
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 50 (4) (2021), 963 – 969

DOI : 10.15672/hujms.650600

Research Article

Some identities involving multiplicative
semiderivations on ideals

Öznur Gölbaşı∗, Zeliha Bedir
Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas, Turkey

Abstract
Let R be a prime ring and I be a nonzero ideal of R. A mapping d : R → R is called a
multiplicative semiderivation if there exists a function g : R → R such that (i) d(xy) =
d(x)g(y)+xd(y) = d(x)y +g(x)d(y) and (ii) d(g(x)) = g(d(x)) hold for all x, y ∈ R. In the
present paper, we shall prove that [x, d(x)] = 0, for all x ∈ I if any of the followings holds:
i) d(xy) ± xy ∈ Z, ii) d(xy) ± yx ∈ Z, iii) d(x)d(y) ± xy ∈ Z, iv) d(xy) ± d(x)d(y) ∈ Z,
viii) d(xy) ± d(y)d(x) ∈ Z, for all x, y ∈ I. Also, we show that R must be commutative if
d(I) ⊆ Z.
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1. Introduction
Throughout this paper, Z will denote the center of an associative ring R. For x, y ∈ R,

a ring R is said to be prime if whenever xRy = (0) implies x = 0 or y = 0. The concept
of derivation was first time introduced by Posner in [11]. An additive mapping d : R → R
is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. During the past few
years, several authors have been studying the commutativity of prime rings.

The present paper has been motivated by the works of Ashraf and Rehman [2] and
Dhara and Ali [8]. Ashraf and Rehman proved that for a prime ring R with a nonzero
ideal U of R if d is a derivation of R such that d(xy) ± xy ∈ Z, for all x, y ∈ U, then R is
commutative. Also, Bell and Kappe showed in [3] that a derivation d of a prime ring R
acting as a homomorphism or an anti-homomorphism on a nonzero right ideal of R must
vanish, i.e., d = 0 on R.

In [4], Bergen introduced the following notion: An additive mapping d : R → R is called
a semiderivation if there exists a function g : R → R such that (i) d(xy) = d(x)g(y) +
xd(y) = d(x)y + g(x)d(y) and (ii) d(g(x)) = g(d(x)) hold for all x, y ∈ R. In case g is
an identity map of R, then all semiderivations associated with g are merely derivations.
Other main motivating examples are of the form d = g − 1 where g is any endomorphism
of R such that g ̸= 1. Then d is a semiderivation associated with the map g which is not
a derivation. In case R is prime and d ̸= 0, it has been shown by Chang [6] that g must
necessarily be a ring endomorphism.
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A multiplicative derivation of R is a mapping d : R → R which satisfies d(xy) =
d(x)y + xd(y) for all x, y ∈ R. So a multiplicative derivation will be a derivation when it
is an additive map. Recently, some well-known results concerning prime and semiprime
rings have been proved for multiplicative derivations. Hence, one may observe that the
concept of multiplicative semiderivations includes the concept of derivations and the left
multipliers (i.e., d(xy) = d(x)y for all x, y ∈ R). For details, we refer to [7], a work of Daif,
which was motivated by the work of Martindale [10]. Further, Goldman and Semrl gave
the complete description of these maps in [9]. Obviously, for g = 1 a semiderivation is an
ordinary derivation and every derivation is a multiplicative derivation. But the converse
is not true in general. So, it should be interesting to extend some results concerning these
notions to multiplicative semiderivations.

Our aim in this work is to investigate the commutativity of prime rings admitting
multiplicative semiderivations on nonzero ideal of R. We extend the above mentioned
results of Ashraf and Rehman [2] and Dhara and Ali [8] for multiplicative semiderivations
on nonzero ideal of R.

2. Results
Throughout the paper, we assume that R is a prime ring, I is a nonzero ideal of R and

d is a multiplicative semiderivation of R associated with a nonzero surjective map g of R.
Also, for x, y ∈ R the symbol [x, y] stands for Lie commutator which is defined as xy−yx

and it satisfies the basic commutator identities:
[x, yz] = y[x, z] + [x, y]z
[xy, z] = [x, z]y + x[y, z].

Lemma 2.1 ([5, Lemma 4.2]). Let R be a prime ring, I be a nonzero ideal of R and d be
a nonzero derivation of R. If d(I) ⊆ Z, then R is commutative.
Lemma 2.2 ([1, Theorem 2.4]). Let R be a semiprime ring, I be a nonzero ideal of R
and d be a multiplicative semiderivation associated with a nonzero epimorphism g of R.
If d(xy) ± xy = 0, for all x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Lemma 2.3 ([1, Theorem 5]). Let R be a semiprime ring, I be a nonzero ideal of R and
d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If
d(x)d(y) ± xy = 0, for all x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Lemma 2.4 ([1, Theorem 7]). Let R be a semiprime ring, I be a nonzero ideal of R and
d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If
d(xy) = ±d(x)d(y), for all x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Lemma 2.5 ([1, Theorem 8]). Let R be a semiprime ring, I be a nonzero ideal of R and
d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If
d(xy) = ±d(y)d(x), for all x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Lemma 2.6. Let R be a prime ring, I be a nonzero ideal of R and d be a multiplicative
semiderivation associated with a nonzero map g of R and a ∈ R. If ad(I) = (0), then
a = 0 or d = 0.

Proof. By the hypothesis, we have ad(xr) = 0, for all x ∈ I, r ∈ R, and so
ad(x)g(r) + axd(r) = 0.

Using the hypothesis, we get
aId(r) = (0), for all r ∈ R.

By the primeness of R, we find that
a = 0 or d = 0.

�
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Lemma 2.7. Let R be a prime ring. If d is a nonzero multiplicative semiderivation
associated with a map g of R, then

g(xy) = g(x)g(y), for all x, y ∈ R.

Proof. For all x, y, z ∈ R, by the definition of d, we have

d(x(yz)) = d(x)yz + g(x)d(yz)
= d(x)yz + g(x)d(y)z + g(x)g(y)d(z).

On the other hand, we get

d((xy)z) = d(xy)z + g(xy)d(z)
= d(x)yz + g(x)d(y)z + g(xy)d(z).

Comparing the last two equations, we obtain that

g(xy)d(z) = g(x)g(y)d(z), for all x, y, z ∈ R.

That is
(g(xy) − g(x)g(y))d(z) = 0, for all x, y, z ∈ R.

By Lemma 2.6, we get g(xy) = g(x)g(y), for all x, y ∈ R. The proof is completed. �

Theorem 2.8. Let R be a prime ring, I be a nonzero ideal of R and d be a nonzero
multiplicative semiderivation associated with a map g of R. If d(I) ⊆ Z, then R is a
commutative ring.

Proof. By the hypothesis, we have d(rx) ∈ Z, for x ∈ I, r ∈ R. Hence we get

d(rx)s = sd(rx)
d(r)xs + g(r)d(x)s = sd(r)x + sg(r)d(x)

and so
d(r)xs − sd(r)x = d(x)[s, g(r)], for all x ∈ I, r, s ∈ R. (2.1)

Replacing g(r) by s in (2.1), we get

d(r)xg(r) = g(r)d(r)x, for all x ∈ I, r ∈ R. (2.2)

Writing xs for x in (2.2) and using (2.2), we obtain that

d(r)x[s, g(r)] = 0, for all x ∈ I, r, s ∈ R.

Then, the primeness of R yields

d = 0 or g(r) ∈ Z, for all r ∈ R.

Let us take g(r) ∈ Z, for all r ∈ R. By the hypothesis, we get

d(xy) = d(x)y + g(x)d(y) ∈ Z

and so
d(x)y ∈ Z, for all x, y ∈ I.

By the primeness of R and d ̸= 0, we find that R is a commutative ring. This completes
the proof. �

Theorem 2.9. Let R be a prime ring, I be a nonzero ideal of R and d be a nonzero
multiplicative semiderivation associated with a nonzero surjective map g of R. If d(xy) ±
xy ∈ Z, for all x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.
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Proof. By our hypothesis, we get
d(xy) ± xy ∈ Z, for all x, y ∈ I.

Writing yr, r ∈ R for y in this equation, we have
d(xyr) ± xyr = d(xy)r + g(xy)d(r) ± xyr,

which implies
(d(xy) ± xy)r + g(xy)d(r) ∈ Z, for all x, y ∈ I, r ∈ R. (2.3)

Commuting both sides with r ∈ R, we have
[(d(xy) ± xy)r + g(xy)d(r), r] = 0.

So the hypothesis yields that
[g(xy)d(r), r] = 0, for all x, y ∈ I, r ∈ R. (2.4)

Replacing sx, s ∈ R by x in (2.4) and using this equation, we get
[g(s), r]g(xy)d(r) = 0

which gives
[t, r]g(xy)d(r) = 0, for all x, y ∈ I, r, t ∈ R,

by the surjectivity of g. Taking ts, s ∈ R instead of t in this equation, we find that
[t, r]sg(xy)d(r) = 0,

and so
[t, r]Rg(xy)d(r) = 0, for all x, y ∈ I, r, t ∈ R.

Since R is a prime ring, we get
R is commutative or g(xy)d(r) = 0, for all x, y ∈ I, r ∈ R.

Now we assume that g(xy)d(r) = 0, for all x, y ∈ I, r ∈ R. By Lemma 2.6, we have
g(xy) = 0, for all x, y ∈ I. Using this in (2.3), we obtain that

(d(xy) ± xy)r ∈ Z, for all x, y ∈ I, r ∈ R.

By the primeness of R and d(xy) ± xy ∈ Z, we have
d(xy) ± xy = 0, for all x, y ∈ I or R must be commutative.

If R is commutative, then we have [x, d(x)] = 0, for all x ∈ I. If d(xy) ± xy = 0, for
all x, y ∈ I, then we get [x, d(x)] = 0, for all x ∈ I by Lemma 2.2. This completes the
proof. �
Theorem 2.10. Let R be a prime ring, I be a nonzero ideal of R and d be a nonzero
multiplicative semiderivation associated with a nonzero surjective map g of R. If d(xy) ±
yx ∈ Z, for all x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Proof. By our hypothesis, we get
d(x(yz)) ± (yz)x ∈ Z, for all x, y, z ∈ I (2.5)

and
d((xy)z) ± z(xy) ∈ Z, for all x, y, z ∈ I. (2.6)

Subtracting these two equations yields that
[y, zx] ∈ Z, for all x, y, z ∈ I.

Hence we get δzx(I) ⊆ Z where δzx(y) = [y, zx] is an inner derivation. By Lemma 2.1,
we obtain that R is commutative or δzx = 0. If δzx = 0, then we have [y, zx] = 0, for all
x, y, z ∈ I. Writing rz, r ∈ R for z in this equation and using this, we obtain that

[y, r]zx = 0, for all x, y, z ∈ I, r ∈ R.
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By the primeness of R, we find that R is commutative and so [x, d(x)] = 0, for all x ∈ I.
This completes the proof. �

Theorem 2.11. Let R be a prime ring, I be a nonzero ideal of R and d be a nonzero
multiplicative semiderivation associated with a nonzero surjective map g of R. If d(x)d(y)±
xy ∈ Z, for all x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Proof. Taking yz instead of y in the hypothesis, we have

d(x)d(yz) ± xyz ∈ Z

which implies

(d(x)d(y) ± xy)z + d(x)g(y)d(z) ∈ Z, for all x, y, z ∈ I. (2.7)

Taking commutation of this term with z and using our hypothesis, we have

[d(x)g(y)d(z), z] = 0, for all x, y, z ∈ I. (2.8)

Replacing zy by y in (2.8), we get

[d(x)g(z)g(y)d(z), z] = 0, for all x, y, z ∈ I. (2.9)

Writing xz for x in (2.8) and using (2.9), we obtain that

[xd(z)g(y)d(z), z] = 0.

By (2.8), we have
[x, z]d(z)g(y)d(z) = 0, for all x, y, z ∈ I.

Putting ry, r ∈ R instead of y in this equation, we get

[x, z]d(z)g(r)g(y)d(z) = 0, for all x, y, z ∈ I, r ∈ R.

Using the surjectivity of g, the last equation can be written as

[x, z]d(z)Rg(y)d(z) = (0), for all x, y, z ∈ I,

and so
[x, z]d(z) = 0 or g(y)d(z) = 0, for all x, y, z ∈ I.

Now, we assume that [x, z]d(z) = 0, for all x, z ∈ I. Writing xy instead of x in this
equation, we have [x, z]yd(z) = 0, for all x, y, z ∈ I, and so, z ∈ Z or d(z) = 0. Hence we
arrive at d(z) ∈ Z, z ∈ I for any cases.

On the other hand, let g(y)d(z) = 0, for all y, z ∈ I. Replacing yr, r ∈ R by y in this
equation, we get g(y)g(r)d(z) = 0, for all y, z ∈ I, r ∈ R, and so g(y)Rd(z) = (0), for all
y, z ∈ I. Since R is a prime ring, we have d(z) = 0 or g(I) = (0). Hence we get d(z) ∈ Z,
for all z ∈ I or g(I) = (0).

If d(z) ∈ Z, for all z ∈ I, then R must be commutative by Theorem 2.8 and it implies
that [x, d(x)] = 0, for all x ∈ I.

Now, we assume that g(I) = (0). Considering (2.7), we obtain that

(d(x)d(y) ± xy)z ∈ Z, for all x, y, z ∈ I.

Since d(xy) ± xy ∈ Z, we have

d(x)d(y) ± xy = 0, for all x, y ∈ I or R must be commutative.

If d(x)d(y) ± xy = 0, for all x, y ∈ I, then we get [x, d(x)] = 0, for all x ∈ I by Lemma
2.3. Hence we get the required result. �

Theorem 2.12. Let R be a prime ring, I be a nonzero ideal of R and d be a nonzero
multiplicative semiderivation associated with a nonzero surjective map g of R. If d(xy) ±
d(x)d(y) ∈ Z, for all x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.
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Proof. By our hypothesis, we get
d(xy) ± d(x)d(y) ∈ Z, for all x, y ∈ I. (2.10)

Replacing yz by y in this equation, we have
d(xy)z + g(xy)d(z) ± d(x)d(y)z ± d(x)g(y)d(z) ∈ Z

and so
(d(xy) ± d(x)d(y))z + g(xy)d(z) ± d(x)g(y)d(z) ∈ Z, for all x, y, z ∈ I. (2.11)

Commuting (2.11) with z ∈ I yields that
[g(xy)d(z) ± d(x)g(y)d(z), z] = 0, for all x, y, z ∈ I. (2.12)

Writing xz by x in (2.12) and using (2.12), we find that
[xd(z)g(y)d(z), z] = 0, for all x, y, z ∈ I. (2.13)

Replacing rx, r ∈ R by x in (2.13) and using this equation, we have
[r, z]Id(z)g(y)d(z) = (0), for all y, z ∈ I, r ∈ R.

By the primeness of R, we obtain that
z ∈ Z or d(z)g(y)d(z) = 0, for all y, z ∈ I.

If z ∈ Z, then d(z) ∈ Z.
Let us assume that d(z)g(y)d(z) = 0, for all y, z ∈ I. Taking yr, r ∈ R instead of y in

this equation and using the fact that g is surjective, we arrive at d(z) = 0 or d(z)g(y) = 0,
and so d(z)g(y) = 0, for all y, z ∈ I. Again writing ry, r ∈ R for y in this equation, we
have

d(z) = 0 or g(y) = 0, for all y, z ∈ I.

If d(z) = 0, then we get d(z) ∈ Z, for all z ∈ I. Hence we arrive at
d(z) ∈ Z or g(y) = 0, for all y, z ∈ I.

Now, if d(z) ∈ Z, then R is commutative by Theorem 2.8, and so [x, d(x)] = 0, for all
x ∈ I.

On the other hand, assuming g(y) = 0, for all y ∈ I implies that
(d(xy) ± d(x)d(y))z ∈ Z

from (2.11). Since R is a prime ring and d(xy) ± d(x)d(y) ∈ Z, we have
d(xy) ± d(x)d(y) = 0 or z ∈ Z, for all x, y, z ∈ I.

If z ∈ Z, then R is commutative, and so [x, d(x)] = 0, for all x ∈ I. If d(xy)±d(x)d(y) = 0,
for all x, y ∈ I, then we get [x, d(x)] = 0, for all x ∈ I by Lemma 2.4. The proof is
completed. �
Theorem 2.13. Let R be a prime ring, I be a nonzero ideal of R and d be a nonzero
multiplicative semiderivation associated with a nonzero surjective map g of R. If d(xy) ±
d(y)d(x) ∈ Z, for all x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Proof. By our hypothesis, we get
d(xy) ± d(y)d(x) ∈ Z, for all x, y ∈ I. (2.14)

For all x, y, z ∈ I, we can write
d(x(yz)) ± d(yz)d(x) ∈ Z, for all x, y, z ∈ I

and
d((xy)z) ± d(z)d(xy) ∈ Z, for all x, y, z ∈ I.

Subtracting these two equations, we find that
d(yz)d(x) ∓ d(z)d(xy) ∈ Z, for all x, y, z ∈ I.
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We can write this equation as
(d(yz) − d(z)d(y))d(x) + d(z)(d(y)d(x) ∓ d(xy)) ∈ Z, for all x, y, z ∈ I.

Commuting this term with d(x) and using the hypothesis, we find that
[d(z), d(x)](d(y)d(x) ∓ d(xy)) = 0, for all x, y, z ∈ I.

Since d(xy) ± d(y)d(x) ∈ Z, for all x, y ∈ I we have
[d(z), d(x)] = 0 or d(y)d(x) ± d(xy) = 0, for all x, y, z ∈ I.

If d(y)d(x) ± d(xy) = 0, for all x, y ∈ I, then we get [x, d(x)] = 0, for all x ∈ I by Lemma
2.5.

If [d(z), d(x)] = 0, then d(x)d(z) = d(z)d(x), for all x, z ∈ I. Using this in our hypothesis,
we get d(xy) ± d(x)d(y) ∈ Z, for all x, y ∈ I. It implies that [x, d(x)] = 0, for all x ∈ I by
Theorem 2.12. This completes the proof. �
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