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Abstract: In this paper, we have researched the electronic and optical properties of cylindrical
quantum dot structures by selecting four different hyperbolic-type potentials in the axial direction
under an axially-applied electric field. We have considered a position-dependent effective mass
model in which both the smooth variation of the effective mass in the axial direction adjusted to
the way the confining potentials change and its abrupt change in the radial direction have been
considered in solving the eigenvalue differential equation. The calculations of the eigenvalue equation
have been implemented considering both the Dirichlet conditions (zero flux) and the open boundary
conditions (non-zero flux) in the planes perpendicular to the direction of the applied electric field,
which guarantees the validity of the results presented in this study for quasi-steady states with
extremely high lifetimes. We have used the diagonalization method combined with the finite element
method to find the eigenvalues and eigenfunction of the confined electron in the cylindrical quantum
dots. The numerical strategies that have been used for the solution of the differential equations
allowed us to overcome the multiple problems that the boundary conditions present in the region
of intersection of the flat and cylindrical faces that form the boundary of the heterostructure. To
calculate the linear and third-order nonlinear optical absorption coefficients and relative changes
in the refractive index, a two-level approach in the density matrix expansion is used. Our results
show that the electronic and, therefore, optical properties of the structures focused on can be adjusted
to obtain a suitable response for specific studies or goals by changing structural parameters such as
the widths and depths of the potentials in the axial direction, as well as the electric field intensity.

Keywords: cylindrical quantum dot; optical absorption; hyperbolic potentials

1. Introduction

Quantum dots (QDs) are attractive structures that lead to interesting physical phe-
nomena due to the restriction of the charge carrier movement in all spatial directions.
By changing the size and shape of quantum dots, one can engineer and fine-tune the
electronic and optical properties of such nanostructures [1–4]. Thanks to advances in mod-
ern fabrication techniques, QDs can be made into different shapes such as cubic [5,6],
pyramidal [7], core/shell [8,9], spherical [10–13] and cylindrical [14–20]. Such structures
present desirable optical features, which can be used to control and modulate the output
intensity. The more the effects of the size and shape on the electronic and optical properties
of QDs are important, the more the effects of the external perturbations such as magnetic,
electric, intense laser fields and hydrostatic pressure are also important [14–19]. Applied
external fields also affect the spectral features of QDs and so, any external field may also
be used to control and tune the energy levels of electrons in a QD. It is clear that when
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manipulating the electronic energy spectrum of QDs, one may also adjust the absorption
threshold frequency; doing so reflects the optical characteristics of the QD. In other words,
one may control the absorption threshold frequency by technologically adjusting the QD
growth. The advantage of cylindrical quantum dot (CQD) systems is to make it possible to
control the energy spectrum with two structure parameters, such as the radius and height
of the cylinder. This advantage gives more possibilities for investigation of the optical
properties of nanostructures.

Due to the importance of size and geometric shape on the electronic and optical prop-
erties of low dimensional systems, CQDs with molecular-type axial potentials such as
Woods–Saxon [21], Morse [22], Hulthen [23], Pöschl–Teller and Kratzer [24,25] have been
studied extensively. A theoretical study of the effects of intense laser fields on the non-
linear properties of donor impurities in a spherical QD with Woods–Saxon potential was
performed within the matrix diagonalization method and in the effective mass approxima-
tion [21]. The authors considered several configurations of the barrier height, the dot radius,
the barrier slope of the confinement potential and the incident intense laser radiation, find-
ing that all these factors can influence the nonlinear optical properties strongly. Within the
framework of perturbation theory and variational method, Hayrapetyan et al. [22] calcu-
lated the electronic states and optical properties of CQDs with Morse confining potential
made of GaAs in the presence of parallel electrical and magnetic fields. A generalized
Hulthen potential has been used in the study of the electron-related linear and nonlinear
optical properties in spherical QDs by Onyeaju and co-workers [23]. The advantage of
the proposed potential and the approximations considered by the authors is that it is
possible to obtain an analytical solution for the eigenvalue differential equation in terms of
hypergeometric-type functions. Among the multiple advantages of the study of spherical
systems is the simplicity for the solution of differential equations, particularly in the ab-
sence of electrostatic interactions. In general, spherical systems involve only the solution of
a one-dimensional differential equation associated with the radial coordinate. Spherical
symmetry also facilitates boundary conditions in regions of interfaces between well and
barrier materials.

In the case of the CQDs reported in Refs. [14–20], the following observations and
comments should be taken into account. In most cases, researchers consider an infinite
confinement potential either in the axial direction or in the radial direction. This allows
the investigator to decouple the eigenvalue differential equation into two parts, one radial
and one axial; in this case there is no need to establish mathematical approximations to solve
the eigenvalues problem. This infinite potential approximation is good when the physical
system corresponds, for example, to a CQD made of a semiconductor that is surrounded
by a vacuum or to a CQD made of a semiconductor surrounded by another material whose
energy gap is significantly higher. The same kind of separation of differential equations for
the radial and axial parts has been established by most researchers who have considered
CQD with finite confinement potentials. In this case, the approximation is more or less
good when the QD dimensions are large enough in such a way that the electron wave
functions are essentially confined to the QD region. The approximation collapses and
leads to dramatically relevant errors when the QD dimensions are in the same order of
magnitude or less than the effective Bohr radius of the dot material.

To avoid the boundary problems associated with the region where the cylindrical wall
connects with the two planes in a CQD, most researchers resort to using an infinite confining
potential on either the cylindrical wall or the two plane walls that are perpendicular to
the axial axis. This, again, taking into account the azimuthal symmetry of the problem,
allows us to separate the 2D differential equation (which has radial and axial parts) into
two decoupled differential equations, again finding simple solutions to the eigenvalue
problem [14–20]. This is a much less realistic problem than the one where the confining
potential is infinite in all spatial directions of the QD boundary. To address the complete
problem of a QD surrounded by a material that provides a finite potential barrier, it is then
necessary to resort to methods that allow solving the eigenvalue equations considering
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the correct form of the boundary conditions. In general, it is possible to resort to numerical
methods where the differential operators are discretized in the space both inside and
outside the QD region. Among the useful numerical methods, we can mention the finite
difference method and the finite element method (FEM). In those cases where there are
singularities associated with electrostatic potentials, for example, mesh refinement can be
used to be able to adequately account for the particularities of the problem. These methods
simplify the inclusion of effects such as spatial variation of the effective mass and dielectric
constants that are associated with different semiconductor materials for both the dot and
barrier regions.

In this context, taking into account all the problems mentioned above concerning
the dot-barrier boundary conditions and the spatial variations of effective mass and dielec-
tric constant, in this article we have decided to study the combined effects of an externally
applied electric field as well as the size and geometric shape on the electronic and op-
tical properties of the CQD ensemble, formed by the selection of some hyperbolic-type
potentials [26,27] in the axial direction. Initially, we will consider an infinite axial potential
combined with a finite radial potential but, in general, the article will be devoted to the con-
sideration of finite confining potentials in both the radial and axial directions. In that sense,
we will resort to the FEM to solve the eigenvalue differential equations. Using the advan-
tages of the FEM, we will take into account the effects of spatial variation in the effective
mass. Furthermore, we will present a theoretical analysis of the inter-subband absorption
coefficients including contributions of linear and nonlinear terms for the electron confined
within these potentials. The paper is organized as follows: Section 2 contains the theoretical
description, the obtained results are discussed in Section 3 and, finally, the conclusions are
given in Section 4.

2. Theoretical Model

We consider a CQD that has different hyperbolic-type axial potentials combined with fi-
nite step-like radial potential under the effects of an axial applied electric field. Considering
a position dependent effective mass and the conduction band effective mass approximation,
the Hamiltonian in the cylindrical coordinates for the system under the electric field is as
follows [15–18,28–30]

H = − h̄2

2

(
∂

∂ρ
ûρ +

1
ρ

∂

∂θ
ûθ +

∂

∂z
ûz

)
·
(

1
m∗(~r)

)(
∂

∂ρ
ûρ +

1
ρ

∂

∂θ
ûθ +

∂

∂z
ûz

)
+ V(~r) + |e| F z . (1)

The corresponding Schrödinger equation is given by

H ψ(ρ, θ, z) = E ψ(ρ, θ, z) . (2)

In Equation (1), e is the electron charge and F is the strength of the electric field,
which is applied parallel to the growth direction (z-axis). Additionally, m∗(~r) and V(~r)
are the position-dependent electron effective mass and confinement potential, respectively.
In this study, we deal with a cylindrical heterostructure where the axial symmetry is
preserved both for the effective mass and confinement potential. Consequently, the wave
function in Equation (2) can be written as ψ(ρ, θ, z) = ϕ(ρ, z) exp (i l θ), where l is an integer
number. Under such condition, Equation (2) reduces to [31]{

− h̄2

2

(
∂
∂r ûr +

∂
∂z ûz

)
·
(

1
m∗(r,z)

)(
∂
∂r ûr +

∂
∂z ûz

)
+ h̄2 l2

2 m∗(r,z) + V(~r) + |e| F z
}

ϕ(ρ, z)

= E ϕ(ρ, z) .
(3)

The functional forms of the confinement potential and electron effective mass are
given by

V(ρ, z) =
{

Vn(z), ρ ≤ R ,
V0, ρ > R ,

(4)
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and

m∗(ρ, z) =

{
m∗n(z), ρ ≤ R ,
m∗AlxGa1−x As, ρ > R , (5)

where

Vn(z) = A
sinhr( z

k )

coshs( z
k )

+ B . (6)

Here, R is dot radius and k is related to the dot length. V0 is the depth of the con-
finement potential between the dot and barrier regions. The constants A, B, r and s are
chosen in order to provide several axial confinement potentials. In this work we deal with
the following axial potentials, which can give rise to finite or infinite confinements and
single or double structures:

V1(z) = V0 sinh2
( z

k

)
, (7)

V2(z) =
{

V0 sinh2( z
k
)
, if |z| ≤ 0.8813 k ,

V0, elsewhere ,
(8)

V3(z) = −V0
1

cosh2( z
k
) + V0 , (9)

and

V4(z) = −4 V0
sinh2( z

k
)

cosh4( z
k
) + V0 . (10)

For example, the potential V1(z) (V2(z)) represents an infinite (finite) single QW
potential. Furthermore, V3(z) corresponds to the modified Pöschl–Teller potential for
(r, s) = (0, 2), and V4(z) represents a double QD for (r, s) = (2, 4). Note that all the po-
tentials have been shifted in such a way that the bottom of the potential corresponds to
the zero of the energy.

Considering that the dependence of the potential barrier Vn on the aluminum concen-
tration x is given by Vn = a (b x + c x2), in order to find the z-dependence of the effective
mass in Equation (5), m∗n(z), we use the following expression to connect the spatial variation
of the aluminum concentration and the potentials given by Equations (7)–(10):

x(z) =
−b +

√
b2 + 4 c Vn

a

2 c
, (11)

where Vn(z) in Equations (7)–(10) are given in meV with a = 0.658, b = 1155 meV
and c = 370 meV [5]. Once the z-dependence of the aluminum concentration is obtained,
the effective mass for the electron in Equation (5) is given by

m∗n(z) = mGaAs + (mAlAs −mGaAs) x(z) , (12)

where mGaAs = 0.067 m0 and mAlAs = 0.124 m0 (m0 is the free electron mass) [5].
The local droplet epitaxy (LDE) technique allows us to obtain structures of GaAs

surrounded by AlxGa1−xAs with axial symmetry with zero or almost zero strain effects;
see, for instance, Stemmann et al. [32], and references therein. Once the nano-hole is
obtained, a growth process of alternate layers of AlxGa1−xAs can be started by controlling
the value of the x-concentration of aluminum in such a way that a desired potential profile
can be achieved. In this sense, we want to emphasize that the potentials that we have
modeled in this article via Equations (7)–(10) are perfectly plausible from the experimental
point of view.

Due to the form presented by Equation (4), it can clearly be seen that Equation (3) is
not separable. That means that, in general, from Equation (3), it is not possible to obtain two
independent differential equations for the ρ- and z-coordinates. In the case of Equation (7),
where it can be taken into account that the potential along the z-direction diverges, it is not
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very wrong to consider the approximation V(ρ, z)∼Vρ(ρ) + V1(z), with Vρ = 0 for ρ ≤ R
and Vρ = V0 for ρ > R. Thus, in particular, we can write ϕ1(ρ, z) = N h1(ρ) h2(z), where
N is the normalization constant. In this case, assuming that the effective mass is constant
throughout the structure (it can be considered that the mass throughout the structure corre-
sponds to the value of the QD region, m∗GaAs), we obtain from Equation (3) the following
two differential equations:[

− h̄2

2 m∗GaAs

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ

)
+

h̄2 l2

2 m∗GaAs
+ Vρ(ρ)

]
h1(ρ) = Eρ h1(ρ) (13)

and [
− h̄2

2 m∗GaAs

∂2

∂z2 + V1(z) + |e| F z

]
h2(z) = Ez h2(z) . (14)

Considering l = 0 (corresponding to the ground state), the ground state eigenfunction
associated to the Equation (13) is given by [33,34]

h1(ρ) =

{
J0(k0 ρ), ρ ≤ R ,
J0(k0 R)
K0(q0 R)K0(q0 ρ), ρ > R ,

(15)

where J0 and K0 are the Bessel functions of the first kind and modified Bessel functions,

respectively. Here, k0 =
(

2 m∗GaAs
h̄2 E1

ρ

)1/2
and q0 =

[
2 m∗GaAs

h̄2

(
V0 − E1

ρ

)]1/2
. The energy

associated to the radial confinement, E1
ρ, is obtained from the continuity condition at

the point of r = R of the h1-wave function and its first derivative. To solve the Equation (13),
we used the diagonalization method by choosing orthonormal base functions that are
solutions of an infinite square QW with L-width [35–37]. The value of L is determined
according to the convergence of the energy eigenvalues. Once the energies associated with
the ground state have been obtained for h1 in Equation (15) (E1

ρ) and the different solutions
for the lower energies in Equation (14) (En

z , n = 1, 2, 3, . . . ), the energy of the lowest states
with l = 0 corresponding to ϕ1 are given by En

1 = E1
ρ + En

z with n = 1, 2, 3, . . . .
Taking into account that, in general, the potentials in Equation (3) cannot be written

as a sum of two independent terms associated with the radial and axial coordinates,
the solution of Equation (3) necessarily involves a process of solving a two-dimensional
eigenvalue differential equation. In our case, we have decided to implement a numerical
calculation using the finite element method (FEM). In this case, we resort to the COMSOL-
Multiphysics licensed software and particularly to the two-dimensional axi-symmetric
module [38–44].

Figure 1a shows the scheme of the structure used to solve the two-dimensional eigen-
value differential equation, Equation (3), using the finite element method. Figure 1b shows
the mesh used with its refinement in the QD region to implement the finite element method.
The 3D cylindrical structure is obtained by rotating the rectangular region around the z-axis.
The Dirichlet conditions are imposed on the sides AB, BC and CD corresponding to a rect-
angle of dimensions L1 = 40 nm and L2 = 60 nm, which is large enough to guarantee
the convergence of at least 15 states for each value of l = 0,±1,±2,±3. A fine mesh with
double refinement in the QD region is considered. The parameters for the mesh used in this
study in the calculation of FEM are: 3135 triangles, 201 edge elements, 8 vertex elements,
0.4333 for the minimum quality of elements, 0.899 for the average quality of elements,
0.1121 for the ratio of element area and a mesh area of 2400 nm2.
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(b)

D C

B

L2

R

z

k

L1

A

(a)

F

Figure 1. Schematic of the structure used to solve the two-dimensional eigenvalue differential
equation, Equation (3), using the finite element method (a). In (b), the mesh used with its refinement
in the QD region to implement the finite element method is shown. F represents the applied
electric field.

Now that the eigenvalues and eigenfunctions of the electron in the quantum dot are
known, we can proceed to calculate the optical properties of the CQD with different hyperbolic-
type axial potentials. By employing density matrix formalism and the perturbation expansion
method, the first order linear, the third order nonlinear and the total absorption coefficient (AC)
terms for transitions between any two energy levels are found as follows [45–50], respectively:

β
(1)
1→ f (ω) = ω

√
µ0

εr ε0

|M1 f |2 σv h̄ Γ1 f

(E1 f − h̄ ω)2 + (h̄ Γ1 f )2 , (16)

β
(3)
1→ f (ω, I) = −ω

√
µ0

εr ε0

(
I

2 nr ε0 c

) |M1 f |2 σv h̄ Γ1 f
[(E1 f−h̄ ω)2+(h̄ Γ1 f )2]2

×
[

4 |M1 f |2 −
|M f f−M11|2 [3 E2

1 f−4 E1 f h̄ ω+h̄2(ω2−Γ2
1 f )]

E2
1 f +(h̄ Γ1 f )2

]
,

(17)

β(ω, I) =
19

∑
f=2

(
β
(1)
1→ f (ω) + β

(3)
1→ f (ω, I)

)
, (18)

where σv is the carrier density in the system, µ0 and ε0 are the vacuum permeability
and permittivity, respectively, εr is the GaAs QD permittivity, nr =

√
εr is the GaAs QD

refraction index, E1 f = E f − E1 is the energy difference between first three electronic states,
Mi j = 〈ψi|e z|ψj〉 is dipole moment matrix element (note that for discussion purposes,
the Mi j = Mi j/e parameter will be used), Γ1 f is the relaxation rate which equals to
the inverse relaxation time T1 f , c is the speed of the light in free space and I is the incident
optical intensity, which is defined as I = 2 nr

µ0 c |E(ω)|2. In the case of relative changes of
the refraction index coefficient, the corresponding expressions are

∆n(1)
1→ f (ω)

nr
=

σv |M1 f |2

2 ε0 n2
r

E1 f − h̄ ω

(E1 f − h̄ ω)2 + (h̄ Γ1 f )2 , (19)
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∆n(3)
1→ f (ω,I)

nr
= − µ0 c I σv |M1 f |2

4 ε0 n3
r

E1 f−h̄ ω

[(E1 f−h̄ ω)2+(h̄ Γ1 f )2]
2

×
[

4 |M1 f |2 −
|M f f−M11|2

E2
1 f +(h̄ Γ1 f )2

{
E1 f (E1 f − h̄ ω)− (h̄ Γ1 f )

2 − (h̄ Γ1 f )
2 (2 E1 f−h̄ ω)

(E1 f−h̄ ω)

}]
,

(20)

and
∆n(ω, I)

nr
=

19

∑
f=2

∆n(1)
1→ f (ω)

nr
+

∆n(3)
1→ f (ω, I)

nr

 . (21)

3. Results and Discussion

In our calculations, the following parameters have been used: ε = 13.18, nr = 3.6, T1 f =

1.0 ps, Γ1 f = 1/T1 f , µ0 = 4π × 10−7 H/m, ε0 = 8.85× 10−12 F m−1, I = 1.5× 108 W m−2

and σv = 3.0× 1022 m−3. Additionally, V0 = 0.658 (1155 x + 370 x2)meV, with x = 0.3.
In Figure 2, our findings are reported for the lowest energies for a confined electron

within the CQD as a function of the simultaneous variation of the k-width in the axial
direction and the R-radius in the radial direction (note that k = R). Calculations are for zero
applied electric field and using the V1(z)-model for the axial infinite confinement potential
(see Equation (7)). In Figure 2a,b, the solid lines correspond to the results obtained by
the solution of the full two-variable V(ρ, z) confinement potential. In Figure 2a, the five
lowest solutions are reported for each l = 0,±1,±2 value. In Figure 2b, the lowest five
states are reported for l = 0. The full symbols in Figure 2b are obtained by the approx-
imation V(ρ, z) = Vρ(ρ) + V1(z), using only the first solution for the radial differential
equation. In Figure 2b, the (i,j) labels identify the number of wave function antinodes,
both in the radial (i) and axial (j) directions. In this case, we have used the same value
of the GaAs effective mass in both the dot and barrier regions. Note that due to the dot
symmetry, in Figure 2a, the states with l-positive and l-negative are degenerate. As k
and/or R increases, the decreasing character of all of the energies taken into consideration
is the result of the significant increase in the QD’s volume due to the weak confinement.
As the dimensions of the QD decrease, the number of confined states becomes smaller.
For k = 10 nm, there are six confined states, whereas for k = 5 nm, there are two con-
fined states, with one of them very close to the limit of the finite radial potential barrier.
The appearance of crossovers between energy states at certain values of the k and/or R
parameters is based on the changes in the volume dominated by the increase in the radial
direction of QD. In Figure 2b, we have selected the states with l = 0 for our axis-symmetric
model; see Equation (3). The solid dots in Figure 2b correspond to the calculation done
through Equations (13) and (14) with the condition l = 0 that gives rise to the radial solution
in Equation (15). For the transcendental equation that appears from involving the boundary
conditions in Equation (15), only the first solution has been used. Therefore, the different
energy levels shown with solid symbols come from considering the different solutions of
Equation (13) combined with the first solution associated with Equation (15). It is evident
that the solutions of both models (solid lines and full symbols) coincide with differences of
less than 0.001 meV. This is justified by the fact that the axial potential of the V1(z) model
(see Equation (7)) diverges to infinity as k increases. This is what allows us to write the total
potential as a sum of two independent potentials and allows the total wave function to be
written as the product of two independent functions in the radial and axial directions. It is
clear from Figure 2b that regardless of the values of k = R, the ground state always has one
antinode in the radial and axial directions. For k = R = 10 nm, the first excited state with
l = 0 has one antinode along the radial direction and two along the axial direction, while
for k = R = 20 nm, the first excited state with l = 0 has two antinodes along the radial
direction and one along the axial direction.
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Figure 2. The lowest energies for a confined electron within the CQD as a function of the simultaneous
variation of the k-width in the axial direction and the R-radius in the radial direction. Calculations
are for zero applied electric field and using the model V1(z) = V0 sinh2( z

k
)

for the axial confinement
potential (see Equation (7)). In (a,b), the solid lines correspond to the results obtained by the solu-
tion of the full non-separable V(ρ, z) confinement potential (this means that they are obtained by
solving the 2D-axi-symmetric differential equation). In (a), the five lowest solutions are reported for
l = 0,±1,±2. In (b), the full symbols are obtained by the approximation V(ρ, z) = Vρ(ρ) + V1(z) us-
ing only the first solution for the radial differential equation. In (b), the (i,j) labels identify the number
of wave function antinodes, both in the radial (i) and axial (j) directions.

Considering that, in this work, the incident radiation used to generate the transitions
between confined states has z polarization, that is, along the axial axis (see the dipole matrix
element defined after Equation (18)), it is evident that when considering transitions from
the ground state (which have only one antinode along the radial and axial directions),
the only ones allowed (such asMi j 6= 0) are those where the final state also has the same
number of antinodes along each of the two x and y directions of space that give rise to
radial confinement. In that sense, it is clear that for the calculation of the optical properties
using Equations (16)–(21), only transitions between states with l = 0 should be considered,
both for the initial and final states.

For the CQD under consideration in the absence and presence of the electric field,
the variation of the axial confinement potentials given by Equations (8)–(10) and the wave
functions related to the first four electronic levels versus the z-coordinate are given in
Figure 3a–f. In the absence of the electric field, all axial potentials are symmetric, while
the applied electric field causes the bending of the structure and break down of the symme-
try. As seen in Figure 3c, the V4(z) axial finite potential of the CQD represents the double
QW, while the other axial finite potentials represent the hyperbolic single QWs. Particularly,
the potential shown in Figure 3a behaves as a nearly parabolic model of finite height.
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In Figure 3c, when there is no electric field, the ground state is two-folded degenerate and
the probability of finding of the electron in both wells in the axial direction is the same,
whereas the axially applied electric field causes the bending of the well, leading to a dis-
appearance of the degeneracy and electrons locating mainly in the left well. Furthermore,
as seen in this figure, the electric field effect for the well with the V4(z), which has a larger
effective length, is stronger compared to the single QWs in the axial direction. In Figure 3d,
the bottom of the quasi-parabolic potential well is located at z = −2.2 nm and has an en-
ergy of −5.58 meV. Clearly, the electric field effect on this type of quasi-parabolic potential
is responsible for shifting the bottom of the potential well without essentially changing
the shape of the spatially variable potential, mainly in the dot region. This means that
the energy levels are displaced by the effect of the electric field, but the energy distance
between them remains constant. This will later be seen as a quasi-overlap of the resonant
peaks in the optical properties under the presence or absence of an electric field, particularly
for the case of the finite potential V2(z). In our calculation model, we have used a cylindri-
cal region of height L2 = 60 nm where we apply the Dirichlet boundary conditions (see
Figure 1a). This allows us to guarantee that all the solutions of the eigenvalue differential
equation in the presence of electric field, applied along the axial direction, correspond to
stationary states whose energies are real numbers. From the general solution of the differen-
tial equation, confined states associated with the outside region of the structure will appear,
that is, within the potential barrier region, which comes from the infinite confinement that
is imposed on the outside border shown in Figure 1b, a situation that will be seen later
in our further results.
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Figure 3. The z-dependent axial finite confinement potential (Vn(z)) and the wave functions along
the z-axis of first four bound-states (ϕi(ρ = 0, z)) for a confined electron in a CQD with k = R = 15 nm.
Results are for zero (a–c) and 50 kV/cm (d–f) applied electric field, with l = 0. Calculations are
reported for the three considered axial finite confinement potentials: V2(z) (a,d), V3(z) (b,e) and V4(z)
(c,f). Each wave function is vertically shifted such that its position on the energy scale is given by its
corresponding eigenvalue. In panel (c), there are four pairs of doubly degenerate states, one with
even symmetry (solid line) and the other with odd symmetry (dotted line) with respect to the point
z = 0. The labels in each figure indicate the states in order of increasing energy.

We have repeated the calculations considering open boundaries at z = ±L2/2. In this
case, the number of solutions of the Schrödinger equation is significantly higher for energies
below the height of the potential barrier. It is important to say that now all the obtained
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eigenvalues are complex numbers where the real part corresponds to the energy of the state
and the imaginary part provides information about the corresponding state lifetime. In this
second procedure in the set of solutions, we find the same wavefunctions (solutions) re-
ported in Figure 3e–f, but with very low oscillations towards the left region of the structure.
The imaginary parts of the eigenvalues are in this case very small. Considering that the life-
time of the states is proportional to the inverse of the imaginary part of the eigenvalue,
we have obtained that, again considering open boundary conditions, the states are quasi-
stationary with a very long lifetime. This leads us to conclude the validity of the results
presented in Figure 3e–f and to affirm that the optical properties calculated in this article
(see the following) are correct.

Figure 4a–f show the six lowest energy values of the electron confined within the CQD
with respect to the order of axial potentials in the Figure 3a–f as a function of the k-well width
in the axial direction and R-radius in the radial direction. Figure 5a–f shows the corresponding
energy differences between the ground state and the first five excited states (note that the k
and R parameters are taken as equal). Results in the absence (upper panels) and presence
(lower panels) of the electric field are for V2(z), V3(z) and V4(z), respectively. For all axial
finite confinement potentials, it is observed that the energies taken into consideration are
reduced by increasing the dot sizes due to the weakening of the geometric confinement.
Usually, the electric field also causes the energies to decrease. In large wells, energy levels
begin to become more sensitive to the electric field. Note, for example, that in Figure 4d,e,
the variations presented by the ground state in the range of calculated dimensions are 120 meV
and 115 meV, while in the case of Figure 4e, this variation is 184 meV. It should be noted that
the change of the energies in Figures 4a,b,d,e corresponding to the potentials V2(z) and V3(z)
versus the CQD dimensions is almost the same for the cases both with and without electric
field. Comparing Figure 4a,d, in the first, the variation of the ground state in the calculated
range is 112 meV, while in the second, it is 120 meV with a difference between the two of
8 meV. In the case of Figure 4b,e, the respective changes are 100 meV and 115 meV, with
a difference of 5 meV. Comparing Figure 4c,f the obtained values are 124 meV and 184 meV,
with a variation between them of 60 meV.
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Figure 4. The lowest six energies for a confined electron within the CQD as a function of the si-
multaneous variation of the k-width in the axial direction and the R-radius in the radial direction.
Calculations are for zero (a–c) and F = 50 kV/cm (d–f) with l = 0. The results are reported for
the three considered axial finite confinement potentials: V2(z) (a,d), V3(z) (b,e) and V4(z) (c,f).
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Figure 5. Energy difference between the lowest confined electron states (En − E1, n = 2, 3, 4, 5, 6)
within the CQD as a function of the simultaneous variation of the k-width in the axial direction and
the R-radius in the radial direction. Calculations are for zero (a–c) and F = 50 kV/cm (d–f) with
l = 0. The results are reported for the three considered finite axial confinement potentials: V2(z) (a,d),
V3(z) (b,e) and V4(z) (c,f).

The dependence of the energy difference on the dot sizes in Figure 5a,d is exactly
the same. For this analysis, only the decreasing character of the transition energies should
be taken into account as the dimensions k = R of the QD increase. Note, for example,
that in Figure 5a, the transition energy E16 increases as k = R increases from 5 nm to
11 nm and then decreases. The increasing part of the transition energy is due to the fact
that, in that part of the process, the one that corresponds to the ground state confined to
the QD participates as the initial state; this state always decreases with the dimensions of
the QD. The process is carried out towards a final state that, in said range of dimensions
of the structure, always corresponds to an unbound state of the QD, but is confined to
the cylindrical region of dimensions π L2

1 L2; see Figure 1. The same occurs for the other
lower order transitions that are increasing in energy, while the final state corresponds
to states not bounded to the QD. The electric field effect on energies corresponding to
double QW potential given by V4(z) is more dominant in contrast to single QWs due to
the large effective well width. Except for the V4(z) double well potential, the difference
between the related energy levels for the other two single well potentials, V2(z) and V3(z),
is a decreasing function of the dot size in the presence of the electric field. This is already
expected, since the electric field generally causes the electronic states to shift to lower
energies. The electric field effect on double-well potential, in Figure 5c,f, is different with
respect to the single well potentials. (i) In the absence of the electric field, E12 decreases
down to k = 10 nm, and will later become zero due to the two-folded degenerate of
ground state energy. (ii) In the presence of the electric field, the degeneracy disappears
and E12 firstly decreases; then, it turns on E13, which increases with the dot dimensions.
As is known, applying an external electric field causes distortion of the symmetries of
the heterostructures or, conversely, in an asymmetric heterostructure, symmetry can be
regained. In this sense, the electric field can be used to increase the magnitude of the electric
dipole moments associated with optical transitions and cause red shifts in the resonant
structures of optical spectra, as electron states generally shift to lower energies.
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In Figure 6a–f, we present the reduced square of the dipole matrix element between
the lowest confined electron states (M2

1n/e2, n = 2, 3, 4, 5, 6) within the CQD as a func-
tion of the simultaneous variation of the k-width in the axial direction and the R-radius
in the radial direction. Calculations are for zero and 50 kV/cm applied electric field with
l = 0. The results are reported for the three considered finite axial confinement potentials as
in previous figures. It is observed from the different panels that there will be essentially only
one allowed transition and that, in general, this visible transition is made up of the mixture
of transitions between different states depending on the value of the k = R parameter.
This effect is the result of the crossing between states in Figure 4, where an exchange of
symmetries of the wave functions is presented. The systematic increase in dipole matrix
elements with increasing dimensions of the QD is associated with a greater spatial exten-
sion of the wave functions within the QD. The oscillatory character of M2

16 in the range
of k = R > 15 nm in Figure 6c is compensated for by the appearance of the term M2

15.
Between both transitions, the total value of the dipole matrix elements responsible for
the optical properties is compensated. When comparing the different results, it can be seen
that the system that is most sensitive to the effects of electric fields is that of the potential
V4(z), which is consistent with a greater spatial extension of the structure along the axial
direction and which allows the electric field effects to be strengthened.
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Figure 6. Reduced square of the dipole matrix element between the lowest confined electron states
(M2

1n/e2, n = 2, 3, 4, 5, 6) within the CQD as a function of the simultaneous variation of the k-width
in the axial direction and the R-radius in the radial direction. Calculations are for zero (a–c) and
F = 50 kV/cm (d–f) with l = 0. The results are reported for the three considered finite axial
confinement potentials: V2(z) (a,d), V3(z) (b,e) and V4(z) (c,f).

To see the effect of structure dimensions, geometric shape and electric field on the to-
tal optical absorption coefficient (AC) and on the total relative changes of the refraction
index coefficient (RIC) of CQD with different axial potentials, we present the optical co-
efficients in Figure 7a–f. Solid lines are for zero electric field, whereas dotted lines are
for F = 50 kV/cm. We choose dimensions of the structures such that the existence of
at least two states confined to the interior of the QD is guaranteed. We can explain our
results considering the well-known properties of the optical properties such as: (i) the AC
peak positions (or the zero value of the RIC) shift towards blue (red) due to the increasing
(decreasing) of the energy difference between the respective energy levels; (ii) the peak
amplitude of ACs and RICs increase due mainly to the increase in dipole matrix element;
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and (iii) in the case of the AC, the transition energy between participating states is also
relevant, since it directly affects the magnitude of the resonant structure. The results
show the following characteristics. In general, all the optical coefficients present a redshift
as the value of the k and/or R parameter increases, which is consistent with a decrease
in the transition energy as the volume of the structure increases. The structure that is
less sensitive to the effects of the electric field, in fact, almost imperceptibly, is the one
corresponding to the potential V2(z); see Figure 7a,d. Despite being a finite potential,
clearly, the system presents a quasi-parabolic potential within the structure. Note from
Figure 3a,d that the presence of the electric field implies a red shift of the energies, but
the energy difference between levels, or transition energy, remains essentially constant.
The increasing behavior of the magnitude of the different structures in the RICs as the di-
mensions of the QD increase is in accordance with the increase of the dipole matrix elements
in Figure 6a–f. The appearance of two structures in the ACs of Figure 7a,b in the regimes
of large k = R shows that the third-order nonlinear term acquires increasingly important
values in these systems. Additionally, it can be seen in the same two figures that, although
the dipole matrix element grows with structure dimensions, the resonant structures de-
crease due to the redshift of the spectra or the diminishing of transition energies. It is clear
that the resonant structures in ACs depend simultaneously on the transition energy and
on the dipole matrix elements. In general, far from the RIC zero, the optical coefficient tends
asymptotically to zero, as shown by the results in Figure 7d,e. However, that is not the case
in Figure 7f. This is explained by the fact that the transition between quasi-degenerate
states has a significantly important value, as shown by the insets in Figure 7c,f. Finally,
as stated before, the electric field implies a red shift of the resonant structures of the ACs
and RICs, this effect being much more visible in the case of the V4(z) potential.
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Figure 7. Optical absorption coefficient (a–c) and relative changes of the refraction index (d–f)
as a function of the incident photon energy for a confined electron within the CQD. Calculations
are for several values of the k = R parameters for zero (solid lines) and F = 50 kV/cm (dotted
lines), considering transitions between l = 0 states. The results are reported for the three consid-
ered axial finite confinement potentials: V2(z) (a,d), V3(z) (b,e) and V4(z) (c,f). The insets in (c,f)
show the optical coefficients for k = R = 19 nm for the energy photon between zero and 90 meV
in order to see the transitions between states that are almost degenerated. (a,d) show the scales for
the optical coefficients.
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4. Conclusions

In the present study, we have investigated the absorption coefficients and relative
changes in the refractive index for the inter-subband transitions between the lower-lying
allowed energy levels in cylindrical quantum dots that have different hyperbolic-type axial
potentials. The applied electric field effects have been considered. The results obtained
show that the geometric shape of the structure and the applied external electric field are
very effective on the electronic and optical properties. To control the energy spectrum
in cylindrical quantum dots, systems with two structure parameters such as radius and
cylinder height, except for the shape of axial potential, provide an advantage for researchers,
and this advantage provides more possibilities to investigate the optical properties of
nanostructures. As can be seen from the results obtained, the CQD that has double QW
potential in the axial direction is most sensitive to the effects of electric fields, due to
a greater spatial extension of the structure in the axial direction. The study of the shape
effect of the quantum dots under external fields on the electronic spectrum and optical
responses plays an important role in semiconductor physics, because it can simulate the real
situation, and greatly modulate and optimize the performance of optoelectronic devices
based on low-dimensional heterostructures. Among the findings that have appeared in this
research, we can summarize the following. (i) The separation of variables for the radial
and axial coordinates is a good approximation when considering heterostructures whose
dimensions significantly exceed the effective Bohr radius of the QD material. (ii) In general,
for all the axial confinement potentials that have been considered, the energy of the confined
states are decreasing functions of the k-geometric parameter. (iii) The presence of energy
degeneracies gives information on symmetry exchanges between optically excited states,
so it is not easy to predict the selection rules for the dipole matrix elements in each of
the studied potentials. (iv) The resonant structures of the AC and RIC present red-shift
when the k-parameter is increased. (v) Finally, in the case of the V2 potential, the presence
of the applied electric field generates a small blue-shift of the resonant structures of the AC
and RIC, a situation that is opposite and ostensibly greater in the case of the V3 and
V4 potentials.

We have to stress that this research is of a theoretical and predictive nature, and that
we hope that it will serve as a motivation for experimental groups to develop these types
of axis-symmetric physical systems. Additionally, this research could motivate further
developments that consider, for example, (i) effects of shallow donor and/or acceptor
impurities with unintentional doping along the structure growth direction, (ii) exciton
states in single and double QWS, (iii) effects of magnetic fields applied perpendicularly
and parallel to the QW growth direction and (iv) other optical properties related to electron,
impurity, and exciton states such as electromagnetically induced transparency and second
and third harmonic generation. Finally, we want to emphasize that our model allows us to
study systems with confinement in two or three dimensions such as core/shell quantum
wires and core/shell quantum dots, including interdiffusion effects at the interfaces.
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