
presented. Moreover, CAM designs and analysis that facilitate the realization of fractional-order

transfer functions in FPAA platforms are introduced. The analog-based FPAA experimental

and numerical outcomes for fractional order chaotic systems are demonstrated. The comparison

of the results obtained in the numerical analysis and simulation study with the experimental
results is given. This study con¯rms that the unpredictability of the chaos carrier signals

realized by digital-based can be increased with analog-based FPAA hardware and fractional-

order structures so as to provide safer transfer of information signals.

Keywords: Chaos; FPAA implementation; fractional-order chaotic system; nonlinear system.

1. Introduction

Chaos is the science that investigates the systems which exhibit irregular behaviors

despite them having an order hidden in it. In the beginning of the 20th century, Henri

Poincare, French mathematician, introduced the chaos theory. The chaos theory

leads representing systems that exhibit irregular behaviors with simple dynamic

equations.1 Even though chaotic systems exhibit non-periodic behavior in the

time domain, they show order in the phase space portrait. The chaotic signals are
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characterized with non-periodic nature, sensitivity to initial conditions, wide-band

structure, as well as their unpredictability in long periods.2 These features of the

chaotic signals scienti¯cally contributed to solution of some problems.3 The ¯rst

application of chaos theory was initiated by Edward Lorenz in the 1960s.3 The

unpredictability of chaos signals in long periods has been used as a signi¯cant pa-

rameter in communication systems to improve their information security. As carrier

signals, the chaos signals are the key components in the chaotic communication. The

spread spectrum of chaos signals helps hide information signals in communication

systems and ensure their arrival to receiver. Although the complexity of chaos signals

increases the complexity of communication systems, they also improve the com-

munication security. In other words, the characteristics of communication security

amount to the predictability characteristics of chaotic signals. A nonlinear dynamic

system that exhibits chaotic behavior has to contain at least one nonlinear term and

three state variables in its equation set.4 In these kind of nonlinear state equations,

chaos conditions are generated by changing equation parameters and initial conditions.

The nonlinear equation that is generated using fractional-order derivative operators

does not require 3rd order state equation to provide chaos conditions. A dynamic

system can exhibit chaotic behavior even in the case total order of the dynamic systems

is less than 3.5 This further complicates the predictability of chaotic systems. In

fractional-order chaotic systems, existing parameters as well as the order of fraction as

an additional parameter further increase the complexity of the chaotic systems.5

Even though the fractional-order derivative and integrator was ¯rst mentioned by

Leibniz in 1695, their articulation was completed by Liouville and Riemann through

the end of 19th century.6,7 The fractional-order calculation contributed to full-

°edged expression and solution of many problems in the ¯eld of electrical circuits,

thermoelectric system, ¯nance system, biological system.8 In fact, many integer order

models are the approximated version of the fractional-order model. The integer order

model, however, cannot represent the nonlinear systems that are sensitive to initial

and parameter values. The use of fractional order systems in nonlinear systems provided

signi¯cant contribution to the design of electrical and control systems.9–14 Fractional-

order control systems, especially in nonlinear systems, lead to better system performance

as compared to integer order control systems.15 It can be also observed that the use of

fractional-order operators helps modeling of problems in the nature and provide more

precise results. Dengue Fever pandemic prevalence modeling using fractional order de-

rivative facilitate the development of vaccine and treatment methods.5,16

The fractional-order derivative and integrators are described with many methods

such as Grünwald–Letnikov's (GL), Charef, Caputo and Riemann–Liouville
(RL).20,17 In the realization of fractional-order systems with discrete circuit com-

ponents, researchers have experienced various di±culties due to selection and usage

of active and passive circuit components. The existing methods mainly su®er from

the fractional order chaotic systems sensitivity to (i) initial values, (ii) parameter
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selections, and (iii) derivative degree. It is impossible to ¯nd a circuit element for the

values determined in the resistor and capacitor selections for these designed struc-

tures. This limitation was further emphasized in Table 3 of the reference article i.e.,

¯nding circuit elements in the market with a precise value, e.g., R ¼ 504:48� and

C ¼ 21:78 nF for q ¼ 0:87. Furthermore, it is very di±cult to repeat these operations

for di®erent dynamic systems and fraction degrees, e.g., for q ¼ 0:88, all the values of

circuit elements need to be calculated again. These di±culties bring ¯eld program-

mable gate arrays (FPGA) forward due to their advantages such as °exible usage

and higher accuracy.21,18 However, low sensitivity of digital-based systems because of

rounding errors in long periods adversely a®ects the modeled system and ends up

with misrepresentation of real system behavior.22–24 It is impossible to fully observe

Finite-precision arithmetic calculations in digital systems. Therefore, Pseudo(chaos)-

orbits are eventually periodic and their cycle lengths may be rather short. Small

rounding errors accumulate and cause large errors that lead to the reduced period-

icity in dynamic systems. The errors that occur in each calculation step cause due to

the lack of periodicity in dynamic systems and result in reliability issues in com-

munication systems. The drawbacks of FPGA as well as the di±culties in the use of

discrete circuit components make analog-based FPAA structures indispensable. The

main disadvantage of this design is repetitive calculation of the fractional order

values at the beginning of each design. On the other hand, these di±culties are easier

to overcome while implementing the design and verifying the results via experiments

as compared to the digital-based hardware and discreet circuit component designs.

In this paper, the aim is to carry out realization of the fractional-order chaotic

signals using analog-based FPAA structures. The Charef approximation method is

utilized to design fractional-order dynamic systems. The main purpose behind the

use of fractional-order integrator is to reduce predictability of chaotic signals. Thus,

chaotic signals can provide safer carrier signal to the communication systems.19

Moreover, the use of analog-based FPAA structure is prioritized to obviate the

predictable chaos signal problem that occurs in digital-based FPGA due to rounding

errors in long periods.

The remainder of the paper is organized as follows. Section 2 mentions about

Charef approximation method and gives the derivation of fractional orders. In Sec. 3,

R€ossler and Sprott type-H chaotic dynamics are modeled using Charef approxima-

tion method. Then, it compares the simulation results for di®erent fractional-order

chaotic systems. Section 4 includes the CAB design that is realized to implement

fractional-order chaotic signals on an analog-based platform, and experimental

results. Section 5 gives evaluations and conclusions.

2. Fractional Calculus

Fractional calculus is the integral pillar in system modeling, especially in the control

systems.25–29
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The fractional-order derivative with the order of 0.5 was ¯rst introduced by

Leibniz and L'Hopital30,31 to satisfy the scholarly curiosity: \Can the meaning of

derivatives with integer order be generalized to derivatives with non-integer

orders?".

The calculation of fractional order, however, requires a challenging and compli-

cated process. In order to facilitate the process for analysis and simulations of control

systems, the fractional-order operators are approximated to the integer order

transfer functions. In the calculation of fractional-order derivative, fractional- order

derivative operator acts like interpolation between neighboring integer derivatives.

In the systems that calculate fractional-order derivative, the order of fraction as an

additional parameter is used to better approximate complete system behavior. This

feature of fractional order system provides signi¯cant contribution to nonlinear

system modeling. Accordingly, researchers have developed many methods to ap-

proximate fractional order operators to the integer order transfer functions.32

The fractional order calculation is usually de¯ned as (1). Herein, � denotes the

complex derivative or integral order.

aD
�
x ¼

d�

dt�
; Reð�Þ > 0

1; Reð�Þ ¼ 0Z t

a

ðd�Þ��; Reð�Þ < 0 :

8>>>>><
>>>>>:

ð1Þ

In the following subsections, Riemann–Liouville approach along with Grünwald–
Letnikov and Charef methods has been brie°y explained as they are used in the study.

2.1. Riemann–Liouville

Riemann–Liouville is known as the most popular de¯nition in the ¯eld of fractional

analysis.33 According to Riemann–Liouville de¯nition, the mathematical expression

of fractional-order integral equation is given as

aD
�
xfðxÞ ¼

1

��

Z x

a

ðx� �Þ���1fð�Þd�; � < 0 : ð2Þ

The nth order derivative of (2), when n� 1 < � < n, is expressed as

aD
�
xfðxÞ ¼

1

�ð1� �Þ
dn

dxn

Z x

a

ðx� �Þn���1fð�Þd� ; n > 0 : ð3Þ

Equation (3) amounts to ðn� �Þ th power for the fractional order derivative of the
function fðxÞ. Herein, a is the initial value while n is an integer number. Riemann–
Liouville de¯nition depends on the integral calculation of given function. Accord-

ingly, fractional-order derivative is calculated using fractional-order integral and

integer order derivatives.
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2.2. Gru€nwald–Letnikov

Another popular de¯nition used in the fractional analysis is proposed by Anton Karl

Grünwald and Aleksey Vasilievich Letnikov11 rather than the de¯nition of Riemann–
Liouville, Grünwald–Letnikov de¯nition approach a problem with the basic deriv-

ative phenomenon. The basic derivative implies to the slope of a graph that is

expressed by (4).

According to Grünwald–Letnikov de¯nition, integro-di®erential equation with

the order of � is expressed as

aD
�
xfðxÞ ¼ lim

h!1
��

hfðxÞ
h�

; ð4Þ

where D is the di®erintegral operator and h is the number of step. The following

equation gives the expansion of ��
hfðxÞ:

��
hfðxÞ ¼

X1
j¼0

ð�1Þj
�

j

0
@

1
Afðx� jhÞ : ð5Þ

Equation (6) represents the case; summation calculation given in (5) is processed

up to a ¯nite number r

Xr
j¼0

ð�1Þj
�

j

0
@

1
A ¼ 1

�ð1� �Þ
�ðrþ 1� �Þ
�ðrþ 1Þ : ð6Þ

In Eq. (6), �ðxÞ denotes the gamma function while h is its change in unit time and

represented with h ¼ ðx��Þ
r . Finally, Grünwald–Letnikov de¯nitio can be mathe-

matically expressed as follows:

aD
�
xfðxÞ ¼ lim

r!1

ðx�aÞ
r

� ���

�ð��Þ
X1
j¼0

�ðj� �Þ
�ðjþ 1Þ f x� j

ðx� aÞ
r

� �� �8<
:

9=
; ; ð7Þ

where �, a and �, respectively, denote a random number, initial value, Euler Gama

function. In general, D is used to express both integrator and derivative. It should be

noted that a is positive for derivatives whereas it is negative for integrators.

2.3. Charef approximation method in frequency domain

In this study, the aim is to carry out realization of the fractional-order chaotic signals

using analog-based FPAA structures. In the design of FPAA, fractional- order de-

rivative operators can only be modeled in frequency domain. In engineering, laplace

and inverse laplace methods are used for linear system modeling in frequency do-

main. Among frequency domain modeling de¯nition, Charef approximation is the

most suitable method as it allows to obtain continuous approximation of fractional

order system in s-domain.32 With the help of this method, approximated integer

FPAA Implementations of Fractional-Order Chaotic Systems
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order transfer function of fractional order integral can be achieved within the speci¯c

interval of frequency and error rate.

I �ðsÞ ¼
1

s�
; ð8Þ

where s ¼ j! and � stand for complex frequency and order of positive fractional

integrator.

I �ðsÞ ¼
1

s�
� 1

1þ s
pT

� �
� ; 0 < � < 1 : ð9Þ

In Eq. (9), in the calculation of the approximated transfer function, pT , p0, and y

denote corner frequency, ¯rst pole value, and error rate in dB. The last pole value,

pN , is determined by N. 1=pT represents the relaxation time constant. In the light of

all these facts, fractional-order transfer function can be expressed as in the following

equation:

I �ðsÞ ¼
1

s�
� 1

1þ s
pT

� �
� lim

N!1

QN�1

i¼0

1þ s
zi

� �

QN
i¼0

1þ s
pi

� � : ð10Þ

The poles and zeros of the transfer function are given as follows:

p0 ¼ pT10
½y=20��; z0 ¼ p010

½y=10ð1��Þ�;

p1 ¼ z010
½y=10��; z1 ¼ p110

½y=10ð1��Þ� :
ð11Þ

Equation (12) describes the N� 1 zero and N pole ratio.

zN�1 ¼ pN�110
½y=10ð1��Þ�; pN ¼ zN�110

½y=10�� : ð12Þ
Equation (13) provides the values of a; b and ab that express theN� 1 pole andN

zero ratio.

a ¼ 10 ½y=10ð1��Þ�; b ¼ 10 ½y=10��; ab ¼ 10 ½y=10�ð1��Þ� : ð13Þ
With the help of these explanations, the equation for the transfer function can be

derived as

I �ðsÞ ¼
1

s�
� 1

1þ s
pT

� �
� �

QN�1

i¼0

1þ s
zi

� �

QN
i¼0

1þ s
pi

� � ¼
QN�1

i¼0

1þ s
ðabÞ iap0

� �

QN
i¼0

1þ s
ðabÞ ip0

� � : ð14Þ

Moreover, the dimension of the transfer function, N, can be found as

N ¼ int
log !max

p0

� �
logðabÞ

0
@

1
Aþ 1 : ð15Þ
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With the help of Eqs. (14) and (15), s� value derived with Charef approximation

method can be approximately obtained in the frequency domain within the interval

of speci¯c frequency and error rate.

3. Fractional-Order Chaotic Systems

As mentioned in the previous section, chaotic systems expressed with conventional

calculation methods require at least 3rd dynamic representation. On the other hand,

the fractional-order derivative is used to model a chaotic system with fractional-

order system approximation. In this study, fractional order for MATLAB Simulink

and analog-based FPAA is expressed in frequency domain using Charef approxi-

mation method. Fractional-order transfer function in frequency domain is obtained

for R€ossler and Sprott type-H chaotic system to be initially implemented in Simulink,

then FPAA. To obtain transfer function, the eigenvalues of the dynamic system are

calculated for the selected, minimum fraction order. The fraction order for every

eigenvalue is obtained using Eq. (16). The greatest value among the obtained frac-

tional order is selected as the fraction order of the system.34

In a dynamic system with the size of n, the eigenvalues, (�1; �2; . . . ; �n), are

obtained using Jacobian matrices created for each dimension. Then, every single

eigenvalue is used to determine the fraction order, �, using (16), where q is expressed

as the determined fraction order.

jargð�iÞj > ��=2; � ¼ maxðq1; q2; . . . ; qnÞ; 8ði ¼ 1; 2; . . . ;nÞ : ð16Þ
If the given system is stable, fractional-order system is also stable at a point. In a

condition that the given system is unstable, then the fractional-order system possibly

exhibits chaos. The stability theorem for the fractional order systems is summarized

in Fig. 1.

Fig. 1. Stability region of the fractional-order system.
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Assume that the eigenvalues for the Jacobian matrix of a given fractional-order

system are �1 ¼ �1:7452, �2 ¼ 0:3476þ i2:2019 and �3 ¼ 0:3476� i2:2019. In such

a case, a fractional order needs to be calculated for the corresponding eigenvalue:

argð�1Þ ¼ �, argð�2Þ ¼ 1:41422 and argð�3Þ ¼ �1:41422. Then, fractional order

using the expression maxðq1; q2; q3Þ provides � ¼ q2 ¼ q3 ¼ 0:899. In the case q1, q2
and q3 are greater than 0.899, all the equilibria of the (16) ares unstable and dynamic

system possibly exhibits chaos.

In the Charef approximation method, the fractional order for the given transfer

function is determined as � ¼ 0:9 in accordance with the literature. In this study,

many fractional-order transfer functions used in simulation and experimental im-

plementation are obtained using similar calculation method. For the approximated

transfer function with the fraction order of � ¼ 0:9: !max ¼ 100 rad/s, y ¼ 2 dB,

pT ¼ 0:01 rad/s.

po ¼ pT10
½y=20�� ¼ 0:01:10 ½2=20:0:9� ¼ 0:0129;

a ¼ 10 ½y=10ð1��Þ� ¼ 10 ½2=10ð1�0:9Þ� ¼ 100;

b ¼ 10 ½y=10�� ¼ 10 ½2=10:0:9� ¼ 1:6681;

ab ¼ 10 ½y=10�ð1��Þ� ¼ 10 ½2=10:0:9ð1�0:9Þ� ¼ 166:81 :

N ¼ int

log
!max

p0

� �

logðabÞ

0
BB@

1
CCAþ 1 ¼ int

log
100

0:0129

� �

logð166:81Þ

0
BB@

1
CCAþ 1

¼ int
3:889

2:222

� �
þ 1 ¼ intð1:750Þ þ 1 ¼ 1þ 1 ¼ 2 :

The values of a; b; ab are found with the transfer function that is generalized using

the ¯rst pole value and (13). Afterward, the dimension of the transfer function is

determined using (14). Finally, transfer function for the fraction order of � ¼ 0:9 is

obtained.

zo ¼ p010
½y=10ð1��Þ� ¼ 0; 0129:10 ½2=10ð1�0:9Þ� ¼ 1:29;

p1 ¼ z010
½y=10�� ¼ 1:29:10 ½2=10:0:9� ¼ 2:15;

z1 ¼ p110
½y=10ð1��Þ� ¼ 2:15:10 ½2=10ð1�0:9Þ� ¼ 215:18;

p2 ¼ z110
½y=10�� ¼ 215:18:10 ½2=10:0:9� ¼ 358:94 :

I 0:9ðsÞ ¼
1

s0:9
� 1

1þ s
0:01

� �
0:9 �

Q1
i¼0

1þ s

zi

� �

Q2
i¼0

1þ s

pi

� �

K. Altun
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¼
1þ s

ð166:81Þ0:100:0:0129
� �

1þ s

ð166:81Þ1:100:0:0129
� �

1þ s

ð166:81Þ0:0:0129
� �

1þ s

ð166:81Þ1:0:0129
� �

1þ s

ð166:81Þ2:0:0129
� �

¼
1þ s

1:29

� �
1þ s

215:18

� �

1þ s

0:0129

� �
1þ s

2:15

� �
1þ s

358:94

� � ¼ 1=pT �ð Þð0:036s2 þ 7:77sþ 10Þ
s3 þ 361s2 þ 776sþ 10

¼ 1=0:010:9ð Þ 0:036s2 þ 7:77sþ 10ð Þ
s3 þ 361s2 þ 776sþ 10

¼ 63:095: 0:036s2 þ 7:77sþ 10ð Þ
s3 þ 361s2 þ 776sþ 10

¼ 2:271s2 þ 490:24sþ 630:95

s3 þ 361s2 þ 776sþ 10
:

Equation (17) represents the fractional order, � ¼ 0:9, transfer function in fre-

quency domain. This transfer function is used to design Simulink and FPAA CAM

(Con¯gurable Analog Module).

HðsÞ ¼ numðsÞ
denðsÞ ¼ 2:271s2 þ 490:24sþ 630:95

s3 þ 361s2 þ 776sþ 10
: ð17Þ

The transfer function of the system expresses the relation between input and

output in frequency domain. Herein, the order of denominator should be greater than

or equal to the order of nominator.

3.1. Ro€ssler fractional-order chaotic attractor

The dynamic system belongs to R€ossler chaotic generator, which is one of the chaotic

oscillators obtained with fractional order analysis, as given in (18).35 These chaotic

system dynamic equations are composed of 3 dimensions and 6 terms.

Dq1
t xðtÞ ¼ �yðtÞ � zðtÞ

Dq2
t yðtÞ ¼ xðtÞ þ a:yðtÞ

Dq3
t zðtÞ ¼ xðtÞ:zðtÞ � c:zðtÞ þ b ;

ð18Þ

where q1, q2 and q3 are the order of fractional derivative.

In the given mathematical model, a ¼ 0:20, b ¼ 0:20 and c ¼ 5:7, system para-

meters and the initial conditions for the chaotic system are given as x0 ¼ 0, y0 ¼ 0,

z0 ¼ 0. Figure 2 represents the R€ossler chaotic system Simulink design in which

transfer functions are obtained using the calculation methods explained in the pre-

vious subsection. The eigenvalues of R€ossler chaotic system's Jacobian matrix for the

initial conditions and parameters given above are �1 ¼ �5:68718, �2 ¼ 0:0971028þ
i0:995786 and �3 ¼ 0:0971028� i0:995786.

In this case, the fractional orders need to be calculated for the corresponding

eigenvalues derived as argð�1Þ ¼ �, argð�2Þ ¼ 1:47359 and argð�3Þ ¼ �1:47359.
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Upon determining the fractional orders and with the help of the expression

maxðq1; q2; q3Þ, � ¼ q2 ¼ q3 ¼ 0:9377. In this study, all the orders will be selected

equivalent to each other and simulations will be realized in the order of 0.91–0.99.
The outcome of the simulations is given in Table 1.

Table 1. Chaotic attractors of the fractional-order R€ossler chaotic system using the Charef method.

Fractional-order Values x-y phase-space plots x-z phase-space plots y-z phase-space plots

q1 = q2 = q3 = 0.92

q1 = q2 = q3 = 0.94

q1 = q2 = q3 = 0.96

q1 = q2 = q3 = 0.98

Fig. 2. Simulink model of fractional-order R€ossler chaotic system.

K. Altun
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Table 1 represents that R€ossler chaotic system with fraction order of 0.94 creates

its ¯rst periodic window. It should be observed that R€ossler chaotic system with a

fractional order of 0.98 exhibits chaos. With the simulation study carried out here,

the chaos state at fractional degrees calculated for the R€ossler dynamic system was

tested. It was shown that the chaotic behavior for the case is a ¼ 0:98, where chaos

conditions were theoretically con¯rmed so. Herein, the main purpose is to verify the

theoretical results with the simulation outcomes.

3.2. Sprott type-H fractional-order chaotic attractor

In 1994, 19 nonlinear dynamic equations were recommended to produce complex

chaotic signals and named A to S by Sprott. Among these systems, H system in-

cluding one nonlinear term has six terms. State equations for the fractional order

Sprott type-H system are given in the following equation35,36:

Dq1
t xðtÞ ¼ �yðtÞ þ zðtÞ2

Dq2
t yðtÞ ¼ xðtÞ þ 0:5yðtÞ

Dq3
t zðtÞ ¼ xðtÞ � zðtÞ ;

ð19Þ

where q1, q2 and q3 are the order of the fractional derivative. In the given mathe-

matical model, the initial conditions for the chaotic system are given as x0 ¼ 0,

y0 ¼ 0, z0 ¼ 0. Figure 3 represents the Sprott type-H chaotic system Simulink design.

The eigenvalues of Sprott type-H chaotic system's Jacobian matrix for the initial

conditions and parameters given above are �1 ¼ �1, �2 ¼ 0:25þ i0:968246 and

�3 ¼ 0:25� i0:968246.

Fig. 3. Simulink model of fractional-order Sprott type-H chaotic system.
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In this case, the fractional orders need to be calculated for the corresponding

eigenvalues derived as argð�1Þ ¼ �, argð�2Þ ¼ 1:31812 and argð�3Þ ¼ �1:31812.

Upon determining the fractional orders and with the help of the expression

maxðq1; q2; q3Þ, � ¼ q2 ¼ q3 ¼ 0:9377. In this study, all the order will be selected

equivalent to each other and simulations will be realized in the order of 0.80–0.93.
The outcome of the simulations is given in Table 2.

Table 2. Chaotic attractors of the fractional-order Sprott type-H chaotic system using the Charef

method.

Fractional-order Values x-y phase-space plots x-z phase-space plots y-z phase-space plots

q1 = q2 = q3 = 0.83

q1 = q2 = q3 = 0.85

q1 = q2 = q3 = 0.87

q1 = q2 = q3 = 0.89

q1 = q2 = q3 = 0.91

q1 = q2 = q3 = 0.93

K. Altun
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Table 2 represents that Sprott type-H chaotic system with fraction order of 0.89

creates its ¯rst periodic window. It should be observed that Sprott type-H

chaotic system with fraction order of 0.91 exhibits chaos. With the simulation

study carried out, the chaos state at fractional degrees calculated for the Sprott type-

H dynamic system was tested. It was observed that the system entered

chaos for q ¼ 0:91, where the theoretically calculated chaos conditions were met.

Herein, the main purpose is to verify the theoretical results with the simulation

outcomes.

Two distinct chaotic system simulations have been realized using the Charef

approximation method. The following section presents the design of analog-based

FPAA study for the order in which chaotic signals exhibit chaos.

4. Experimental Realization of the Fractional-Order Chaotic Systems on

FPAA

The use of discrete components in the design of electronic circuits is quite di±cult,

sometimes it is even impossible. Moreover, long required time to design circuit with

discrete components and its ever increasing cost in the case of failures increase both

the attention and research for programmable structures. However, analaog-based

circuit design could not provide promising performance since programmable struc-

tures are digital based. The drawbacks of analog-based systems such as rounding

errors of decimally fractions and repetition of itself after a while make its utility

reduced. Therefore, analog-based programmable structure comes forward. At the

conclusion of rigorous research e®orts, analog-based programmable FPAA structures

have become available technology to verify and validate the design of circuits.37

FPAA structures o®er veri¯cation opportunity to the circuit designers such as high

accuracy and low cost with user-friendly interface. FPAA structures can be used in

the applications of analog-based systems, analog signal processing, biomedical sensor

measurements, etc.38,39 Among these applications, the attention on the design of

chaos-based signal generators has a raising trend.40 The investigation of chaos-based

systems' dynamic equations shows that nonlinear circuit elements and passive circuit

elements produced at the standard values have made the realization of chaotic

systems quite di±cult. Moreover, the di±culties in supplying these circuit elements

prevent the experimental realizations of chaos-based studies. In the light of all these

facts, FPAA structures provides easier programming, user-friendly interface, °exible

work environment for the realization of chaos-based systems.41–43

FPAA development board consists of analog arrays that are con¯gurable within

3.3–5 V. Figure 4 demonstrates the circuit structure used in this paper, AnadigmTM

AN231K04-QUAD 3.3 V. FPAA is composed of con¯gurable analog blocks (CAB)

and programmable interconnection network. Moreover, it has con¯gurable archi-

tecture in digital memory cells. On the other hand, CABs basically are the analog

units that are composed of feedback opamps. In fact, a CAB is used to calculate some

FPAA Implementations of Fractional-Order Chaotic Systems
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complex tasks such as amplify, integral, summation, ¯ltering, comparison, and an-

alog/digital or digital/analog conversion.45–47

The interface design of the realized fractional-order chaotic systems has two parts:

(i) the part, which is de¯ned as the dynamic equation, where it is upto entrance of the

integrator likewise integer-order chaotic systems. This part is realized in FPAA1

CAB module for both the designs, e.g., Sprott type-H and R€ossler. (ii) The fractional

order part of the fractional-order dynamic system is realized by CAM blocks

in FPAA2 CAB module. In this part, the used transfer function is generalized

with (20).

The equation has nominator and denominator Laplace transformation with the

power of 2 and 3, respectively. In the equation, GH1, GH2 and GH3 denote the gain

of ¯lters. Pole/Zero frequencies used in the primary and secondary bilinear ¯lters are

derived with the expressions of !z1, !z2, !p1, !p2 and !p3. The low-pass ¯lter fre-

quency is obtained from the expression of !p0. Table 3 gives the zero/pole frequencies

along with low-pass ¯lter frequency for fraction order of 0.9. The FPAA imple-

mentation of (20) is realized using the Anadigm Designer 2 software.48,49 Even

though Ref. 49 looks quiet similar to the work done here, there are some remarkable

Fig. 4. Anadigm AN231K04-QUAD 3.3V development board.44

Table 3. Chaotic attractors of the fractional-order system using the Charef method.

CAM Filter Type fz fp GH

Bilinear1 Pole zero ¯lter fz1 ¼ 0:208Hz fp1 ¼ 0:00206Hz GH1 ¼ 10

Bilinear2 Pole zero ¯lter fz2 ¼ 37:71Hz fp2 ¼ 0:346Hz GH2 ¼ 10

Bilinear3 Pole zero ¯lter fz3 ¼ 57:87Hz GH3 ¼ 6:23

K. Altun
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di®erences in between. In this paper, we are able simulate di®erent fraction order,

give simulation results that encapsulate comparative analysis of the fraction order

where dynamic systems' phase-space portrait can be observed. Moreover, this paper

o®ers more practical and implementable way of conducting experimental studies: the

advantage of our design using fewer CAB block is that it utilizes circuit components

more e±ciently, i.e., requires less power.

T ðsÞ ¼ GH1ðwz1 þ sÞ
ðwp1 þ sÞ � GH2ðwz2 þ sÞ

ðwp2 þ sÞ � w0GH3

w0 þ s
: ð20Þ

T ðsÞ ¼ GH1ðwz1 þ sÞ
ðwp1 þ sÞ � GH2ðwz2 þ sÞ

ðwp2 þ sÞ � w0GH3

w0 þ s

¼
1þ s

1:29

� �
1þ s

215:18

� �

1þ s

0:0129

� �
1þ s

2:15

� �
1þ s

358:94

� �

wp1 ¼
1

�1
; wp2 ¼

1

�2
; w0 ¼

1

�3

For the fractional order q ¼ 0:9, transfer function is obtained with (17). With the

transfer function expressed with (20), the pole frequencies, fp0; fp1 and fp2, zero

frequencies, fz1 and fz2, and gains, GH1, GH2 and GH3, are calculated as follows:

wp1 ¼
1

�1
¼ 2�fp1 ¼ ðabÞ1ap0; fp1 ¼ 0:00206Hz ;

wp2 ¼
1

�2
¼ 2�fp2 ¼ ðabÞ2ap0; fp2 ¼ 0:34600Hz ;

wp0 ¼
1

�3
¼ 2�fp0 ¼ ðabÞ3ap0; fp0 ¼ 57:8700Hz :

wz1 ¼ 2�fz1 ¼ ðabÞ1p0; fz1 ¼ 0:208Hz ;

wz2 ¼ 2�fz2 ¼ ðabÞ2p0; fz2 ¼ 37:71Hz ;

GH3 ¼ ð1=pT �Þ ¼ ð1=0:010:9Þ ¼ 6:23 :

The ¯rst-order pole and zero frequencies calculated above are designed in

CAM con¯guration as FilterBilinear, as shown in Fig. 5. According to this, ¯rst

bilinear ¯lter zero, and pole frequencies, and high frequency gain are designed in

FilterBilinear CAM block, respectively, as fz1 ¼ 0:208Hz, fp1 ¼ 0:00206Hz, and

GH1 ¼ 1:0.

Moreover, the second-order pole and zero frequencies given with Fig. 6 are

designed in CAM con¯guration as FilterBilinear. According to this, second bilinear

¯lter zero, and pole frequencies, and high frequency gain are designed in FilterBi-

linear CAM block, respectively, as fz2 ¼ 37:71Hz, fp2 ¼ 0:346Hz, and GH2 ¼ 1:0.

FPAA Implementations of Fractional-Order Chaotic Systems

2150271-15

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

r.
 K

en
an

 A
L

T
U

N
 o

n 
06

/1
8/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Fig. 6. CAM parameters of the second pole/zero bilinear ¯lter.

Fig. 5. CAM parameters of the ¯rst pole/zero bilinear ¯lter.

K. Altun
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Finally, 3rd multiplier of the transfer function given in (20) designed as a low-pass

¯lter using CAM con¯guration, as shown in Fig. 7. According to this, low-pass

¯lter cutting frequency is designed in FilterBilinear CAM as f0 ¼ 57:87Hz and

GH3 ¼ 6:23.

The FPAA realization blocks of fractional-order chaotic systems are shown

in Figs. 8 and 9. Table 4 represents the blocks and their usage purposes in the

realization of FPAA.

After they are designed in software interface, the designs in Figs. 8 and 9 are

embedded in FPAA development board. The input and output information signals

are experimentally measured from FPAA development board I/O terminals using

digital oscilloscopes.

Figure 10 gives the R€ossler chaotic system phase space representations for (a)

q ¼ 0:94 and (b) q ¼ 0:98. Figure 11 gives the x�y, x�z, y�z Sprott type-H chaotic

system phase space representations for (a) q ¼ 0:89 and (b) q ¼ 0:91.

It should be observed that the outcomes of the simulations and experimental

studies show similarities. With the proposed design method, the fractional-order

chaotic system's analog-based fractional-order implementation is carried out. The

study realized by using the FPAA structures represents the fractional-order real

system behavior for nonlinear dynamic systems instead of integer order approxi-

mated results.

Fig. 7. CAM parameters of the third pole/zero bilinear ¯lter.
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With the help of this method, the performance observation of control system

models can be realistically completed with high accuracy.

In this study, embedded system implementation of the fractional-order analog-

based systems is realized. In Figs. 10 and 11, obtained results of the experimental

Fig. 9. FPAA implementation of proposed fractional-order chaotic system: Sprott type-H chaotic gen-

erator and ¯rst pole-zero bilinear ¯lter are presented in FPAA1, second pole-zero bilinear ¯lter and third
low pass ¯lter are presented in FPAA2.

Fig. 8. FPAA implementation of proposed fractional-order chaotic system: R€ossler chaotic generator and
¯rst pole-zero bilinear ¯lter are presented in FPAA1, second pole-zero bilinear ¯lter and third low pass

¯lter are presented in FPAA2.

K. Altun
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Table 4. FPAA realization blocks used in experimental study.

FPAA Realization Blocks

FILTERBILINEAR BLOCK FILTERBILINEAR blocks work as an creates pole and zero filter

configuration by using Laplace transforms in FPAA1 and FPAA2.

FILTERBILINEAR BLOCK FILTERBILINEAR blocks work as an creates low pass filter

configuration by using Laplace transforms in FPAA2.

SUMDIFF BLOCK SUMDIFF block creates a half cycle summing up to

four inputs block in FPAA1.

MULTIPLIER WAVE BLOCK MULTIPLIER WAVE BLOCK creates a multiplier in FPAA1.

GAINHALF BLOCK GAINHALF BLOCK creates a half cycle gain stage in FPAA1.

DC VOLTAGE SOURCE BLOCK DC VOLTAGE SOURCE block provides constant values in FPAA1.

(a)

(b)

Fig. 10. R€ossler chaotic phase portrait; (a) x-y, x-z, y-z for q1 ¼ q2 ¼ q3 ¼ 0:94, (b) x-y, x-z,

y-zq1 ¼ q2 ¼ q3 ¼ 0:98.
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study, phase portraits of fractional-order R€ossler and Sprott h oscillators are given.

When the phase portraits of fractional-order oscillators are compared with the phase

portraits of integer-order oscillators, it is observed that the fractional-order systems

exhibit hyper chaos behavior. In order for the dynamic systems to exhibit hyper

chaos behavior, they must have at least 4D or fractional order chaotic equation

structure. This situation causes an increase in the number of potential channels in

the chaotic based communication systems. Increasing the number of channels in the

communication system results in increased system complexity. Thus, with the in-

crease in the number of channels in the transmitter circuit of the communication

system, the number of unpredictable channels increases. This situation decreases the

possibility of external intervention to the communication channel and increases the

reliability of the communication system.

5. Conclusion

In this study, the analog-based implementation of fractional order chaotic systems

was presented. In R€ossler and Sprott type-H chaos systems, variety of transfer

functions was obtained for the di®erent values of fractional orders, and was simu-

lated using MATLAB Simulink. The transfer functions of chaotic systems were

realized using the Charef approximation method. The fractional orders in the

transfer functions that exhibit chaos conditions were numerically determined using

the eigenvalues of chaos system. With the simulation studies, the state of chaos at

fractional degrees calculated for dynamical systems was tested. For fractional

degrees in theoretically calculated chaos conditions, the chaos state of dynamic

(a)

(b)

Fig. 11. Sprott type-H chaotic phase portrait; (a) x-y, x-z, y-z for q1 ¼ q2 ¼ q3 ¼ 0:89 and (b) x-y, x-z,
y-zq1 ¼ q2 ¼ q3 ¼ 0:91.
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systems was simulated. The data obtained from the theoretical and simulation

results were also con¯rmed with experimental results. The system design and ex-

perimental realization of fractional-order chaotic system were completed using an-

alog-based development board of AN231K04-QUAD. In the FPAA CAB design of

transfer functions, BilinearFilter CAM modules was utilized. This paper showed the

implementation of fractional-order chaotic systems using FPAA. The experimental

observations of the attractors generated by the FPAA-based implementation of both

R€ossler and Sprott type-H have been demonstrated. These structures can be used in

real-time design of many systems such as reliable communication systems and con-

trol systems. It was observed that the outcomes of experimental studies matched

with the simulation results. As a future work, the proposed method will be integrated

into coherent chaotic communication systems, in which synchronization with dif-

ferent fractional order or integer order chaotic system is a challenging issue, to

increase the complexity, and thereby communication security.
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