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Abstract: In this study, we consider the domains of the minimal and maximal operators generated of singular
differential-expression-type Sturm–Liouville and obtain all self-adjoint extensions of the operator in terms of boundary
conditions.

Key words: Sturm–Liouville equation, minimal and maximal operators, self-adjoint extensions

1. Introduction
One of the fundamental problems in the theory of symmetric operators is to construct all those extensions of a
given symmetric operator A which are themselves symmetric operators. A special case of this is the problem
of setting up conditions under which an operator shall have a self-adjoint extension and to construct all the
self-adjoint extensions when these conditions hold.

If B is a symmetric extension of a symmetric operator A , then A ⊂ B , so we B∗ ⊂ A∗ . However, B
is a symmetric operator, i.e. B ⊂ B∗ , so we have A ⊂ B ⊂ B∗ ⊂ A∗ , i.e. every symmetric extension of an
operator A is a restriction of the operator A∗. A symmetric operator A is said to be maximal if it has no
proper symmetric extension. Every self-adjoint operator A is a maximal symmetric operator. For, in this case,
A∗ = A, and the A ⊂ B ⊂ B∗ ⊂ A∗ implies that B = A , i.e. every symmetric extention B of A coincides with
A . There are maximal operators which are not self-adjoint.

Boundary value problems for the differential operators with integrable coefficient in the finite interval
were well learned (see for exp., [1, 6]). In the last years, learning the differential operators with the nonintegrable
or singular coefficient has become even more important according to physical science needs.

In the present paper, in interval (0, 1) , all self-adjoint extensions have been considered for Sturm–Liouville
operator which is generated by differential expression

l [u] = −u′′(x) + cx−αu(x) + l(l + 1)x−2u(x) + q(x)u(x) (1.1)

where c, α , and l are real numbers, α ∈ [1, 2) , l ∈
(
−1

2
,
1

2

)
and q(x) is a real-valued measurable bounded

function and define σ (x) =
∫
q(x)dx.
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Note that a similar problem was completely studied in [1, 4, 6, 7] for the Sturm–Liouville equation with
integrable potential and with Bessel potential (c = 0). Boundary value problems with another regularization

were given in [2] for α < 3

2
(l = 0) . Self-adjoint extensions of the operator generated by differential expression

(1.1) in the case l = 0 with potential σ′(.), σ(.) ∈ L2(0, 1) were given in [5]. Regularizations used in the paper

coincide with those in [5] only for α < 3

2
in the case l = 0 . More generally than studies [2] and [5], that is, in

the case of α ∈ [1, 2) and ℓ = 0 , the operators self-adjoint extensions produced by (1.1) differential expression
were obtained in [3] .

2. Main results
On the set D0 = C∞

0 (0, 1), we introduce an operator L′
0 by the formula L′

0u ≡ l [u] . Obviously, L′
0 is

a symmetric operator in L2(0, 1) . Its closure L0 is called the minimal operator generated by differential
expression (1.1). The adjoint operator L∗

0 is called the maximal operator. Since the operators L0 and L′
0

generated by the expression (1.1) differ from the corresponding operators generated by the expression (1.1)
with q(x) ≡ 0 by a bounded operator, in the following, we assume that

l [u] = −u′′(x) + cx−αu(x) + l(l + 1)x−2u(x)

For the determination of the domains of the minimal and maximal operators we need a fundamental (principal)
solution system for the equation

−u′′(x) + cx−αu(x) + l(l + 1)x−2u(x) = 0 (2.1)

First of all, let us give the following lemma:

Lemma 2.1 If M ̸= n− 1, ∀n ∈ N, then the differential equation

u′′(t)− M

t
u′(t) =

Q

t
u(t), Q ̸= 0 (2.2)

has only one solution as the following:

u(t) =

+∞∑
k=0

ckt
k

If M = n− 1 for any n ∈ N , then the differential equation (2.2) has only one solution as the following:

u(t) =

n−1∑
k=0

ckt
k + tn

Q

n
cn−1 ln t+

+∞∑
k=n+1

(
Ãk + B̃k ln t

)
tk

where ck = Qk(k!)−1
k−1∏
p=0

(p − M)−1, c0 = 1, B̃k+1(k + 1)(k − n + 1) = B̃k, k ≥ n, B̃n =
Q

n
cn−1,

Ãn+1(n+ 1) + B̃n+1(n+ 2) = 0,

QÃk = (k + 1)(k − n+ 1)Ãk+1 + (2k + 2− n)B̃k+1, k > n .
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It is clearly seen that the function u(t) given in the expression of the lemma satisfies equation (2.2) in
both M ̸= n− 1 and M = n− 1 cases.

Let us investigate the fundamental system of solution of differential equation (2.1) as

u1(x) = xl+1ψ(x), u2(x) = x−lφ(x).

Then, we obtain the differential equations

ψ′′(x) +
2(l + 1)

x
ψ′(x) =

c

xα
ψ(x), φ′′(x)− 2l

x
φ′(x) =

c

xα
φ(x)

for functions ψ(x) and φ(x) .
If the transformation t = x2−α in the obtained differential equations for the functions ψ(x) and φ(x)

and representation ψ̃(t) = ψ
(
t

1
2−α

)
, φ̃(t) = φ

(
t

1
2−α

)
are used, we get the following differential equations:

ψ̃′′(t) +
2(l + 1) + 1− α

2− α
.
1

t
ψ̃′(t) =

c

(2− α)
2 .
1

t
ψ̃(t)

φ̃′′(t)− 2l − 1 + α

2− α
.
1

t
φ̃′(t) =

c

(2− α)
2 .
1

t
φ̃(t)

Therefore, it was shown that functions ψ̃(t) and φ̃(t) satisfy the differential equation with the type (2.2). By
using the solutions of differential equation (2.2), we obtained the representations in Lemma2.1 for the functions

ψ̃(t) and φ̃(t) , so also functions u1(x) and u2(x) are fundamental solution of equation (2.1).

Lemma 2.2 Equation (2.1) has a solution u1(x) with the initial conditions

u1(x) = xl+1 [1 + o(1)] , u′1(x) = (l + 1)xl + o(xl) x→ +0

and a solution u2(x) that can be represented in the form

u2(x) = xl



+∞∑
k=0

akx
(2−α)k if α ̸= 2n− 1− 2l

n
, (n ∈ N)

n−1∑
k=0

akx
(2−α)k +

c

2l + 1
an−1x

2l+1 lnx

+
+∞∑

k=n+1

(Ak +Bk lnx)x
(2−α)k

if α =
2n− 1− 2l

n
, (n ∈ N)

(2.3)

where a0 = 1, ak =
1

k!

ck

(2− α)
k

k∏
p=1

(2p− 1− αp− 2l)
−1 .

The existence of the solution u1(x) is well known ( see [8]). The assertion concerning the solution u2(x)

can be obtained by a straightforward substitution of the expression (2.3) into equation (2.1).

Lemma 2.3 The domain D(L∗
0) of the maximal operator L∗

0 generated by the expression (1.1) is the set of
functions u(x) that can be represented in the form

u(x) = u1(x)h1 + u2(x)h2 +

x∫
0

[u2(x)u1(t)− u1(x)u2(t)] f(t)dt
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where h1, h2 ∈ C and f ∈ L2(0, 1) ( C is the set of complex numbers).

It follows from this lemma that the function u ∈ L2(0, 1) belongs to D(L∗
0) if and only if u′(x) is

absolutely continuous on (0, 1) and l [u] ∈ L2(0, 1) . Next, on D(L∗
0) , the operator L∗

0 acts by the formula
L∗
0u = l [u] .

It follows from Lemma2.2 and Lemma2.3 that the function u′(x) , where u ∈ D(L∗
0) , does not necessarily

have a boundary value at the point x = 0 . However, it has a regularized boundary value. We set b1 = a1 and
bk = kak − b1ak−1 − . . .− bk−1a1, k > 1 and introduce the functions

σα,l(x) =



0 α < 1− 2l
c lnx α = 1− 2l

(2− α)
n−1∑
k=1

bkx
2k−1−αk−2l

+can−1 lnx
α =

2n− 1− 2l

n
, n = 2, 3, . . .

(2− α)
n∑

k=1

bkx
2k−1−αk−2l α ∈

(
2n− 1− 2l

n
,
2n+ 1− 2l

n+ 1

)
,

n = 1, 2, . . .

(Γ1y) (x) = xly(x), (Γ2y) (x) = x−l−1 [xy′(x) + ly(x)]− σα,l(x)x
ly(x)

Lemma 2.4 Let u ∈ D(L∗
0) . Then the functions (Γ1u) (x) and (Γ2u) (x) has limits

lim
x→0+

(Γ1u) (x) = (Γ1u) (0) , lim
x→0+

(Γ2u) (x) = (Γ2u) (0) .

Now one can readily show (see [1, 6]) that the domain D(L0) of the minimal operator L0 generated by expression
(1.1) is the set of functions u ∈ D(L∗

0) such that

(Γ1u) (0) = (Γ2u) (0) = u(1) = u′(1) = 0.

For each function u ∈ D(L∗
0), we define an ordered pair {U,U ′} of vectors of the two-dimensional

euclidean space C2 as follows:

U = {− (Γ1u) (0) , u(1)} , U ′ = {(Γ2u) (0) , u
′(1)} (2.4)

The Lagrange formula for functions u, v ∈ D(L∗
0) can be written out in the form

(L∗
0u, v)− (u, L∗

0v) = ⟨U, V ′⟩ − ⟨U ′, V ⟩

where the symbols (., .) and ⟨., .⟩ stand for the inner products in the spaces L2(0, 1) and C2, respectively. Now,
by using theorem on the representation of Hermitian relations [1, 7], one can prove the following theorem:

Theorem 2.5 For each self-adjoint extensions of operator L∗
0

(CosA).U ′ − (SinA).U = 0 (2.5)

(Ù − I)U ′ + (Ù + I)U = 0 (2.6)

any of boundary conditions have been determined, where A, Ù , and I are self-adjoint, uniter, and identical
operators respectively. Conversely, helping any of boundary conditions (2.5) and (2.6), the self-adjoint extensions
can be generated.
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