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1. Introduction
Tomato (Lycopersicon esculentum Miller) is one of the 
most widely grown vegetables in the world1. Tomato 
leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae) is 
an aggressive pest that causes serious damage in tomato 
production, resulting in up to 100% yield losses during 
serious outbreaks (Flores et al., 2003; Saidov et al., 2018). 
Among the lepidopteran pests of tomato crop, T. absoluta 
is considered as a highly invasive agricultural pest, which 
is native to Latin America and has spread through most of 
Europe, Mediterranean regions, and many other regions 
worldwide (Hassan and Alzaidi, 2009; Mansour et al., 
2018). This pest is known as an oligophagous pest attacking 
solanaceous crops, including eggplant, pepper, potato, 
sweet pepper, tobacco (Pereyra and Sánchez, 2006; Kanle 
Satishchandra et al., 2019), as well as solanaceous weeds 
(Shashank et al., 2018). Direct feeding of the pest not only 
damages all parts of tomato plants, but also the entrance of 
1 Food and Agriculture Organization of the United Nations (FAO) (2012). FAOSTAT [online]. Website http://www.fao.org/faostat/en/ [accessed 14 
March 2020].

pathogens through the wounds results in indirect damage 
(EPPO, 2005). It is difficult to manage tomato leaf miner 
with synthetic pesticides due to its leaf mining habit, short 
life span, and high reproductive rates, which results in 
rapid development of insecticide resistance (Guedes et al., 
2019).

Symbiotic relationships between insects and 
microorganisms have the potential to influence the biology 
and ecology of their hosts. Depending on the type of 
symbiotic associations, they can be involved in providing 
nutritional benefits, host plant preference, reproductive 
alteration, and adaptation to environmental conditions, as 
well as in insecticide resistance (Kontsedalov et al., 2008). 
Detection of microbial fauna of insects is important to 
highlight the problems caused by these microorganisms 
to their hosts. The interactions between bacterial 
microorganisms and their hosts are important in terms 
of the host’s fitness, ecology, and evolutionary biology 
(Gurung et al., 2019).

Abstract: Tomato leaf miner is an aggressive and invasive pest that causes serious damage in tomato production, resulting in up to 
100% yield losses during serious outbreaks. The management of tomato leaf miner with synthetic pesticides is difficult due to its leaf 
mining habit, short life span, high reproductive rates, and insecticide resistance problem. In this study, sequences of the mitochondrial 
cytochrome oxidase I (mtCOI) gene of Tuta absoluta specimens were analyzed and compared with the available COI sequence data 
members from GenBank. All the specimens of tomato leaf miner were clustered together in a single group with a high support value, 
suggesting the presence of a homogeneity in the T. absoluta specimens. Furthermore, 164 samples were analyzed in order to detect the 
prevalence of Arsenophonus, Cardinium, Hamiltonella, Pantoea, Spiroplasma,and Wolbachia infection in T. absoluta populations. PCR 
analysis revealed 100% prevalence of Wolbachia and Pantoea; however, no other symbiotic bacterial infections were observed in T. 
absoluta populations. Finally, Wolbachia wsp, Pantoea 16S ribosomal RNA genes, and mtDNA COI haplotypes were analyzed in order to 
estimate the mitochondrial effects of these endosymbionts on the population structure of tomato leaf miner. The findings of high genetic 
homogeneity among T. absoluta populations with high prevalence of Wolbachia and Pantoea infections seem to imply that both bacterial 
infections have less impact on the mtDNA variations.

Key words: Endosymbionts, genetic variation, mitochondrial DNA, tomato leaf miner

Received: 02.06.2020              Accepted/Published Online: 12.10.2020              Final Version: 10.02.2021

Research Article

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0000-0003-0023-8396
https://orcid.org/0000-0002-0911-8799
https://orcid.org/0000-0003-0699-1354
https://orcid.org/0000-0002-0026-7835


MEHRKHOU et al. / Turk J Agric For

112

Wolbachia is widely distributed with about 70% of all 
insect species (Werren and O’Neill, 1997), which regulates 
host reproduction through cytoplasmic incompatibility 
(CI), feminization, male killing, and parthenogenesis 
(Werren, 1997; Stouthamer et al., 1999). Wolbachia also 
plays a major role in affecting the mtDNA variation of its 
hosts (Hurst and Jiggins, 2005; Moran et al., 2008; Charlat 
et al., 2009; Feldhaar, 2011; Richardson et al., 2012; Bennett 
and Moran, 2015; Schuler et al., 2016; Schuler et al., 2018). 
Mitochondrial DNA (mtDNA) has advantages compared 
to nuclear DNA, such as the absent or very infrequent 
recombination conjoint with their reduced effective 
population size and relatively high mutation rates. These 
properties make this genome  suitable for characterization 
in the level of inter- and intraspecies (Saccone et al., 2000), 
as well as use in phylogeography (Hurst and Jiggins, 2005). 

Pantoeais another common bacterium with more than 
20 species that have adapted to diverse ecological niches, 
including humans, insects, plant material, soil, and water 
(Walterson and Stavrinides, 2015). Recent studies showed 
that Pantoea species contribute to providing essential 
nutrients limited in the host’s diet (Kenyon et al., 2015), 
participating in creating a nitrogen-rich environment for 
developing eggs and larvae (MacCollom et al., 2009) and 
breakdown of plant cell-wall biopolymer (Bozorov et al., 
2019).Pantoea isolates have been reported from different 
insect species, such as fruit fly (Lauzon et al. 2009) and 
Asian citrus psyllid (Guz et al. 2020b).

In this study, samples were collected from different 
geographic locations of Iran and Turkey in order to 
investigate genetic diversity and differentiation of T. 
absoluta populations. The nucleotide sequences of the 
mtCOI gene of these populations were analyzed and 
compared with the previously reported COI sequence 
data of tomato leaf miner members from GenBank. 
Furthermore, 164 samples were analyzed in order to detect 
the prevalence of Arsenophonus, Cardinium, Hamiltonella, 
Pantoea, Spiroplasma and Wolbachia infection in T. 
absoluta populations. Finally, Wolbachia wsp, Pantoea 16S 
ribosomal RNA (16S rRNA) genes and COI haplotypes 
were analyzed to estimate the mitochondrial effects of 
these endosymbionts on tomato leaf miner population 
structures.

2. Materials and methods
Samples of T. absoluta were collected during 2019 and 2020 
from 15 different major tomato-growing areas of West-
Azerbaijan of Iran, and Turkey. The collected specimens 
were transferred to 70% ethanol and preserved at 4 °C 
until DNA extraction. The details of the collected samples 
are shown in Table 1. 

To avoid any contamination, each larvae and adult 
sample was exposed to 1% sodium hypochlorite, followed 
by 2 times distilled water rinse prior to DNA extraction. 

Total genomic DNA was isolated individually from 164 
specimens, including 19 adults and 146 larvae, using a 
modified cetyltrimethylammonium bromide protocol 
(CTAB) with minor modifications (Doyle and Doyle, 1987; 
Guz et al., 2020a). Briefly, each specimen was homogenized 
in lysis buffer (100mM Tris, 50mM EDTA, 1.4M NaCl, 2% 
CTAB) and incubated at 65 °C for 12 h. After chloroform-
isoamyl alcohol (24:1) extraction, the DNA samples were 
precipitated using isopropanol. The quality and quantity 
of DNA extracts were estimated using electroporation in 
1% agarose gel containing Pronasafe Nucleic Acid Staining 
Solution (Laboratorios Conda, S.A., Madrid, Spain) and 
NanoDrop2000 spectrophotometer (Thermo Scientific 
Scientific Inc.,Waltham, MA, USA). Each DNA extract was 
standardized to 100 ng/µL. PCR details used to amplify an 
mtCOI fragment and bacterial endosymbionts are given in 
Table 2. Fifteen purified PCR amplicons of COI gene were 
bidirectionally Sanger sequenced at Macrogen, Inc (Seoul, 
South Korea). 

The forward and reverse nucleotide sequences 
representing 15 specimens were assembled, edited, and 
manually aligned, using Geneious R9 (Kearse et al., 2012). 
Obtained sequences were submitted to the GenBank 
with the accession numbers of MT328190-MT328204. A 
sampling dataset of the COI gene region of T. absoluta was 
generated from 594 specimens (15 from this study and 579 
sequences from NCBI annotated database representing 
different localities) (Table 3).

The number of haplotypes (H), haplotype diversity 
(Hd), and nucleotide diversity (π) were calculated using 

Table 1. Collection sites.

Location Coordinates

Salmas 38° 11′ 41″ N 44° 45′ 53″ E
Salmas (Kochameshk) 38° 08′ 59″ N 44° 47′ 25″ E
Khoy 38° 33′ 01″ N 44° 57′ 08″ E
Urmia 37° 33′ 19″ N 45° 04′ 21″ E
Urmia (Hesar-e Torkaman) 37° 26′ 34″ N 45° 13′ 08″ E
Urmia (Qotlu) 37° 30′ 24″ N 45° 08′ 18″ E
Urmia (Tala Tappeh) 37° 43′ 13″ N 45° 10′ 47″ E
Urmia (Satlu) 37° 25′ 18″ N 45° 08′ 54″ E
Urmia (Kashtiban) 37° 33′ 26″ N 45° 14′ 24″ E
Oshnavieh 37° 02′ 23″ N 45° 05′ 54″ E
Miandoab 36° 58′ 10″ N 46° 06′ 10″ E
Naghadeh 36° 57′ 19″ N 45° 23′ 17″ E
Van, Turkey 38° 29′ 39″ N 43° 22′ 48″ E
Fethiye, Muğla,Turkey 36° 39’ 33″ N 29° 7’ 35″ E
Menemen, İzmir, Turkey 38° 36´ 58″ N 27° 8´ 49″ E
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DnaSP v5 (Librado and Rozas, 2009). The level of genetic 
differentiation between specimens was quantified via 
estimating net p-distance value, using MEGA X (Kumar 
et al., 2018). The principal coordinate analysis (PCoA) was 
performed using the GenAlEx v6.5 (Peakall and Smouse, 
2006;2012) based on the matrix of pairwise p-distance 
values between specimens.

In order to estimate the phylogenetic relationship of 
the haplotypes of T. absoluta specimens, phylogenetic 
trees were constructed using neighbour-joining (NJ) and 
maximum likelihood (ML) approaches. Symmetrischema 
lectulifera (KY951829) was selected as an outgroup. For 
phylogenetic tree constructions, the best-fit model of 
DNA substitution and the parameter estimates were used 
in MEGA X program (Kumar et al., 2018). The NJ tree was 
constructed in MEGA X under the algorithm of Kimura 2 
parameter with Gamma distribution (Gamma parameter: 
0.11) with 1.000 bootstrapping. ML tree was built using 
PhyML v3.1 (Guindon et al., 2010) under GTR+G+I 
substitution model. The visualization of the trees was 
carried out using FigTree v1.4.22. 

3. Results
Our dataset consisted of the 594 COI sequences 
representing 15 specimens from this study and 579 
specimens from previously reported studies. After 
alignment and trimming, the remaining length of 
sequences was 558 bp. In total, 16variable positions were 
detected including 13 singleton variable sites. Diversity 
indices of haplotype (Hd) and nucleotide (π) were 0.040 
2 Rambaut A (2014). FigTree v1.4.2 [online]. Website: http://tree.bio.ed.ac.uk/software/figtree/ [accessed 13 April 2020].

± 0.011 and 0.00014 ± 0.00006, respectively. The retrieved 
haplotype number was 8, and 5 of them were definable by 
a single mutation difference and were unique to a single 
location. The haplotype Hap1 was the most abundant and 
widespread, as it was shared in 97.98% of the sequences. 

The overall mean p-distance for the COI gene region 
was found as 0.0078 ± 0.0018, and the pairwise p-distances 
was found as 0.0018 between these 5 haplotypes. The first 
3 principal axes in the PCoA showed 57.75, 15.04, and 
10.76 of the total variation, respectively, which indicated 
that almost all of the specimens exhibited overlapped 
clustering except for was clustered together except for the 
haplotype Hap_3 (Figure 1).  

As NJ and ML analyses have resulted in the same tree 
topology, the tree produced under the ML approach was 
presented in Figure 2. All specimens of T. absoluta were 
clustered together in a single group with a high support 
value (100%, Figure 2) except for the haplotypes Hap_3, 
suggesting the presence of a homogeneity in the T. 
absoluta specimens. The tree also indicated  no clustering 
related to geographic origin. Furthermore, no mtDNA 
polymorphism in entire populations infected by Wolbachia 
and Pantoea has been detected.

The presence and prevalence of Wolbachia infections 
were detected using the wsp gene in T. absoluta yielding 
an approximately 600 bp amplicon in length. The obtained 
Wolbachia sequence from T. absoluta has been submitted 
to GenBank under the accession number MT340264. 
BLAST analysis revealed that this sequence displayed 
the highest homology with 99.82% identity to Wolbachia 

Table 2. Details of the PCR conditions and primers used in the study.

Target gene Primer sequence (5′-3′) Tm (°C) Reference

Hamiltonella 16S rDNA
Ham-F:TGAGTAAAGTCTGGAATCTGG

60 Chiel et al., 2007
Ham-R: AGTTCAAGACCGCAACCTC

Arsenophonus 23S rDNA
Ars23S-1: CGTTTGATGAATTCATAGTCA AA

50 Thao and Baumann, 2004
Ars23S-2:GGTCCTCCAGTTAGTGTTACC CAAC

Cardinium 16S rDNA
CFB-F: GCGGTGTAAAATGAGCGTG

58 Weeks et al., 2003
CFB-R: ACCTMTTCTTAACTCAAGCCT

Wolbachia wsp gene
wsp81F: TGGTCCAATAAGTGATGAAGAAAC

55 Braig et al. ,1998
wsp691-R: AAAAATTAAACGCTACTCCA

Pantoea 16S rRNA
Panteo-F: ACGGAGGGTGCAAGCGTTAAT

56 Guz et al., 2020b
Panteo-R: AGGTAAGGTTCTTCGCGTTGCA

Spiroplasma 16S rRNA
16SA1: AGAGTTTGATCMTGGCTCAG

55 Tsuchida et al., 2002
TKSSspR: TAGCCGTGGCTTTCTGGTAA

Universal COI
dgLCO-1490: GGTCAACAAATCATAAAGAYATYGG

45 Meyer, 2003
dgHCO-2198: TAAACTTCAGGGTGACCAAARAAYCA
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Table 3. Distribution and frequency of the haplotypes of T. absoluta observed in this study.

Haplotype Frequency of 
haplotype Origin of population

Hap_1 582

MT328190 - MT328191 - MT328192 - MT328193 - MT328194 - MT328195 - MT328196 - MT328197  MT328198 - MT328199 - 
MT328200 - MT328201 - MT328202 - MT328203 - MT328204 -HQ968678 - JN417242 - JQ749676 - JQ749677 - JQ749678 - JQ749679 
- JQ749680 - JQ749681 - JQ749682 - JQ749683 - JQ749684 - JQ749685 - JQ749686 - JQ749687 - JQ749688 - JQ749689 - JQ749690 
- KC852871 - KC852872 - KJ657679 - KJ657680 - KJ657681 - KP793741 - KP793742 - KT452897 - KU565496 - KU565497 - KU565498 - 
KU565499 - KU565500 - KU565501 - KU565502 - KU565503 - KU565504 - KU565505 - KU565506 - KU565507 - KU565508 - KU565509 
- KU565510 - KU565511 - KU565512 - KU565513 - KU565514 - KU565515 - KU565516 - KU565517 - KU565518 - KU565519 - 
KU565520 - KU565521 - KU565522 - KU565523 - KU565524 - KU565525 - KU565526 - KU565527 - KU565528 - KU565529 - KU565530 
- KU565531 - KU565532 - KU565534 - KU565536 - KU565537 - KU565538 - KU565539 - KU565540 - KU565541 - KU565542 - 
KU565543 - KU565544 - KU565545 - KU565546 - KU565547 - KU565548 - KU565549 - KU565550 - KU565551 - KU565552 - KU565553 
- KU565554 - KU565555 - KU565556 - KU565557 - KU565558 - KU565559 - KU565560 - KU565561 - KU565562 - KU565563 - 
KU565564 - KU565565 - KU565566 - KU565567 - KU565568 - KU565569 - KU565570 - KU565571 - KU565572 - KU565573 - KU565574 
- KU565575 - KU565576 - KU565577 - KU565578 - KU565579 - KU565580 - KU565582 - KU565583 - KU565584 -KU565585 - KU565586 
- KU565587 - KU565588 - KU565589 - KU565590 - KU565591 - KU565592 - KU565593 - KU565594 - KU565595 - KU565596 - 
KU565597 - KU565598 - KU565599 - KU565600 - KU565601 - KU565602 - KU565603 - KU565604 - KU565605 - KU565606 - KU565607 
- KU565608 - KU565609 - KU565610 - KU565611 - KU565612 - KU565613 - KU565614 - KU565615 - KU565616 - KU565617 - 
KU565618 - KU565619 - KU565620 - KU565621 - KU565622 - KU565623 - KU565624 - KU565625 - KU565626 - KU565627 - KU565628 
- KU565629 - KU565630 - KU565631 - KU565632 - KU565633 - KU565634 - KU565635 - KU565636 - KU565637 - KU565638 - 
KU565639 - KU565640 - KU565641 - KU565642 - KU565643 - KU565644 - KU565645 - KU565646 - KU565647 - KU565648 - KU565649 
- KU565650 - KU565651 - KU565652 - KU565653 - KU565654 - KU565655 - KU565656 - KU565657 - KU565658 - KU565659 - 
KU565660 - KU565661 - KU565662 - KU565663 - KU565665 - KU565666 - KU565667 - KU565668 - KU565669 - KU565670 - KU565671 
- KU565672 - KU565673 - KU565674 - KU565675 - KU565676 - KU565677 - KU565678 - KU565679 - KU565680 - KU565681 - 
KU565682 - KU565683 - KU565684 - KU565685 - KU565686 - KU565687 - KU565688 - KU565689 - KU565690 - KU565691 - KU565692 
- KU565693 - 
KU565694 - KU565695 - KU565696 - KU565697 - KU565698 - KU565699 - KU565700 - KU565701 - KU565702 - KU565703 - KU565704 
- KU565705 - KU565706 - KU565707 - KU565708 - KU565709 - KU565710 - KU565711 - KU565712 - KU565713 - KU565714 - 
KU565715 - KU565716 - KU565717 - KU565718 - KU565719 - KU565720 - KX443108 - KX443110 - KX443111 - KY129655 - KY129656 
- KY129657 - KY129658 - KY129659 - KY619673 - KY619674 - KY619675 - KY619676 - KY619677 - KY619678 - KY619679 - KY619680 - 
KY619681 - KY619682 - KY619683 - KY619684 - KY619685 - KY619686 - KY619687 - KY923648 - MG596129 - MG596130 - MG596131 
- MG596132 - MG596133 - MG596134 - MG596135 - MG596136 - MG596137 - MG596138 -  MG596139 - MG596140 - MG596141 
- MG596142 - MG596143 - MG596144 - MG596145 - MG596146 - MG596147 - MG596148 - MG596149 - MG596150 - MG596151 
- MG596152 - MG596153 - MG596154 - MG596155 - MG596156 - MG596157 - MG596158 - MG596159 - MG596160 - MG596161 
- MG596162 - MG596163 - MG596164 - MG596165 - MG596166 - MG596167 - MG596168 - MG596169 - MG596170 - MG596171 
- MG596172 - MG596173 - MG596174 - MG596175 - MG596176 - MG596177 - MG596178 - MG596179 - MG596180 - MG596181 
- MG596182 - MG596183 - MG596184 - MG596185 - MG596186 - MG596187 -  MG596188 - MG596189 - MG596190 - MG596191 
- MG596192 - MG596193 - MG596194 - MG596195 - MG596196 - MG596197 - MG596198 - MG596199 - MG596200 - MG596201 
- MG596202 - MG596203 - MG596204 - MG596205 - MG596206 - MG596207 - MG596208 - MG596209 - MG596210 - MG596211 
- MG596212 - MG596213 - MG596214 - MG596215 - MG596216 - MG596217 - MG596218 - MG596219 - MG596220 - MG596221 
- MG596222 - MG596223 - MG596224 - MG596225 - MG596226 - MG596227 - MG596228 - MG693216 - MG693217 - MG693218 
- MG693219 - MG693220 - MG693221 - MG693222 - MG693223 - MH882429 - MH882430 - MH882431 - MH882432 - MH882433 
- MH882434 - MH882435 - MH882436 - MH882437 - MH882438 - MH882439 - MH882440 - MH882441 - MH882442 - MH882443 
- MH882444 - MH882445 - MH882446 - MH882447 - MH882448 - MH882449 - MH882450 - MH882451 - MH882452 - MK000732 
- MK116924 - MK116925 - MK116926 - MK116927 - MK116928 - MK116929 - MK116930 - MK116931 - MK116932 - MK116933 
- MK116934 - MK116935 - MK116936 - MK116937 - MK116938 - MK116939 - MK116940 - MK116941 - MK116943 - MK116944 
- MK116945 - MK116946 - MK116947 - MK116948 - MK116950 - MK116951 - MK116952 - MK116953 - MK116954 - MK116955 
- MK116956 - MK116957 - MK116958 - MK116959 - MK116960 - MK116961 - MK116962 - MK116963 - MK116964 - MK116965 
- MK116966 - MK116968 - MK116969 - MK116972 - MK116973 - MK116974 - MK116975 - MK116976 - MK116978 - MK116979 
- MK116980 - MK116981 - MK116984 - MK116985 - MK116986 - MK116987 - MK116988 - MK116989 - MK116990 - MK116993 
- MK116994 - MK116997 - MK116998 - MK116999 - MK117000 - MK117001 - MK117002 - MK117004 - MK117005 - MK117006 
- MK117007 - MK117008 - MK117009 - MK117010 - MK117011 - MK117012 - MK117014 - MK117015 - MK117016 - MK117018 
- MK117019 - MK117021 - MK117022 - MK117024 - MK117026 - MK117027 - MK117028 - MK117030 - MK117031 - MK117032 
- MK117033 - MK117034 - MK117035 - MK117036 - MK117037 - MK117038 - MK117039 - MK117040 - MK117041 - MK117042 
- MK117045 - MK117046 - MK117047 - MK117048 - MK117049 - MK117050 - MK639581 - MK639583 - MK639584 - MK639585 
- MK639587 - MK639588 - MK639589 - MK639590 - MK639591 - MK639592 - MK639593 - MK639594 - MK779005 - MK848292 
- MK848293 - MK848294 - MK848295 - MK848296 - MK848297 - MK848298 - MK848300- MK848301 - MK848302 - MK848303 
- MK848304 - MK848305 - MK848306 - MK848307 - MK848308 - MK848309 - MK848310 - MK848311 - MK848312 - MK848313 
- MK848314 - MK848315 - MK848316 - MK848317 - MK848318 - MK848319 - MK848320 - MK848321 - MK848322 - MN066581 
- MN066582 - MN066583 - MN066584 -MN066585 - MN066586 - MN066587 - MN066588 - MN066589 - MN066590 - MN066591 - 
MN525185 - MN804299 - MN806287

Hap_2 1 KP324752
Hap_3 1 KP324753
Hap_4 1 KU565533 - KU565535
Hap_5 1 KU565581
Hap_6 1 KU565664 - MK639582 - MK639586 - MK639595 - MK639596
Hap_7 1 MN525178

Hap_8 1 MN525198
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endosymbiont of Operophtera brumata (KY587652.1), 
Epirrita christyi (JX310335.1), Mamestra brassicae 
(AB094375.1), Operophtera brumata (KY587653.1). To 
evaluate the phylogenetic relationship between Wolbachia 
strains isolated from various insects, we constructed a 
phylogenetic tree (Figure 3) of a total of 18 arthropod 
sequences under the NJ method, and the tree topology 

of all subjected sequences revealed 2 supergroups (A 
and B). The first cluster, supergroup B, consisted of the 
orders including Hemiptera, Coleoptera, Hymenoptera, 
and Lepidoptera, whereas the second cluster, supergroup 
A, exhibited a relationship between Formicidae, Diptera, 
Lepidoptera, Hymenoptera, and Coleoptera. The 
phylogenetic tree showed that the Wolbachia sequences 

Figure 1. Principal coordinate analysis (PCoA) of the original data in 8  haplotypes 
of T. absoluta. Each dot corresponds to a haplotype of T. absoluta COI data. The 
amount of variance explained by each PC is indicated on each axis. 

Figure 2. ML tree of haplotypes of T. absoluta based on the mtDNA COI data. 
Symmetrischema lectulifera was used as an outgroup.
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from T. absoluta and different Lepidopteran species were 
clustered with the Wolbachia supergroup B. PCR analysis 
revealed 100% prevalence Wolbachiainfection frequencies 
for the Wolbachia out of 164 (including 19 adults and 146 
larvae) samples in T. absoluta populations. 

Investigation of the presence of Pantoea in T. absoluta 
populations was performed using a set of primers 
amplifying the 16S rRNA gene fragment (421 bp) of 
Pantoea. The sequence of Pantoea sp. from T. absoluta 
has been submitted to GenBank under the accession 
number MT326636, which is the first record of infection 
by Pantoea within tomato leaf miner populations. The 
sequence homology showed >99% nucleotide identity 
with 16S rRNA encoded with the Pantoea agglomerans 
(NR_116751.1), Pantoea brenneri (NR_116748), Pantoea 
eucalypti (NR_116112), and Pantoea vagans (NR_116115) 
with a variety of different hosts in the database of BLAST. 
Figure 3 depicts the tree constructed by NJ analysis using 
sequences of 16S rRNA genes from Pantoea originating 
only from insects. According to the phylogenetic tree, 
there were 2 major branches based on Pantoea sequences. 
Among these sequences, P. agglomerans formed the main 
branch and differed from all other taxa. Tuta Pantoea was 
grouped in Pantoea sp. and diverged from P. ananatis 
and P. vagans. PCR analysis revealed 100% prevalence 
of Pantoeainfection frequencies for the Pantoea out of 

164 adult and larval samples of T. absoluta populations. 
On the contrary, no other symbiotic bacteria comprising 
Arsenophonus, Cardinium, Hamiltonella,and Spiroplasma 
infections were found in any of the tomato leaf miner 
populations tested.

4. Discussion
The results of this study exhibited high genetic 
homogeneity with a low nucleotide diversity value among 
different specimens of T. absoluta across their distribution 
range. The presence of high genetic homogeneity was also 
observed in the PCoA analysis and phylogenetic tree. 
This low nucleotide diversity concurs well with previous 
results of pinworm populations from different parts of 
its distribution range (Shashank et al., 2018; Guedes et 
al., 2019). The mtCOI has been shown to be very useful 
and informative for estimating inter- and intraspecific 
levels; however, high genetic homogeneity observed 
in T. absoluta populations might be mainly related to 
the occurrence of genetic drift on this invasive species 
(Korkmaz et al., 2011;Duman et al. 2015). As reported in 
many studies on invasive species (Shashank et al., 2018; 
Hawley et al., 2006; Lindholm et al., 2005; Tsutsui et al., 
2000), in small populations, the genetic diversity can be 
lost due to high genetic drift settled in new parts of the 
invasive range (Hagenblad et al., 2015). The biggest 

Figure 3. Phylogenetic analysis of Wolbachia and Pantoea infections in T. absoluta species in relation to other insect species. The 
species and GenBank accession numbers of the reference sequences used to construct the phylogenetic trees are as follows: Uncultured 
Pantoea sp. (Rhynchophorus ferrugineus) KF125498.1; Uncultured Pantoea sp. (Bactrocera dorsalis) MK749919.1; Pantoea sp. (Ips 
typographus) DQ309419.1; Pantoea sp. (T. absoluta) MT326636; P. ananatis (Kerria lacca) KF717513.1; P. ananatis (Nilaparvata 
lugens) KJ655537.1; P. vagans (Hypothenemus hampei) KF913828.1; P. agglomerans (Ricania simulans) KM102494.1; P. agglomerans; 
Lissorhoptrus oryzophilus (KC754748.1); Trichogramma sibericum (AF071923.1); Trichogramma kaykai (AF071924.1); Trichogramma 
deion (AF020084.1); Laodelphax striatellus (WSTR_RS03110); Tribolium confusum (AF020083.1); Orius minutus (AB094363.1); 
Leptidea sinapis (KC137222.1); Mamestra brassicae (AB094375.1); Operophtera brumata (KY587656.1); T. absoluta (MT340264); 
Epirrita christyi (JX310339.1); Callosobruchus chinensis (MG255145.1); Solenopsis daguerrei (AY878105.1); Culex quinquefasciatus 
(KX650071.1); Aedes albopictus (KJ140127.1); Ephestia kuehniella (AF071911.1); Trichogramma kaykai (AF071912.1); Trichogramma 
bourarachae (AF071913.1).

https://www.ncbi.nlm.nih.gov/nuccore/AF071924.1
https://www.ncbi.nlm.nih.gov/nuccore/AF020084.1
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limitation of this study is the sole use of COI; however, no 
genetic variation has been observed in Tuta populations 
collected from several countries using mtCOI, ITS rDNA, 
and microsatellite markers (Cifuentes et al., 2011; Duric 
et al., 2014; Guillemaud et al., 2015; Yukselbaba and 
Gocmen, 2016; Shashank et al., 2018; Kinyanjui et al., 
2018). Although great variance between nuclear-nuclear 
and mito-nuclear incompatibilities has been detected in 
insects (Telschow et al., 2019), further analyses with a wide 
range of samples need to be performed to enable a better 
estimation of the degree of population differentiation of 
T. absoluta using nuclear genes and microsatellites, which 
has already been developed (Bettaibi et al.,2013; Tabuloc 
et al., 2019). 

Recently, insecticide resistant phenotypes have been 
discovered in T. absoluta in different studies (Siqueira et 
al., 2000; Lietti et al., 2005; Yalcin et al., 2015; Karaagac et 
al., 2015; Zibaee et al., 2016; Barati et al., 2018; Guedes et 
al., 2019). The populations examined in this study needs 
to be confirmed in terms of insecticide susceptibility since 
a single genetically uniform Tuta population has been 
related to higher insecticide resistance in Mediterranean 
Basin and South America (Cifuentes et al., 2011).

On the other hand, mtDNA is still commonly used 
as a molecular marker for identification, phylogeny, and 
population structure of insect species (Guz et al. 2013; 
Hebert et al., 2003; Krishnamurthy and Francis, 2012; 
Yatkin and Guz 2018). This is of significant importance as 
the spread of Wolbachia might influence polymorphism in 
mtDNA (Turelli et al., 1992; Solignac et al., 1994; Ballad et 
al., 1996; Keeling et al., 2003; Charlat et al., 2009; Graham 
and Wilson, 2012; Richardson et al., 2012; Schuler et 
al., 2016). In this study, the findings of high genetic 
homogeneity among T. absoluta populations with high 
prevalence of Wolbachia and Pantoea infections seems to 
imply that both bacterial infections have less impact on the 
mtDNA variations. Our results are in accordance with the 
findings about the populations reported in Brazil (Carvalho 
et al., 2018). Even though these results differ from previous 
studies that report that  Wolbachia spread affects the 
mtDNA diversity of its host through indirect selection, 
which means if a population gains any reproductive 
advantage or fitness from Wolbachia, the initial mtDNA 
type will hitchhike through the population and change the 
uninfected haplotypes (Hurst and Jiggins, 2005; Schuler et 
al., 2016). Therefore, the inference about lack of genetic 
diversity is more precise when the uninfected Wolbachia 
population of T. absoluta is analyzed. To our knowledge, 
this is the first report for Pantoea in terms of mtDNA 
haplotype diversity, which needs to be interpreted with the 
insights into the temporal and spatial spread of Pantoea in 
T. absoluta. 

Wolbachia is the most common bacterium with an 
approximately 66% infection in all insects (Hilgenboecker 
et al., 2008). In a broad survey, Wolbachia infected majority 
of neotropical insect orders, including Hemiptera, 
Orthoptera, Diptera, Hymenoptera, Coleoptera, and 
Lepidoptera (Werren et al., 1995). Other comprehensive 
studies about Wolbachia infection in Lepidopteran families 
showed 58.3% in 120 species of Siberian populations 
(Ilinsky and Kosterin, 2017); 45% of 49 Japanese species 
(Tagami and Miura, 2004); 52% of 29 Indian species 
(Salunke et al., 2012), and 79% of 24 Acraea species from 
Uganda (Jiggins et al., 2001). In our study, all tomato leaf 
miner populations displayed 100% of Wolbachia infection, 
which is consistent with the populations from Brazil, 
Croatia, and Montenegro (Škaljac et al., 2012; Carvalho et 
al., 2018). Although Wolbachia is mostly known bacteria, 
Spiroplasma were present at low levels while Rickettsia was 
also not commonly found with only one species across 
Lepidopterans. However, none of the samples harbored 
Arsenophonus, Cardinium,or Hamiltonella in any host 
(Russel et al., 2012; Weinert et al., 2015). On the other 
hand, Bacillus, Enterobacter, Enterococcus, Pseudomonas, 
and Staphylococcus were detected as the most common 
bacterial genera ˃ 70% of the 30 different caterpillar species 
(Voirol et al., 2018). In particular, in T. absoluta Rickettsia, 
Hamiltonella, Arsenophonus, Cardinium, and Fritshea were 
not detected in Croatian populations (Škaljac et al., 2012). 
These findings are congruent with our results since all the 
other bacteria we have tested comprising Arsenophonus, 
Spiroplasma, Hamiltonella, and Cardinium were negative 
in Tuta populations.

In this study, we have detected 100% Pantoea sp. in 
T. absoluta populations for the first time. The Pantoea is 
a member of the Enterobacteriaceae, with more than 20 
species, which are adapted to diverse ecological niches, 
including humans, insects, plant material, soil, and water 
(Walterson and Stavrinides, 2015). It has been reported 
to colonize in several Lepidopteran species (Broderick et 
al., 2004; Robinson et al., 2010; Pinto-Tomás et al., 2011; 
Tang et al., 2012; He et al., 2013; Chen et al., 2016; Sevim et 
al., 2016). Recent studies have shown that Pantoea species 
contribute tothe provision of essential nutrients limited 
in the host’s diet (Kenyon et al., 2015), participating in 
creating a nitrogen-rich environment for developing eggs 
and larvae (MacCollom et al., 2009) and the breakdown 
of plant cell-wall biopolymer (Bozorov et al., 2019). To 
our knowledge, no previous research has investigated 
the impact of Pantoea on T. absoluta, which would be of 
interest to further determine the ecological benefits of this 
symbiotic bacteria.

Currently, based on phylogenetic reconstructions, 
17 Wolbachia supergroups (A-Q) have been recognized 
(Glowska et al., 2015). The multilocus sequence typing 
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(MLST) system became a standard protocol in determining 
Wolbachia strains using the substitutions in housekeeping 
loci (ftsZ, gatB, coxA, hcpA, and fbpA) (Baldo et al., 2006). 
In this study, we have detected T. absoluta using wsp gene 
sequencing, which has been used in phylogenetic studies 
and for microtaxonomic subdivision (Van Meer et al., 1999). 
Our result is congruent with other pinworm populations in 
which 2 Wolbachia strains were detected, including ST41 
and ST354, and classified in the supergroup B (Carvalho 
et al.,2018). Wolbachia sequences of T. absoluta analyzed 
in this study are grouped with the other Lepidopterans 
belonging to supergroup B, which is suitable with Croatian 
populations, as well (Škaljac et al., 2012). However, the 
predominance of supergroup B in Lepidopteran species is 
still discussed to determine whether there is a congruence 
between Lepidoptera and B group or whether the groups are 
ancestrally associated (Choi et al., 2015, Ahmed et al., 2016). 
Therefore, for T. absoluta populations, pyrosequencing-
based MLST method for large-scale screening of multiple 
Wolbachia STs is suggested to be fully investigated due to 
the limitation in application in infections with a single 
strain of Wolbachia.

In Lepidoptera endosymbiotic bacteria are known 
to alter host reproduction via feminization, male killing, 
and CI (Duplouy and Hornett, 2018). Wolbachia induced 
feminization occurred in Bombyx mori, Eurema, and Ostrinia 
species (Hiroki et al., 2002; Fujii et al., 2001; Kageyama et al., 
2003, 2004). Male killing has been reported in Lepidoptera 
generated by Wolbachia as well as Spiroplasma (Duplouy 
and Hornett, 2018). CI has been observed at high frequency 
in various Lepidopteran families (Sasaki et al., 2002; 
Hornett et al., 2008). Wolbachia strains detected in Brazilian 
pinworms found to be associated with CI (Carvalho 
et al., 2018). Apart from Wolbachia, tomato leaf miner 
populations showed deuterotokous parthenogenesis in 
mating experiments under laboratory conditions (Caparros 
Megido and Haubruge, 2018). The low genetic variation has 
been attributed to parthenogenetic reproduction; however, 

more genetic polymorphism was observed in asexual 
species than sexual species (Chevasco et al., 2012). The 
fitness of parthenogenetic ancestries are clearly needed to 
confirm the deuterotokous parthenogenesis in T. absoluta. 
Moreover, endosymbiont manipulation, impact upon host 
fitness, and additional effects of the bacterial microbiota in 
T. absoluta need to be further assessed. 

Here, we detected Wolbachia and Pantoea infection in 
both adult and larval stages in the entire populations of T. 
absoluta, verifying the findings that  some bacterial taxa 
can persist through the life cycles of insects (Hammer et 
al., 2014). However, in a large-scale study, it is outlined 
that host phylogeny, developmental stage, environmental 
habitat, and diet could influence the host’s microbiota (Yun 
et al., 2014). As expected, the bacterial communities might 
substantially differ between larval and adult stages of the 
same species (Staudacher et al., 2016, Xia et al., 2017) since 
almost all lepidopteran larvae feed on plant material and 
the majority of adults feed on floral nectar and other liquid 
substances (Krenn et al., 2010). The widespread abundance 
of Wolbachia infection in T. absoluta might be due to the 
shared natural enemies and food sources as potential routes 
of horizontal transmission (Ahmed et al., 2016). Although 
whiteflies and tomato leaf miner populations share common 
habitat, host plant, and natural enemies, we confirmed in 
this study that the symbiotic bacterial composition of 2  
pests differed except Wolbachia. It remains unclear why 
the composition of bacterial communities varies in distinct 
phytophagous species. Further experimental investigations 
are needed to estimate the transmission routes, which might 
have a critical role in evolutionary biology of T. absoluta 
populations.

As a result, characterization of the microbiota of the 
tomato leaf miner as well as factors influencing symbiotic 
composition and the impact of symbiotic bacteria to its host, 
such as nutrition, physiology, and behavior, are  important 
in developing alternative control strategies for this invasive 
pest.
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