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Abstract: In this paper, we study the inverse spectral problem for the quadratic differential pencils with discontinuity

coefficient on [0, π] with separable boundary conditions and the impulsive conditions at the point x =
π

2
. We prove

that two potential functions on the interval [0, π] , and the parameters in the boundary and impulsive conditions can

be determined from a sequence of eigenvalues for two cases: (i) The potentials are given on
(
0,

π

4
(1 + α)

)
, (ii) The

potentials are given on
(π
4
(1 + α) , π

)
, where 0 < α < 1 , respectively.
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1. Introduction
We consider the quadratic pencils of Sturm–Liouville operator L (p, q, h,H, α, β, γ) of the form

ℓy := −y
′′
+ [2λp(x) + q(x)] y = λ2ρ (x) y, x ∈

[
0,
π

2

)
∪
(π
2
, π
]

(1.1)

with the boundary conditions

U (y) := y
′
(0)− hy(0) = 0, (1.2)

V (y) := y
′
(π) +Hy(π) = 0 (1.3)

and with the impulsive conditions

y
(π
2
+ 0
)
= βy

(π
2
− 0
)
, (1.4)

y
′
(π
2
+ 0
)
= β−1y

′
(π
2
− 0
)
+ γy

(π
2
− 0
)
,

where λ is the spectral parameter, p(x) ∈W 1
2 [0, π] , q(x) ∈ L2 [0, π] are real-valued functions, h,H,∈ R, α, β, γ

are real numbers, β > 0, |β − 1|2 + γ2 ̸= 0 and
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ρ(x) =

 1, 0 < x <
π

2
α2,

π

2
< x < π,

, 0 < α < 1.

Here we denote by Wm
2 [0, π] the space of functions f(x), x ∈ [0, π] , such that the derivatives f (m)(x) (m =

0, n− 1) are absolute continuous and f (n)(x) ∈ L2 [0, π] .

We can get p (0) = 0 without general exposure; otherwise, if c0 = p (0) ̸= 0 by direct calculation, we
note that equation (1.1) is equivalent to

Lλy := −y
′′
+
[
q(x) + 2p(x)c0 − c20 + 2(λ− c0)(p(x)− c0)

]
y = (λ− c0)

2ρ (x) y. (1.5)

Let

q̂(x) = q(x) + 2p(x)c0 − c20ρ (x) , p̂(x) = p(x)− c0ρ (x) , λ̂ = λ− c0

then for the problem with the form (1.1)–(1.4), we have p̂(0) = 0.

Quadratic pencils of Sturm–Liouville operator with discontinuous coefficient appear frequently in various
models of classical mechanics and quantum (see [12–14, 20, 31] and the references therein). For instance, the
evolution equations which are used to model interactions between colliding relativistic spineless particles can be
reduced to the form (1.1), here the parameter λ2 can be regarded as the energy of this system (see [12, 20, 31]).

Boundary value problems with discontinuous coefficients and discontinuous conditions at the inner point
of the finite part have an important place, especially in applied mathematics, quantum physics, and engineering
(applied sciences) sciences. An important application area of such problems is earth sciences. Determining
the refraction coefficients and the refraction coefficients of the waves passing through the medium consisting
of different layers is an important problem of geophysics, and learning the diffraction coefficients of the wave
propagating under different effects in a wire made of different materials is also an important problem of classical
mechanics. It is necessary to examine most of the natural events that occur in this way and to create their
mathematical models to be able to intervene in these events. Information about the event can be obtained by
examining the mathematical models created. For example, when the wavelengths and refraction coefficients of
the wave passing through the crystal are known, information about the formation of the crystal and its shape
(form) can be obtained. These types of problems are called inverse problems for singular differential operators
in mathematics. The problems in [23] and [19] appear in all areas of applied sciences. In general, these types
of problems are reduced to the inverse problems posed for the operators produced by the one-dimensional or
multidimensional Shrödinger equation. Similar problems are encountered in earth sciences [17].

There are many studies on the determination of singular operators (coefficients of differential expression
and other parameters) according to spectral characteristics (data) of the given problem recently [5, 22].These
types of problems create different classes according to the location [1, 9, 28]. The inverse spectral problem for
the boundary value problem given in (1.1)–(1.4) were previously studied in [24] in general.

One of the most important problems recently introduced and studied regarding the determination of
singular Shrödinger and diffusion operators are the semiinverse problems ([25, 26, 36, 37]). This problem, which
was first examined by Hochstandt and Liberman (([10],[37])) for the Sturm–Liouville operator, has also been
studied for different operators ([11, 32, 33]) and continues to be studied.

In this paper, unlike other similar studies, we consider the problem L (p, q, h,H, α, β, γ) and prove that
if the potentials q(x) and p(x) on (0, c) and h are given, then only a single spectrum is sufficient to determine
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q(x) and p(x) on (0, π) , ρ (x) ,H ,β , and α . We also consider the case that the q(x)and p(x) are given on the
(c, π) , and prove a uniqueness theorem. Moreover, it is shown that potentials q(x) and p(x) on (0, π) , ρ (x) ,
β , α , h , and H can be uniquely determined by one spectrum and some information on eigenfunctions at the

internal point c = 1 + α

4
π . In Section 4, new results about the interior inverse problem are given. In Section 5,

a reconstruction method is given for half inverse problems. Unlike the methods in similar articles, this method
is given by using the main equation. Finally, some examples are given in Section 6.

2. Preliminaries
Let φ(x, λ) function be the solution of the equation (1.1) that satisfies the initial conditions

φ(0, λ) = 1, φ′(0, λ) = h (2.1)

and the impulse condition (1.4). It is shown in [2] if q(x) ∈ L2 [0, π] and p(x) ∈ W 1
2 [0, π] that there exist

functions A(x, t) , B(x, t) and Ax, At, Bx, Bt ∈ L1 [0, π] for each x ∈ [0, π] such that

φ(x, λ) = φ0(x, λ) +

µ+(x)∫
0

A(x, t) cosλtdt+

µ+(x)∫
0

B(x, t) sinλtdt, (2.2)

β+ω+ (x) = β+xp(0) + 2

x∫
0

[
A(ξ, ξ) sinω+(ξ)−B(ξ, ξ) cosω+(ξ)

]
dξ, (2.3)

2
d

dx

[
A(x, x) cosω+(x) +B(x, x) sinω+(x)

]
= β+

[
q(x) + p2(x)

]
, (2.4)

2
d

dx

[
A(x, t) cosω−(x)−B(x, t) sinω−(x)

] ∣∣∣t=µ+(x)+0
t=µ+(x)−0 = β− [q(x) + p2(x)

]
, (2.5)

At(x, t) |t=0 = B(x, 0) = 0 (2.6)

are held.
Next, suppose that q(x) ∈W 1

2 [0, π] , p(x) ∈W 2
2 [0, π] , then the functions A(x, t) and B(x, t) satisfy the

system of partial differential equations

Axx (x, t)− q(x)A(x, t)− 2p(x)Bt(x, t) = Att(x, t), (2.7)

Bxx (x, t)− q(x)B(x, t) + 2p(x)At(x, t) = Btt(x, t).

Conversely, if the second order derivatives of functions A(x, t), B(x, t) are summable on [0, π] for each x ∈ [0, π]

and A(x, t), B(x, t) satisfy equalities (2.7) and conditions (2.3)–(2.6), then the function φ(x, λ) which is defined
by (2.2) is a solution of (1.1) satisfying initial conditions (2.1) and impulsive conditions (1.4)
where
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φ0(x, λ) = β+ cos

[
λµ+(x)− ω+(x)√

ρ(x)

]
+ β− cos

[
λµ− (x) +

ω−(x)√
ρ(x)

]
(2.8)

+
h

λ

{
β+ sin

[
λµ+(x)− ω+(x)√

ρ(x)

]
+ β− sin

[
λµ− (x) +

ω−(x)√
ρ(x)

]}

and

β± =
1

2

(
β ± 1

αβ

)
, µ±(x) = ±

√
ρ (x)x+

π

2
(1∓

√
ρ (x)), (2.9)

ω+(x) =

x∫
0

p(t)dt, ω−(x) =

x∫
π
2

p(t)dt

It is clear that the characteristic function of the problem L (p, q, h,H, α, β, γ) can be

∆(λ) = φ′(π, λ) +Hφ (π, λ) (2.10)

and

∆0 (λ) = φ′
0(π, λ) +Hφ0 (π, λ)

= −β+

(
λα− p (π)

α

)
sin

(
λµ+(π)− ω+(π)

α

)

+ β−
(
λα− p (π)

α

)
sin

(
λµ− (π) +

ω−(π)

α

)

+
h

λ

{
β+

(
λα− p (π)

α

)
cos

(
λµ+(π)− ω+(π)

α

)

+β−
(
λα− p (π)

α

)
cos

(
λµ− (π) +

ω−(π)

α

)}

+H

{
β+ cos

(
λµ+(π)− ω+(π)

α

)
+ β− cos

(
λµ− (π) +

ω−(π)

α

)
+

+
h

λ

[
β+ sin

(
λµ+(x)− ω+(x)√

ρ(x)

)
+ β− sin

(
λµ− (x) +

ω−(x)√
ρ(x)

)]}

or ∆(λ) =< ψ (x, λ) , φ (x, λ) >= V (φ) = −U (ψ) where < y, z >:= y
′
z − yz

′ and ψ (x, λ) be a solution of
(1.1) with the initial conditions ψ(π, λ) = 1, ψ′(π, λ) = −H and the impulsive conditions (1.4).

Next, suppose that the function q(x) satisfies the additional condition

h |y(0)|2 +H |y(π)|2 +
π∫

0

{
|y′(x)|2 + q(x) |y(x)|2

}
dx > 0 (2.11)
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for all y(x) ∈W 2
2

([
0,
π

2

)
∪
(π
2
, π
])

such that y(x) ̸= 0 and

y′(0)y(0)− y′(π)y(π) = 0. (2.12)

Then it is shown in [2] that the eigenvalues of the boundary value problem L (p, q, h,H, α, β, γ) are real
nonzero, simple and does not have associated functions. Additionally, eigenfunctions corresponding to different
eigenvalues of the problem L (p, q, h,H, α, β, γ) are orthogonal in the sense of the equality

(λ1 + λ2) (ρ (x) y1, y2)− 2(py1, y2) = 0, (2.13)

where (., .) denotes the inner product in L2 [0, π] .

The function ∆(λ) is entire in λ . Zeros {λn}n∈Z of ∆(λ) coincide with the eigenvalues of the problem
L (p, q, h,H, α, β, γ) . We note that for λ ∈ Gδ = {λ : |λ− λn| > δ, δ > 0} ,where δ is sufficiently small positive

number
(
δ ≪ β

2

)
, then [4] there exists a constant Cδ > 0 such that

|∆(λ)| ≥ β+ (|λ|α− Cδ) exp
(
τµ+(π)

)
, for all λ ∈ Gδ, (τ = Imλ). (2.14)

Lemma 2.1 The following asymptotic relations hold as |λ| → ∞ . For π

2
< x < π

φ (x, λ) = β+ cos

[
λµ+(x)− ω+(x)√

ρ(x)

]
+ β− cos

[
λµ− (x) +

ω−(x)√
ρ(x)

]
(2.15)

+O
(
|λ|−1

e|τ |µ
+(x)

)

φ
′
(x, λ) = −β+

[
λ
√
ρ(x)− p(x)√

ρ(x)

]
sin

[
λµ+(x)− ω+(x)√

ρ(x)

]
− (2.16)

− β−

[
λ
√
ρ(x)− p(x)√

ρ(x)

]
sin

[
λµ− (x) +

ω−(x)√
ρ(x)

]

+O
(
e|τ |µ

+(x)
)

For 0 < x <
π

2
,

ψ (x, λ) = A+ cos

[
λ(π − µ+(x))− 1

α
ω+(x) + α+ω−(x)

]
+ (2.17)

+A− cos

[
λ(π − µ− (x)) +

1

α
ω+(x)− α+ω−(x)

]
+O

(
|λ|−1

e|τ |(π−µ+(x))
)
,

ψ
′
(x, λ) = A+ (λ− αp (x)) sin

[
λ(π − µ+(x))− 1

α
ω+(x) + α+ω−(x)

]
− (2.18)

−A−
(
λ− (α− 2

α
)p(x)

)
sin

[
λ(π − µ− (x)) +

1

α
ω+(x)− α+ω−(x)

]
+O

(
e|τ |(π−µ+(x))

)
,
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where A± =
1

2

(
1

β
± αβ

)
.

Proof The accuracy of the equations (2.15) and (2.16) were obtained in the study of [24], Similarly, the
accuracy of the (2.17) and (2.18) behavior is easily obtained.

It is easy to verify that if φ(x, λ) and ψ (x, λ) are solutions of equation (1.1) and satisfy the impulsive
conditions (1.4), then < φ,ψ > is independent x , and

W (φ,ψ)
∣∣∣x=π

2−0
=W (φ,ψ)

∣∣∣x=π
2 +0

.

It is clear from (2.10) that

∆(λ) =W (φ,ψ) = V (φ) = −U(ψ). (2.19)

2

Lemma 2.2 The zeros {λn} of the characteristic function ∆(λ) coincide with the eigenvalues of the boundary
value problem L (p, q, h,H, α, β, γ) and there exists a sequence {βn} such that ψ (x, λn) = βnφ (x, λn) , βn ̸=
0, n ∈ Z.

The proof of Lemma is made similar to the proof of Lemma 8 in [2].
Next, we denote by L2 ((0, π) ; ρ (x)) a space which has the inner product

(φ,ψ) =

π∫
0

ρ (x)φ (x)ψ (x) dx.

Let αn (n ∈ Z) be the sequence of normalized constants, which are defined as

αn :=

π∫
0

ρ (x)φ2 (x, λn) dx− 1

λn

π∫
0

p (x)φ2 (x, λn) dx.

Lemma 2.3 The equality
·
∆(λn) = −2λnαnβn holds. Here

·
∆(λ) = (d/dλ)∆ (λ) .

Lemma 2.4 The problem L (p, q, h,H, α, β, γ) has countable set of eigenvalues. If one denotes by λ1, λ2, ...

the positive eigenvalues arranged in increasing order and by λ−1, λ−2, ... the negative eigenvalues arranged in
decreasing order, then eigenvalues and the normalized constans αn of the problem L (p, q, h,H, α, β, γ) have the
asymptotic behavior respectively

λn = λon +
dn
λon

+
δn
λon
, n→ ±∞,

αn =
π

2

[(
β+
)2

+ (β−)
2
]
+
β11
λ0n

+
β1n
n
,

1852



AMİROV and DURAK/Turk J Math

where {δn} , {β1n} ∈ l2 , and {dn} is a bounded sequence, λon =
n

µ+ (π)
+
ω+ (π)

µ+ (π)
+ hn , supn |hn| < ∞,

β11 = −βπ
2
p (0) .

The following theorem is shown in [3]:

Theorem 2.5 The functions A(x, t) and B(x, t) satisfy the following system of linear integral equations:

β+(F11 (x, t) cosω
+(x) + F12(x, t) sinω

+(x)) + β−(F11 (2a− x, t) cosω−(x) + F12(2a− x, t) sinω−(x))

+A(x, t) +
x∫
0

A(x, ξ)F11(ξ, t)dξ +
x∫
0

B(x, ξ)F12(ξ, t)dξ = 0, 0 ≤ t < x,

(2.20)

β+(F21 (x, t) cosω
+(x) + F22(x, t) sinω

+(x)) + β−(F21 (2a− x, t) cosω−(x) + F22(2a− x, t) sinω−(x))

+B(x, t) +
x∫
0

A(x, ξ)F21(ξ, t)dξ +
x∫
0

B(x, ξ)F22(ξ, t)dξ = 0, 0 ≤ t < x,

(2.21)

where

F11 (x, t) =
1

π
cos c0x cos c0t+

∑
n∈Z

[
1

2αn
cosλnx cosλnt−

1

π
cos(n+ c0)x cos(n+ c0)t

]
, (2.22)

F12 (x, t) =
1

π
sin c0x cos c0t+

∑
n∈Z

[
1

2αn
sinλnx cosλnt−

1

π
sin(n+ c0)x cos(n+ c0)t

]
, (2.23)

F21 (x, t) =
1

π
cos c0x sin c0t+

∑
n∈Z

[
1

2αn
cosλnx sinλnt−

1

π
cos(n+ c0)x sin(n+ c0)t

]
, (2.24)

F22 (x, t) =
1

π
sin c0x sin c0t+

∑
n∈Z

[
1

2αn
sinλnx sinλnt−

1

π
sin(n+ c0)x sin(n+ c0)t

]
, (2.25)

c0 = ω+ (π) .

The equations (2.20), (2.21) are called the fundamental equations of the inverse problem.

3. Main results
Now we state the main result of this work. It is assumed in what follows that if a certain symbol s denotes an
object related to L (p, q, h,H, α, β, γ) , then the corresponding symbol s̃ with tilde denotes the analogous object

related to L̃(p̃, q̃, h̃, H̃, α̃, β̃, γ̃) . Let us denote by φ (x, λn) , the eigenfunction which corresponds to λn.

Lemma 3.1 If λn = λ̃n , n ∈ Z , then ω+ (π) = ω̃+ (π) , ω− (π) = ω̃− (π) and α = α̃ , that is the sequence
{λn} uniquely determines ω± (π) and α.
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Proof of Lemma is easily obtained from the asymptotic expression of λn.

Lemma 3.2 If λn = λ̃n , n = 0,±1,±2, ... then β = β̃ and H = H̃ .

Proof Since λn = λ̃n and ∆(λ) , ∆̃ (λ) are entire functions in λ of order one by Hadamard factorization
theorem, for λ ∈ C

∆(λ) ≡ C∆̃ (λ) . (3.1)

On the other hand, (3.1) can be written as

∆0 (λ)− C∆̃0 (λ) = C
[
∆̃ (λ)− ∆̃0 (λ)

]
− [∆ (λ)−∆0 (λ)] . (3.2)

Hence,

C
[
∆̃ (λ)− ∆̃0 (λ)

]
− [∆ (λ)−∆0 (λ)] (3.3)

= −β+

(
λα− p (π)

α

)
sin

(
λµ+(π)− ω+(π)

α

)

+ β−
(
λα− p (π)

α

)
sin

(
λµ− (π) +

ω−(π)

α

)

+
h

λ

{
β+

(
λα− p (π)

α

)
cos

(
λµ+(π)− ω+(π)

α

)

− β−
(
λα− p (π)

α

)
cos

(
λµ− (π) +

ω−(π)

α

)}

+H

{
β+ cos

(
λµ+(π)− ω+(π)

α

)
+ β− cos

(
λµ− (π) +

ω−(π)

α

)}

+H
h

λ

{
β+ sin

(
λµ+(π)− ω+(π)

α

)
+ β− sin

(
λµ− (π) +

ω−(π)

α

)}

− C

[
−β̃+

(
λα̃− p̃ (π)

α̃

)
sin

(
λµ̃+(π)− ω̃+(π)

α̃

)

+β̃−
(
λα̃− p̃ (π)

α̃

)
sin

(
λµ̃− (π) +

ω̃−(π)

α̃

)]

− C
h̃

λ

{
β̃+

(
λα̃− p̃ (π)

α̃

)
cos

(
λµ̃+(π)− ω̃+(π)

α̃

)

−β̃−
(
λα̃− p̃ (π)

α̃

)
cos

(
λµ̃− (π) +

ω̃−(π)

α̃

)}

− C

[
H̃β̃+ cos

(
λµ̃+(π)− ω̃+(π)

α̃

)
+ H̃β̃− cos

(
λµ̃−(π) +

ω̃−(π)

α̃

)]

− CH̃
h̃

λ

{
β̃+ sin

(
λµ̃+(π)− ω̃+(π)

α̃

)
+ β̃− sin

(
λµ̃−(π) +

ω̃−(π)

α̃

)}
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if we multiply both sides of (3.3) with sin

(
λµ+(π)− ω+(π)

α

)
and integrate with respect to λ in (ε, T )

(ε is sufficiently small positive number) for any positive real number T , then we get

T∫
ε

(
C
[
∆̃ (λ)− ∆̃0 (λ)

]
− [∆ (λ)−∆0 (λ)]

)
sin

(
λµ+(π)− ω+(π)

α

)
dλ =

=

T∫
ε

{
−β+

(
λα− p (π)

α

)
sin

(
λµ+(π)− ω+(π)

α

)
+β−

(
λα− p (π)

α

)
sin

(
λµ− (π) +

ω−(π)

α

)
+
h

λ

[
β+

(
λα− p (π)

α

)
cos

(
λµ+(π)− ω+(π)

α

)
− β−

(
λα− p (π)

α

)
cos

(
λµ− (π) +

ω−(π)

α

)]
+Hβ+ cos

(
λµ+(π)− ω+(π)

α

)
+Hβ− cos

(
λµ− (π) +

ω−(π)

α

)
+H

h

λ

[
β+ sin

(
λµ+(π)− ω+(π)

α

)
+ β− sin

(
λµ− (π) +

ω−(π)

α

)]
−C

[
−β̃+

(
λα̃− p̃ (π)

α̃

)
sin

(
λµ̃+(π)− ω̃+(π)

α̃

)
+β̃−

(
λα̃− p̃ (π)

α̃

)
sin

(
λµ̃− (π) +

ω̃−(π)

α̃

)]
−C h̃

λ

{
β̃+

(
λα̃− p̃ (π)

α̃

)
cos

(
λµ̃+(π)− ω̃+(π)

α̃

)
−β̃−

(
λα̃− p̃ (π)

α̃

)
cos

(
λµ̃− (π) +

ω̃−(π)

α̃

)}
−C

[
H̃β̃+ cos

(
λµ̃+(π)− ω̃+(π)

α̃

)
+ H̃β̃− cos

(
λµ̃−(π) +

ω̃−(π)

α̃

)]
−CH̃ h̃

λ

[
β̃+ sin

(
λµ̃+(π)− ω̃+(π)

α̃

)
+ β̃− sin

(
λµ̃−(π) +

ω̃−(π)

α̃

)]}
. sin

(
λµ+(π)− ω+(π)

α

)
dλ
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and so

T∫
ε

(
C
[
∆̃ (λ)− ∆̃0 (λ)

]
− [∆ (λ)−∆0 (λ)]

)
sin

(
λµ+(π)− ω+(π)

α

)
dλ =

T∫
ε

[
−β+ (λα− p (π)) sin2

(
λµ+(π)− ω+(π)

α

)]
dλ−

− C

T∫
ε

[
β̃+ (λα− p̃ (π)) sin

(
λµ+(π)− ω̃+(π)

α

)
sin

(
λµ+(π)− ω+(π)

α

)]
dλ

=

T∫
ε

[
−1

2
β+ (λα− p (π)) +

1

2
β+ (λα− p (π)) cos

(
2λµ+(π)− 2ω+(π)

α

)]
dλ−

− C

T∫
ε

{
1

2
β̃+ (λα− p̃ (π))− cos

(
ω+(π)− ω̃+(π)

α

)

+cos

(
2λµ+(π)− ω+(π)− ω̃+(π)

α

)}
dλ.

Since

∆(λ)−∆0 (λ) = O

(
1

λ
e|Imλ|µ+(π)

)
, ∆̃ (λ)− ∆̃0 (λ) = O

(
1

λ
e|Imλ|µ+(π)

)
for all λ in (ε, T )

Cα

4
β̃+ − α

4
β+ = O(

1

T
).

By letting T tend to infinity, we see that

C =
β+

β̃+
. (3.4)

Similarly, if we multiply both sides of (3.3) with sin

(
λµ−(π)− ω−(π)

α

)
and integrate again with respect to λ

in (ε, T ) , and by letting T tend to infinity, then we get

C =
β−

β̃−
. (3.5)

However, since α, β and α̃, β̃ are positive, since ω+ (π)− ω̃+ (π) = ω− (π)− ω̃− (π) , we conclude that C = 1 .

Here β+

β̃+
=
β−

β̃−
is obtained. We have therefore proved, since α = α̃ , that β = β̃.

Considering Lemma 3.1 and Lemma 3.2 and that β = β̃, if both sides of the last expression are multiplied
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by the cos(λµ+(π)− ω+(π)

α
) and integrate with respect to λ in (ε, T ) , then we get

β+
(
H − H̃

)
2

+O(
1

T
) = O(

1

T
).

Finally, by letting T tend to infinity, H = H̃ is obtained. Similarly, it is shown when h = h̃ . 2

Let Φ(x, λ) and S(x, λ) be the solutions of (1.1) under the conditions U(Φ) = 1, V (Φ) = 0, S(0, λ) =

0, S′(0, λ) = 1 and under the impulse conditions (1.4). One set M(λ) := Φ(0, λ). The functions Φ(x, λ) and
M(λ) are called the Weyl solution and Weyl function for the boundary value problem L (p, q, h,H, α, β, γ) ,
respectively. Using the solutions φ(x, λ) and ψ(x, λ) , we defined

Φ(x, λ) = −ψ(x, λ)
∆ (λ)

= S(x, λ) +M(λ)φ(x, λ), (3.6)

M(λ) = −ψ(0, λ)
∆ (λ)

, (− φ(π, λ)

φ′(π, λ)
= −φ(π, λ)

∆ (λ)
),

and S(x, λ) is defined from the equality

ψ(x, λ) = ψ(0, λ)φ(x, λ)−∆(λ)S(x, λ). (3.7)

By virtue of equalities ⟨φ(x, λ), S(x, λ)⟩ ≡ 1 and (3.3), one has

⟨Φ(x, λ), φ(x, λ)⟩ ≡ 1, (3.8)

⟨φ(x, λ), ψ(x, λ)⟩ ≡ −∆(λ) for x ̸= π

2
.

The theorem we proved above shows that the Weyl function uniquely determines the potentials and the
coefficients of the problem L (p, q, h,H, α, β, γ) .

Theorem 3.3 If M(λ) = M̃(λ) , then L (p, q, h,H, α, β, γ) = L̃(p̃, q̃, h̃, H̃, α̃, β̃, γ̃) .

Proof Since
ψ(ν)(x, λ) = O(|λ|ν−1

exp (|Imλ| (π − x))), λ ∈ G̃δ, (3.9)

|∆(λ)| ≥ Cδ exp(|Imλ|π), λ ∈ G̃δ, Cδ > 0, ν = 0, 1, (3.10)

it is easy to observe that ∣∣∣Φ(ν)(x, λ)
∣∣∣ ≤ Cδ |λ|ν−1

exp(− |Imλ|x), λ ∈ Gδ. (3.11)

Let us define the matrix P (x, λ) = [Pjk(x, λ)]j,k=1,2 , where

Pj1(x, λ) = φ(j−1)(x, λ)Φ̃′(x, λ)− Φ(j−1)(x, λ)φ̃′(x, λ), (3.12)

Pj2(x, λ) = Φ(j−1)(x, λ)φ̃′(x, λ)− φ(j−1)(x, λ)Φ̃′(x, λ).
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Then we have

φ(x, λ) = P11(x, λ)φ̃(x, λ) + P12(x, λ)φ̃
′(x, λ), (3.13)

Φ(x, λ) = P11(x, λ)Φ̃(x, λ) + P12(x, λ)Φ̃
′(x, λ).

According to (3.6) and (3.11), for each fixed x , the functions Pjk(x, λ) are meromorphic in λ with poles and
points λn and λ̃n . Denote G0

δ = Gδ ∩ G̃δ . By virtue of (3.11), (3.13), and

φ(ν)(x, λ) = O
(
|λ|ν exp(|Imλ|µ+(x)

)
, λ ∈ G0

δ , ν = 0, 1, (3.14)

we get

|P12(x, λ)| ≤ Cδ |λ|−1
, |P12(x, λ)| ≤ Cδ, λ ∈ G0

δ . (3.15)

It follows from (3.6) and (3.12) that if M(λ) ≡ M̃(λ), then for each fixed x , the functions P1k are entire in x .
Together with (3.15), this yields P12(x, λ) ≡ 0, P11(x, λ) ≡ A(x) . Now using (3.13), we obtain

φ(x, λ) ≡ A(x)φ̃(x, λ), Φ(x, λ) ≡ A(x)Φ̃(x, λ). (3.16)

Therefore, for |λ| → ∞, arg λ ∈ [ε, π − ε] (ε > 0) , we have

φ(x, λ) =
B

2
exp

(
−i
(
λµ+(x)− ω+ (x)

))(
1 +O

(
1

|λ|

))
, (3.17)

where B = 1, for x < π

2
and B = β+ for x > π

2
. Similarly, one can calculate

Φ(x, λ) = (iλB)
−1

exp
(
i
(
λµ+(x)− ω+ (x)

))(
1 +O

(
1

|λ|

))
(3.18)

|λ| → ∞, arg λ ∈ [ε, π − ε] .

Finally, taking into account the relations ⟨Φ(x, λ), φ(x, λ)⟩ ≡ 1 and (3.11), we have β+ = β̃+, A(x) ≡

1 , that is, φ(x, λ) ≡ φ̃(x, λ), Φ(x, λ) ≡ Φ̃(x, λ) for all x and λ . Consequently, L (p, q, h,H, α, β, γ) =

L̃(p̃, q̃, h̃, H̃, α̃, β̃, γ̃) . The theorem is proved. 2

Theorem 3.4 Let {λn} be the spectrum of both L and L̃ . If p(x) = p̃(x) and q(x) = q̃(x) on
(
0,

1 + α

4
π

)
,

then p(x) = p̃(x) and q(x) = q̃(x) almost every where on (0, π) and H = H̃ , h = h̃ , ρ (x) = ρ̃ (x) ,

β = β̃, γ = γ̃ .

Proof Let ψ (x, λ) , ψ̃(x, λ) be the solutions of the equations

−ψ′′(x, λ) + [2λp(x) + q(x)]ψ(x, λ) = λ2ρ (x)ψ(x, λ), (3.19)

−ψ̃′′(x, λ) + [2λp̃(x) + q̃(x)] ψ̃(x, λ) = λ2ρ̃(x)ψ̃(x, λ) (3.20)
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with the initial valued conditions, respectively

ψ(0, λ) = 1, ψ′(0, λ) = −H (3.21)

ψ̃(0, λ) = 1, ψ̃′(0, λ) = −H̃ (3.22)

and the impulsive conditions (1.4). Multiplying (3.19) by ψ̃(x, λ) and (3.20) by ψ(x, λ) , respectively, and
subtracting, we get

ψ̃′′(x, λ)ψ(x, λ)− ψ′′(x, λ)ψ̃(x, λ) = [2λ (p(x)− p̃(x)) + (q(x)− q̃(x))]ψ(x, λ)ψ̃(x, λ). (3.23)

Integrating the above equality from 0 to π with respect to x , using the initial conditions at x = π and impulse
conditions (1.4), we have

π∫
c

[2λ (p̃(x)− p(x)) + (q̃(x)− q(x))]ψ(x, λ)ψ̃(x, λ)dx (3.24)

= ψ′(c, λ)ψ̃(c, λ)− ψ̃′(c, λ)ψ(c, λ)

from the hypothesis p̃(x) = p(x) , q̃(x) = q(x) on (0, c) , where c = 1 + α

4
π.

Denote
P (x) = p̃(x)− p(x), Q(x) = q̃(x)− q(x)

and

F0 (λ) = 2λ

π∫
c

P (x)ψ(x, λ)ψ̃(x, λ)dx+

π∫
c

Q(x)ψ(x, λ)ψ̃(x, λ)dx. (3.25)

It follows from (2.1), (2.2), and (2.14) that F0 (λ) is an entire function of exponential type, and there are some
positive constants C1 and C2 such that

|F0 (λ)| ≤ (C1 + C2 |λ|) exp(|Imλ|απ) for all λ ∈ C. (3.26)

It is clear from the properties of ψ(x, λ), ψ′(x, λ) , and the boundary conditions (1.2) that

F0 (λn) = 0, n ∈ Z (3.27)

for each eigenvalue λn .
Define

F (λ) :=
F0 (λ)

∆ (λ)
.

It is clear that F (λ) is an entire function, and it follows from (2.13) and (3.26) that

F (λ) = O(1)

for sufficiently large |λ| , λ ∈ Gδ . Using Liouville’s theorem [18], we obtain for all λ that

F (λ) = C,
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where C is a constant.
Let us show that the C = 0 . Now, we can rewrite the equation F0 (λ) = C∆(λ) as

2λ

π∫
c

P (x)ψ(x, λ)ψ̃(x, λ)dx+

π∫
c

Q(x)ψ(x, λ)ψ̃(x, λ)dx

= C

(
−β+

(
λα− p (π)

α

)
sin

(
λµ+(π)− ω+(π)

α

)

+β−
(
λα− p (π)

α

)
sin

(
λµ− (π) +

ω−(π)

α

))

+ C

(
+Hβ+ cos

(
λµ+(π)− ω+(π)

α

)

+Hβ− cos

(
λµ− (π) +

ω−(π)

α

))
+O

(
e|Imλ|π

)
.

By use of Riemann–Lebesgue Lemma [18], we see that the limit of the left-hand side of the above equality exists
as λ→ ∞ , λ ∈ R . Therefore, we get that C = 0 . Thus, we have

F0 (λ) = 0, for all λ ∈ C.

Then, from the equality (3.25), we obtain

ψ̃′(c, λ)ψ(c, λ)− ψ′(c, λ)ψ̃(c, λ) = 0

for all λ ∈ C . Since

−ψ(c, λ)
∆ (λ)

= − ψ̃(c, λ)
∆̃(λ)

we obtain

M(λ) = M̃(λ) (3.28)

for all λ ∈ C .

The function M(λ) = −ψ(c, λ)
∆ (λ)

is the Weyl function for equation (1.1) on the
(
π (1 + α)

4
, π

)
, with

jump conditions (1.4) and boundary conditions y
′
(c) = 0, V (y) = 0. Consequently, relation (3.28) implies

p (x) = p̃ (x) , ρ (x) = ρ̃(x) and q(x) = q̃ (x) i.e. on (c, π) , β = β̃, γ = γ̃, H = H̃, so assertion of the theorem is
proved. 2

Theorem 3.5 If λn = λ̃n for all n ∈ Z and p(x) = p̃(x) , q(x) = q̃(x) on (c, π) , then p(x) = p̃(x) and
q(x) = q̃(x) almost every where on (0, π) .
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Proof If the operations in the proof of Theorem 3.3 are also performed for the function φ (x, λ) which provides
the initial conditions φ (0, λ) = 1, φ

′
(0, λ) = h and (1.4) impulsive conditions of equation (1.1)

c∫
0

[2λ (p̃(x)− p(x)) + (q̃(x)− q(x))]φ(x, λ)φ̃(x, λ)dx (3.29)

= −φ̃′(c, λ)φ(c, λ) + φ′(c, λ)φ̃(c, λ)

equality is obtained. Denote

H(λ) =

c∫
0

[2λ (p̃(x)− p(x)) + (q̃(x)− q(x))]φ(x, λ)φ̃(x, λ)dx.

Similar to the proof of Theorem 3.3, we have that H(λ) = 0 , for all λ ∈ C . Then, from the equality (3.29), we
obtain

φ̃′(c, λ)φ(c, λ)− φ′(c, λ)φ̃(c, λ) = 0, ∀λ ∈ C
or

∆̃(λ)φ(c, λ)−∆(λ)φ̃(c, λ) = 0,

for all λ ∈ C. From here for all λ ∈ C,

φ(c, λ)

∆(λ)
=
φ̃(c, λ)

∆̃(λ)

equality is obtained. The function M(λ) = −φ(c, λ)
∆(λ)

is the Weyl function for equation (1.1) on the (0, c) with

boundary conditions U(y) = 0, y
′
(c) = 0 and without impulsive conditions (1.4). The Weyl function uniquely

determined p(x) and q(x) on (0, π) and the coefficient h, so Theorem 3.4 is proved. 2

4. An interior inverse problems
We consider the interior inverse problem for the same problem L and obtain the corresponding results. For

brevity, denote c1 =
π (1 + α)

4
, c2 =

π (1 + α)

2
.

Theorem 4.1 If λn = λ̃n for all n ∈ Z and

y(c1, λn)

y′ (c1, λn)
=

ỹ(c1, λn)

ỹ′(c1, λn)
(4.1)

then p (x) = p̃ (x) on [0, π] , q(x) = q̃(x) a.e. on [0, π] and ρ(x) = ρ̃(x), a = ã, h = h̃,H = H̃.

Proof Let φ (x, λ) be the solution of the problem L (p, q, h,H, α, β, γ) satisfying the initial conditions

φ (0, λ) = 1, φ
′
(0, λ) = h and impulsive conditions (1.4). Firstly, the assumption that λn = λ̃n can determine

ρ(x) = ρ̃(x), a = ã, h = h̃,H = H̃ by Lemma3.2. The oder hand, from (3.29) we see that

φ(c1, λn)

φ′ (c1, λn)
=

φ̃(c1, λn)

φ̃′(c1, λn)
.
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Then from (3.29), the entire function H(λ) has zeros {λn} , n ∈ Z, i.e. H (λn) = 0. Similar to the proof
of Theorem 3.4, we have that p (x) = p̃ (x) and q(x) = q̃(x) on (0, c1) . Once we get that p (x) = p̃ (x) and
q(x) = q̃(x) , by corollary of Theorem 3.3 we have that p (x) = p̃ (x) on (0, π) and q(x) = q̃(x) a.e. on (0, π) .

Theorem is proved. 2

Theorem 4.2 Let m(n) be a sequence of integers such that inf
n∈Z

m(n)

λn
≥ 1.

i) If for any n ∈ Z,

λm(n) = λ̃m(n),
y(c1, λm(n))

y′ (c1, λm(n)

) =
ỹ(c1, λm(n))

ỹ′(c1, λm(n))
. (4.2)

Then p (x) = p̃ (x) on (0, c1) , q(x) = q̃(x) a.e. on (0, c1) , and ρ(x) = ρ̃(x), , h = h̃,H = H̃ , a = ã.

ii) If for any n ∈ Z ,

λm(n) = λ̃m(n),
y(c2, λm(n))

y′ (c2, λm(n)

) =
ỹ(c2, λm(n))

ỹ′(c2, λm(n))
. (4.3)

Then p (x) = p̃ (x) on (c2, π) , q(x) = q̃(x) a.e. on (c2, π) , and ρ(x) = ρ̃(x), a = ã, h = h̃,H = H̃.

Proof i) From the assumption (4.2) and (3.29), we have

φ
′ (
c1, λm(n)

)
φ̃(c1, λm(n))− φ̃′(c1, λm(n))φ

(
c1, λm(n)

)
= 0

which means
H(λm(n)) = 0, n ∈ Z. (4.4)

Next, we shall show that H(λ) ≡ 0 on the whole λ plane. From (2.2) and (2.1), one has

|H (λ)| ≤ (A+Br) e2c1r|sin θ| (4.5)

for some positive constants A and B , where λ = reiθ . Furthermore, it is clear from the inequality of (4.5) that
the entire function H(λ) is an exponential type less than 2c1 . Define the indicator of function H(λ) by

h (θ) = lim
r→∞

sup
ln
∣∣H (reiθ)∣∣

r
. (4.6)

One can obtain the following estimate from (4.5) and (4.6) that h (θ) ≤ 2c1 |sin θ| . Let us denote by n(r)

the number of zeros of H(λ) in the disk |λ| ≤ r. From the equations (4.4), the assumption of (4.2) and known
asymptotic expression of the eigenvalues λn , we have the following estimate for the number of zeros of H(λ)

in the disk |λ| ≤ r .
n(r) = 1 + 2 [σr(1 + ε(r))] = 2σr(1 + ε(r)).

Here ε(r) → 0 for r → ∞ , σ is number such that σ > α+ β

2
=

2c1
π

and [x] is the integer part of x. It

follows that in the case under consideration

lim
r→∞

n(r)

r
= 2σ >

4c1
π

=
c1
π

2π∫
0

|sin θ| dθ ≥ 1

2π

2π∫
0

h(θ)dθ. (4.7)
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To complete the proof we have to recall the following Theorem 3.5 the set of zeros of every entire function
of the exponential type, not identically zero, satisfy the inequality

lim
r→∞

inf
n(r)

r
≤ 1

2π

2π∫
0

h(θ)dθ. (4.8)

Inequalities (4.7) and (4.8) imply that H(λ) ≡ 0 on the whole λ - plane. As already mentioned, if
H(λ) ≡ 0, then from (4.2) and (3.29), we have

φ̃(c1, λ)φ
′
(c1, λ)− φ̃′(c1, λ)φ (c1, λ) = 0,

so
φ (c1, λ)

φ′ (c1, λ)
=

φ̃(c1, λ)

φ̃′(c1, λ)

on the whole λ - plane.

The function M(λ) :=
φ (c1, λ)

φ′ (c1, λ)
is the Weyl function of the boundary value problem for the equation

(1.1) on (0, c1) with boundary conditions U(y) = 0, y
′
(c1) = 0 and without impulsive conditions (1.4) (see

[24]). By ([24]), the Weyl function uniquely species p(x) and q(x) a.e. on (0, c1) and coefficient h.

ii) To prove that p (x) = p̃ (x) on [c2, π] , q(x) = q̃(x) a.e. on [c2, π] , ρ(x) = ρ̃(x), h = h̃,H = H̃, a = ã .
We will consider the supplementary problem L

−y′′
+ [q1(x) + 2λp1(x)] y = λ2ρ (x) y, x ∈

[
0,
π

2

)
∪
(π
2
, π
]

y(0)−Hy(0) = 0,

y
′
(π) + hy(π) = 0,

y(
π

2
+ 0) = a−1y(

π

2
− 0),

y
′
(
π

2
+ 0) = ay

′
(
π

2
− 0) + γy(

π

2
− 0)

where q1(x) = q (π − x) and p1(x) = p(π − x). A direct calculation implies that ŷn (x) := yn (π − x) is the

solution to the supplementary problem L̂ and ŷn (π − c2) = yn(c2). Note that π − c2 ∈
(
0,
π

2

)
. Thus, the

assumption conditions for L̂ in the case (i) are still satisfied. Repeating the above arguments, we can obtain
the proof of Theorem 3.4.

Corollory: If for any n ∈ Z, λn = λ̃n, p(x) = p̃(x) and q(x) = q̃(x) on (0, c1) , then p(x) = p̃(x) on

(0, π) , q(x) = q̃(x) a.e. on (0, π) and ρ(x) = ρ̃(x), a = ã, h = h̃,H = H̃. 2

5. Reconstruction
Let the functions C (x, λ) , C1 (x, λ) , and S1 (x, λ) be solutions of equation (1.1) under the conditions

C (0, λ) = C1 (π, λ) = −S′
1 (π, λ) = 1,

C ′ (0, λ) = C ′
1 (π, λ) = S1 (π, λ) = 0.
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For each fixed x ∈ [0, π] , the functions C (x, λ) , C1 (x, λ) , and S1 (x, λ) together with their derivatives
with respect to x are entire in λ. The function ∆o (λ) := φ (π, λ) is a characteristic function of the boundary
value problem for equation (1.1) with the boundary conditions

U (y) = 0, y (π) = 0, (5.1)

we have

Φ(x, λ) =
φ (x, λ)

∆ (λ)
= S1 (x, λ) +M (λ)ψ (x, λ) ,M (λ) = −∆o (λ)

∆ (λ)
. (5.2)

Let {λon} be the spectrum of (1.1), (5.1). Clearly, {λn} ∩ {λon} = ∅.Thus, M(λ) is a meromorphic
function with the poles λn and the zeros λon.

Denote

∆o
1 (λ) := φ (c1, λ) ,∆1(λ) := φ′ (c1, λ) (5.3)

∆o
2 (λ) := ψ (c1, λ) ,∆2(λ) := −ψ′ (c1, λ) (5.4)

We note that ∆o
1 (λ) and ∆1 (λ) are characteristic functions of the boundary value problems

ℓy(x) = 0, 0 < x < c1, U(y) = y (c1) = 0, (5.5)

ℓy(x) = 0, 0 < x < c1, U(y) = y′ (c1) = 0, (5.6)

respectively.
The function

M1 (λ) := −∆o
1 (λ)

∆1 (λ)
(5.7)

is the Weyl function for (5.6). The functions ∆o
2 (λ) and ∆2 (λ) are, in turn, characteristic functions of the

boundary value problems

ℓy(x) = 0, c1 < x < π, y (c1) = V (y) = 0, (5.8)

ℓy(x) = 0, c1 < x < π, y′ (c1) = V (y) = 0, (5.9)

respectively.
Let {ξn}n∈Z and {ηn}n∈Z be the spectra of the boundary value problems (5.8) and (5.9), i.e. they are

the sequences of zeros of the functions ∆2 (λ) and ∆o
2 (λ) , respectively. Thus, we have

ξn =
πn

π − c1
+
ω+ (π)− ω+ (c1)

π − c1
+O

(
1

n

)
,

ηn =
π

π − c1

(
n+

1

2

)
+
ω+ (π)− ω+ (c1)

π − c1
+O

(
1

n

)
.
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According to (5.2)–(5.4), we have

∆o
1 (λ) = ∆ (λ)S1 (c1, λ)−∆o(λ)∆o

2 (λ) , (5.10)

∆1 (λ) = ∆ (λ)S′
1 (c1, λ)−∆o(λ)∆2 (λ) .

If we use Lemma 4 in [6] ,we get the following for the ∆1 (λ) and ∆o
1 (λ) :

∆1 (λ) = − (λ− p (c1)) sin
(
λc1 − ω+ (c1)

)
+ d (λ) ,

∆o
1 (λ) = cos

(
λc1 − ω+ (c1)

)
+ do (λ) ,

where

d (λ) =
∑
n∈Z

d(ξn)
∆2 (λ)

(λ− ξn)
·
∆2 (ξn)

,

do (λ) =
∑
n∈Z

do(ηn)
∆o

2 (λ)

(λ− ηn)
·
∆

o

2 (ηn)

.

From the asymptotic expression of ξn , the value of ω+ (c1) is determined as

ω+ (c1) = − (π − c1) lim
n→∞

(ξn − πn+ ω+ (π)

π − c1
).

In this case, if we take ∆1o (λ) = − (λ− p (c1)) sin (λc1 − ω+ (c1)) ,

λon1 =
πn

c1
+ ω1, ω1 =

1

c1

c1∫
0

p (t) dt =
1

c1
ω+ (c1)

follows.
From here,

λn1 = λon1 +
(−1)

n
sin [λon1 (π − c1)− ω+ (π) + ω+ (c1)]

c1λon1
·
∆

o

2 (λ
o
n1)

∑
m∈Z

d (ξm)
·
∆2 (ξm)

+
εn
λon1

(5.11)

asymptotic expression is obtained for the roots of the characteristic equation ∆1 (λ) = 0. Here εn ∈ ℓ2.

Similarly,

λno = λono +
(−1)

n
cos [λono (π − c1)− ω+ (π) + ω+ (c1)]

c1λono
·
∆

o

2 (λ
o
no)

∑
m∈Z

d (ηm)
·
∆

o

2 (ηm)

+
εon
λono

(5.12)

behavior is found for the roots of the equation ∆o
1 (λ) = 0. Here εon ∈ ℓ2.

If we use the proof of Lemma 9 in [2],

−2λn1αn1 =
·
∆1 (λn1)∆

o
1 (λn1)
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or

αn1 = − 1

2λn1

·
∆1 (λn1)∆

o
1 (λn1) (5.13)

is obtained. The sequences {αn1, λn1} are called spectral data of the boundary value problem (5.6).
By using the expressions (5.11) and (5.12),

αn1
=
c1
2

+
δ1n
λon1

(5.14)

is obtained from the equation (5.13), where δ1n ∈ ℓ2 .
If the solution of the system of integral equations (2.20) and (2.21) is searched as

A (x, t) = Ao (x, t) cosω
+ (x) +A1 (x, t) sinω

+ (x) (5.15)

B (x, t) = Bo (x, t) cosω
+ (x) +B1 (x, t) sinω

+ (x) (5.16)

the functions of Ao (x, t) and Bo (x, t)

β+F11 (x, t) +Ao (x, t) + β−F11 (2a− x, t)

+

x∫
0

Ao (x, ξ)F11 (ξ, t) dξ +

x∫
0

Bo (x, ξ)F12 (ξ, t) dξ = 0, 0 ≤ t < x
(5.17)

β+F21 (x, t) +Bo (x, t) + β−F21 (2a− x, t)

+

x∫
0

Ao (x, ξ)F21 (ξ, t) dξ +

x∫
0

Bo (x, ξ)F22 (ξ, t) dξ = 0, 0 ≤ t < x
(5.18)

system, A1 (x, t) and B1 (x, t) functions are found as the solution of the system of

β+F12 (x, t) +A1 (x, t) + β−F12 (2a− x, t)

+

x∫
0

A1 (x, ξ)F11 (ξ, t) dξ +

x∫
0

B1 (x, ξ)F12 (ξ, t) dξ = 0, 0 ≤ t < x
(5.19)

β+F22 (x, t) +B1 (x, t) + β−F22 (2a− x, t)

+

x∫
0

A1 (x, ξ)F21 (ξ, t) dξ +

x∫
0

B1 (x, ξ)F22 (ξ, t) dξ = 0, 0 ≤ t < x
(5.20)

equations.
On the other hand, if we use the equations (5.15) and (5.16), we get the nonlinear Volterra type integral

equation in the following form

β+ω+ (x) = β+xp(0) +

x∫
0

Φ
(
ξ, ω+ (ξ)

)
dξ (5.21)
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for the function ω+ (x) from equation (2.3), where

R (ξ, z) = 2A1 (ξ, ξ) sin
2 z − 2Bo (ξ, ξ) cos

2 z + [Ao (ξ, ξ)−B1 (ξ, ξ)] sin 2z (5.22)

is.
Thus, we get the following algorithm for solution of the inverse problem:
Given a collection of numbers {λn1, αn1} satisfying the conditions (5.12) and (5.13), we construct the

functions Fij (x, t) (i, j = 1, 2) by (2.22)–(2.25) and consider the two systems of equations (5.17), (5.18) and
(5.19),(5.20) with respect to Ao (x, t) , Bo (x, t) and A1 (x, t) , B1 (x, t) , respectively. Solving these systems,
we find Ao (x, t) , Bo (x, t) and A1 (x, t) , B1 (x, t) . Then we form the function R (ξ, z) by (5.22) and consider
equation (5.21) for ω+ (x) . Solving this equation we find ω+ (x) and then p (x) by p (x) = (ω+(x))

′ according
to (2.8). Next, define A (x, t) , B (x, t) by (5.15),(5.16) and then q (x) by (2.4).

6. Examples

Example 6.1 Define ρ(x) =

 1, for x <
π

2
α2, for x >

π

2

and then consider the boundary value problem L

−y
′′
+ [q(x) + 2λp(x)] y = λ2ρ (x) y, x ∈ (0, π)

U (y) := y
′
(0)− hy(0) = 0

V (y) := y
′
(π) +Hy(π) = 0

with the impulsive conditions

y
(π
2
+ 0
)
= βy

(π
2
− 0
)
,

y
′
(π
2
+ 0
)
= β−1y

′
(π
2
− 0
)
+ γy

(π
2
− 0
)
.

Also consider the boundary value problem L0,

−y
′′
= λ2ρ (x) y, x ∈ (0, π)

U (y) := y
′
(0) = 0

V (y) := y
′
(π) = 0

with the some impulsive conditions. Let λn and λ0n be the eigenvalues and M(λ) , M0 (λ) be the Weyl functions
of boundary value problems L and L0 , respectively.

Using Theorem3.3, if λn = λ0n and p(x) = 0, q(x) = 0 on
(
0,

1 + α

4
π

)
, and h = 0, then M(λ) =M0 (λ)

i.e. p(x) = 0 and q(x) = 0 a.e. on (0, π) and H = 0, α = α̃, β = β̃, γ = γ̃.
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Example 6.2 Let q(x) =

{
q1(x), 0 ≤ x < c1
0, c1 < x ≤ π

and p(x) =

{
p1(x), 0 < x < c1
0, c1 < x ≤ π

be the differential

equation (1.1), (1.2)-(1.3) boundary conditions and (1.4) discontinuity conditions. Since in this case ξn =

πn

π − c1
, ηn =

π

π − c1
(n +

1

2
) will be, d(λon1) = 0 , do(λono) = 0 and αn1 =

c1
2
. From this, it is obtained that

Fij(x, t) = 0, (i, j = 1, 2) , 0 ≤ t ≤ x. Thus, since A1(x, t) = 0, B1(x, t) = 0, Ao(x, t) = 0, Bo(x, t) = 0 are

R(ξ, z) = 0. Thus, for ∀x ∈ [0, π] ω+(x) = 0 or
x∫

0

p1(t)dt = 0 is obtained. From here, it becomes p1(x) = 0.

Since q1(x) = −p21(x) , q1(x) = 0 is obtained.

Example 6.3 Let q(x) =


q1(x), 0 ≤ x ≤ c1
2a2

(1 + ax)2
, c1 ≤ x ≤ π

and p(x) = 0 be the differential equation (1.1), (1.2)-

(1.3) boundary conditions β = 1, γ = 0 . In this case, the function

ψ(x, λ) = cosλ(π − x)− a

1 + ax
.
sinλ(π − x)

λ

is the solution of the differential equation

−y
′′
+

2a2

(1 + ax)2
y = λ2y

that satisfies the initial conditions ψ(π, λ) = 1, ψ′ (π, λ) =
a

1 + aπ
. From here, if we take c1 =

π

2
, it

becomes λ2n1 = (2n)2, λ2no = (2n+ 1)2, αn =
π

2
. If we take a :=

1

α0
− 1

π
, it becomes

F (x, t) =

∞∑
n=0

(
cosλn1x cosλn1t

αn
− cos (2n+ 1)x cos (2n+ 1) t

αo
n

)

from equation (1.5.10) given in [7]. Therefore, K(x, t) = − a

1 + ax
is obtained from the basic integral

equation

K(x, t) + F (x, t) +

x∫
0

K(x, s)F (s, t)ds = 0, 0 < t < x <
π

2

given in [7]. Since q1(x) = 2
dK(x, x)

dx
, it turns out that

q1(x) = 2
d

dx

(
− a

1 + ax

)
=

2a2

(1 + ax)2
, 0 < x <

π

2
.
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