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A direct sol-gel technique was utilized to produce rGO-Fe3O4-TiO2 ternary hybrid nanocomposites to produce
ethylene glycol (EG) based stable nanofluids, characterized by energy-dispersive X-ray, X-ray dispersion, Fourier
transform infrared spectroscopy, scanning electronmicroscopy, and zeta potential. Viscosity and density analysis
were investigated by varying temperatures (25 to 50 °C), and wt% (0.01 to 0.25). For 0.25 wt% at 50 °C, density
increased by 2.45%, and viscosity by 133.5%. The development of a predictionmodel by processing the variational
parameterswithmachine learning and studyingproperties such as characterization, stability, and density of rGO-
Fe3O4-TiO2 hybrid nanofluids has provided an unprecedented study in the literature. The nonlinear nature and
volume of data generated by the subsequent experimental studywere difficult tomodel using traditional analyt-
ical methods. As a result, for the creation of prognostic models, advanced machine learning techniques such as
Boosted Regression Tree (BRT), Support Vector Machine (SVM), and Artificial Neural Networks (ANN) was ap-
plied. These prediction models' prognostic skills and uncertainty were assessed using statistical indices, Theil's
statistics, and Taylor's diagram. The R-value for the BRT-based density (0.9989) and viscosity (0.9979) prediction
models was higher than that of the ANN-based and SVM-based prediction models. In developed density models,
Theil's U2 uncertainty was as low as 0.0689, 0.0775, and 0.0981 for BRT, ANN, and SVM, respectively. As a conclu-
sion, it is stated that BRT, ANN, and SVM can accurately imitate the laboratory-based assessment of density and
viscosity values of ternary hybrid nanofluids over a wide temperature and nanoparticle concentration ratio
range. On the other hand, the BRTwasmarginally better thanANNbutmuchbetter than SVM. The current study's
findings are appropriate for applications needing long-term stability and improved heat transfer performance.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Conventional heat transfer liquids such as water (H2O), ethylene
glycol (EG), and oil compared to solid particles show lower thermal
conductivity, which is clear from the thermal properties [1,2]. Scholars
and researchers have performed investigations to augment the
thermophysical properties of traditional fluids [3,4], and enhance heat
able and Renewable Energy
2, United Arab Emirates.
ase.nust.edu.pk (Z. Said).
transfer using turbulators [5]. Choi [6], in 1995, coined a novel
class of nanofluids as an enhanced alternative to improve thermal
performance. Nanofluids are prepared by suspending nanoparticles
such as metallic, carbides, ceramics, and non-metallic of size around or
smaller than 100 nm in a base fluid [7,8]. The excellent thermal perfor-
mance and less agglomeration of nanofluids are observed compared to
conventional fluids [9,10]. The larger surface area of nanoparticles
improves the nanofluids' thermal performance and enhances the sus-
pension stability as well [11,12]. Several researchers reported higher
thermal conductivity of traditional fluids with a minimum particle
loading [13,14]. Although, the studies on rheological properties such
as viscosity and density are significant parameters to reveal fluidic
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performance. Many investigations have been studied on enhancing
nanofluids' properties, but it is still not enough [15,16]. Further research
is needed to analyze the concerns and progressions of various factors on
nanofluids [17,18]. The nanofluids have been utilized in numerous ap-
plications such as electronics [19], solar energy [20–22], nuclear reac-
tors [23,24], automotive industry [25,26], medical [27], minimum
quality lubrication [28,29], and heating and cooling of buildings [30].

The thermophysical performance of hybrid nanofluids is determined
by viscosity and ambient air impact due to heat transfer when stopped
at the streamline flow. Further research is performed in this subject,
and yet requires significant attention [31]. Sundar et al. [27] investigated
the friction barrier and heat transmission performance of MWCNTs/
Fe3O4 hybrid type nanofluid via a round tube experimentally and
determined that a declining trend in viscosity was managed. Eshgarf
et al. [32] observed the impact on the viscosity of temperature and
volume concentration of water-ethylene/MWCNT-SiO2 nanofluid and
observed non-Newtonian behavior. The viscosity is reduced by increas-
ing the temperature.

Literature signifies that graphene nanofluids can enhance thermal
conductivity compared to other nanofluids because graphene nanopar-
ticles show excellent thermal conductivity [33]. It is a promising mate-
rial because of the high mechanical strength and excellent favorable
thermophysical characteristics of graphene, making it a remarkable
candidate for nanofluids [34]. Graphene can be easily synthesized as
nanoparticles, and the procedure is moderately cost-efficient. Few
alterations in the graphene characteristics have been demonstrated in
literature because of different manufacturing techniques to fabricate
single or multi-layer graphene, such as graphene oxide layer exfoliation
and mechanical cleavage and chemical vapor growth, etc. [34,35]. Re-
searchers examine graphene layers for increasing the heat transfer abil-
ity of H2O-based fluids [36,37]. Chemical vapor deposition is an efficient
method to accumulate perpendicular positioned graphene nanosheets
[31] and weak packing graphene density [38]. Investigations have es-
tablished enhanced heat transfer ability of single-layer graphene,
which is more significant than CNT, due to the excellent stability
and higher thermal conductivity, which is one of the main challenges
among many, which must be analyzed precisely. The use of funct-
ionalization techniques such as acid treatment and amino function, bet-
ter ultra-sonication, and solvent to prepare stable graphene-based
nanofluids [39,40].

The rheological nature of nanofluids prepared from a diverse type of
base fluids and nanoparticles has been assessed in the literature [41,42].
Graphene (Gr) has been themost frequently utilized nanoparticlemate-
rial in nanofluids owing to superior thermal conductivity [43,44]. Yang
et al. [45] investigated the impacts of temperature ranges (20 °C to 80
°C), and particle loading concentration ranges (0 to 5.2 wt%) on
silicone's rheological oil-graphene nanofluid and observed non-
Newtonian shear-thinning behavior. A study by Li et al. [46] also com-
puted graphene nanofluid viscosity that was solvent-free and observed
that with the rising temperature from 20 to 70 °C, a reduction in viscos-
ity from 67.6 to 16.99 Pa.s was observed. Processes like mechanical
exfoliation [34], SiC procedure [47], and bottom-up fabrication from
definite organic precursors [48], certainly decrease the graphene use
for different purposes due to limited scalability and production cost
expenses.

The investigational data regarding the studies' hybrid nanofluids
density is restricted compared to other thermophysical properties
like viscosity and thermal conductivity [49]. Ho et al. [50] investigated
the hybrid Al2O3/H2O nanofluids density and MEPCM particles con-
cerning different mass concentrations at 30 °C in comparison to theo-
retical data. Yarmand et al. [51], examined the functionalized GNP–Pt
hybrid nanofluids density for different nanoparticles particle loading
concentrations such as 0.02, 0.06, and 0.1 wt% and temperatures
ranged from 20 °C - 40 °C and observed improvement in density
with the rise in concentration and decreases when temperature in-
creases, the enhancement in the density of 0.11% at a 0.1 wt%
2

concentration at 40 °C. The increase in density is attributed to the
boundary effects on the bulk fluid properties generated by the surface
of the nanoparticles, as well as the interfaces surrounding the nano-
particles, which are typically negligible. S. Askari et al. [52] examined
the effect of density concerning concentration for hybrid Graphene-
Fe3O4 and Fe3O4 nanofluids at ambient temperature. It was noticed
that fluids' density improves when the particle concentration is
increased [53]. The increase in density is insignificant at higher
nanoparticle concentrations. However, since graphene has a lower
bulk density than Fe3O4, the density of hybrid Graphene Fe3O4

nanofluids is lower than that of Fe3O4 nanofluids. Nanoparticles have
a higher density than the base fluid in both nanofluids. With no
changes in volume, nanoparticles are positioned between the layers
of the base fluid. They increase the mass of the system while
maintaining the same volume, resulting in an increase in density.

The experimental results regarding the characteristics of ternary
rGO-Fe3O4-TiO2 hybrid nanofluids show non-linear tendencies when
temperature and concentration ratios change. Furthermore, themassive
amount of data produced through experimental research was difficult
to model using traditional approaches. In a generalized scheme of
model prediction, a relationship is established between control factors
and response variables. The traditional analytical methods suffer from
poor prognostics and coupling abilities. This problem becomes more
prominent in the case of nonlinear data. Machine learning methods
prove to be superior in problem-solving based employing probability
distribution model and statistical analysis [54]. This broadens the
application scope of machine learning approaches significantly. Model
prediction methods based on artificial intelligence (AI) such as genetic
algorithm (GA), artificial neural network (ANN) [55], least-square sup-
port vector machine (LSSVM), adaptive neuro-fuzzy inference system
(ANFIS), response surface methodology (RSM) [56,57], gene expression
programming (GEP), various swarm optimization methods, and so on
are capable of handling large amounts of data to create an efficient pre-
diction model [58–60]. AI, as a trustworthy algorithm, can consider a
wide range of variables. ANNhas been used by several studies to predict
the thermo-physical characteristics of mono and binary hybrid
nanofluids, such as thermal conductivity [61,62], specific heat [63], a
viscosity [64,65], and so on. However, the use of AI-based approaches
to forecasting thermophysical characteristics and stability of hybrid
nanofluids is still in its early stages [66]. In addition, the application of
AI-based intelligent approaches to model forecasts the vast dataset of
viscosity and density over a variety of temperature and concentration
ratios would aid in the reduction of lab-based investigations [67].

Following the above-mentioned compressive literature survey, it
was observed that no research has been conducted to investigate the
rheology and density of the ternary rGO-Fe3O4-TiO2 hybrid nanofluids
proposed in this work, which necessitates careful attention utilizing
systematic and theoretical engineering techniques. In consonance
with the studies carried out in recent years, a new research direction
has emerged to eliminate the research gap to determine the thermal
and hydraulic characteristics of nanocomposites. The conspicuous side
of this study is that a novel research on ternary hybrid nanofluids
using such wide-ranging and machine learning techniques has not yet
been presented in the literature. Moreover, the comparative use of
three different machine learning methods is a driving force in demon-
strating the originality of a truly unique work. This work discusses the
characterization, stability, density, and rheology of a rGO-Fe3O4-TiO2
ternary hybrid nanofluid for the first time. The nanocomposites were
prepared using the sol-gel method, and their characterization was suc-
cessful. The thermophysical properties of hybrid nanofluids, including
rheological behavior and density, were then investigated at concentra-
tions ranging from 0.01 to 0.25 mass% and temperatures ranging from
25 to 50 °C. The study's findings may be applied to various technical ap-
plications, including cutting fluids and low-quality lubricants.

Furthermore, improvements in nanofluid velocity and density may
incur a penalty in the form of pressure loss, resulting in increased
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pumping power; hence, viscosity and densitymay be decisive consider-
ations when selecting nanofluids for applications. The proposed
nanofluid examined in this work has excellent stability and might be
utilized in a range of engineering applications (such as lubricants), as
well as other biomedical engineering and energy storage applications.
The density and viscosity density of rGO-Fe3O4-TiO2 ternary hybrid
nanofluids were model predicted using three different machine
learning techniques. In a first-of-its-kind investigation, the current
study attempts to go beyond tried-and-true ANNand assessmodern en-
semble Boosted Regression Trees and Support Vector Machines tech-
niques.
2. Experimental

2.1. Materials

Titanium (IV) butoxide precursor is used to synthesize TiO2

nanoparticles. Graphite powder (100 mesh, ≥75% min), H2SO4, HCl,
H3PO4, ethylene glycol (C2H6O2), KMnO4, and hydrogen peroxide 30%
(H2O2), where the extra chemicals employed in the nanocomposite
production. All chemicals were used by not carrying out additional
distillation, and all are obtained from Sigma Aldrich.
2.2. Preparation of ferric oxide (Fe3O4) and graphene oxide (GO)

Graphite raw powder was used while synthesizing GO by the
modified Hummers method, which was employed in the future while
preparing ternary nanocomposites [68,69]. FeSO4 and FeCl3 were
thermally decomposed in ethylene glycol with sodium acetate (NaAc)
and ethanolamine, causing Fe3O4 nanoparticles to be synthesized
[70,71]. Then, both Fe3O4 and GO nanoparticles, at 60 °C, are dried, for
about one day, and the powder forms were prepared for the sol-gel
technique to manufacture ternary nanocomposite.
2.3. Preparation of ternary nanocomposites

While synthesizing ternary rGO-Fe3O4-TiO2hybrid nanocomposites,
the simple sol-gel methodwas utilized [72]. Each elementwas obtained
at an equal weight ratio during the nanocomposite preparation. In a few
words, while nanoparticles were synthesized, 0.65 g of GO was dis-
persed in ethanol (260 mL), whereas 0.65 g of Fe3O4 was dispersed in
260 mL of ethanol individually. The mixture in question was sonicated
for one hour. After probe sonication, the two solutions were mixed,
following which the addition of 65 mL of titanium (IV) butoxide was
performed. Finally, the solution was put in a 200 mL Teflon-lined
stainless-steel autoclave and kept under nitrogen purge for ten hours
before being heated at 180 °C. Following the end of the reaction, a
greyish precipitate was obtained, its washing 3 times with ethanol,
and thenwaterwas carried out for the impurity removal. The nanocom-
posite drying was performed in a vacuum chamber at 60 °C for about
ten hours.
2.4. Characterization

The ternary nanocomposites' surface morphology was evaluated
under SEM (TESCANMIRA3XMU). Each samplewas pressed into potas-
sium bromide pellets and then employed to investigate the nanocom-
posite's functional groups using FTIR spectrophotometer (Bruker:
Tensor II) with an interval between 4000 and 500 cm−1. The structural
considerations of the nanocomposites generated were investigated
using XRD (Rigaku DMAX IIIC). To evaluate the stability of the produced
nanofluids, zeta potential valueswere acquired using a (Malvern Instru-
ments, UK) analyzer.
3

2.5. Rheological and density characterization

Ethylene-glycol and DI-water, which have well-known viscosity
values at 25 °C, are employed as calibration fluids for viscositymeasure-
ments of a variety of fluids [65,66]. To validate the measurement
method, the findings are compared to well-known viscosity values of
DI-water and ethylene-glycol given in the literature. To ensure that
the rGO-Fe3O4-TiO2nanoparticles in ethylene glycol were well
dispersed without initial agglomeration, an ultrasonic probe mixer
(Sonics & Materials Inc., USA) was used at 750 W for one hour, was
used for suspension agitation. In the suspensions, no dispersant agent
was used. Using a cone-and-plate system, each rheological measure-
ment was performed using a stress-controlled rheometer (Malvern
Kinexus Pro, UK). The cone had a diameter of 50 mm and an angle of
2°. During measurement, the cone-plate space was set at 0.05 mm.
Temperature-controlled measurements with a precision of ±0.1 °C
were made using a Peltier plate assembly. The probing of flow curves
for nanofluid viscosity based on shear rate and nanofluid viscosity de-
pending on temperature was carried out using non-linear viscoelastic
measurements. The experimentswere carried out at shear rates ranging
from 1 to 1000 s−1. The current research examined ethylene glycol-
based nanofluids' rheology by making non-linear viscoelastic measure-
ments with changing concentration and temperature.

An Anton-Paar (model DMA 4100 M) digital density meter was
utilized for the density measurement of nanofluids and ethylene glycol.
The calibration of the digital density meter was performed as a temper-
ature function utilizing deionized water and ethylene glycol at variable
temperatures. The density wasmeasured at 25 to 50 °C, at an interval of
5 °C. Every experimental density value represented an average of amin-
imum of 10 measurements. The density measurement's uncertainty
was predicted as 0.02%. Thermophysio-chemical characteristics of
ethyl glycol are presented in Table 1. Fig. 1 shows the prepared ternary
nanocomposite photographs, EG base fluid, probe sonicator, density
meter, and rheometer.

2.6. Prognostic modeling

The AI-based ANN was considered to model the density and viscos-
ity of test hybrid nanofluid. Subsequently, two modern ensemble ma-
chine learning techniques viz., Boosted Regression Tree (BRT) and
Gaussian Process Regression (GPR) were used to develop prediction
models.

2.6.1. Artificial neural network
The density and viscosity of ternary type hybrid nanofluid used in

the present investigation was model predicted using an ANN with a
feed-forward backpropagation mechanism. The proposed structure of
the neural network for density and viscosity is shown in Fig. 2(a) and
(b). In the input layer of the neural network designed for the density
model, two neurons denote two input parameters that impact the den-
sity of hybrid nanofluids. Temperature, and nanoparticle concentration
wt% were chosen as input parameters. Temperature, shear rate, and
nanoparticle concentration were the input parameters for the viscosity
model. It shows thenumber of layers in the network, the kind of transfer
function, the number of hidden layers, and the optimal number of neu-
rons.

Generally, a neural network contains multiple neurons that, when
combined, may perform any specified function to complete a job
[73,74]. Enough training data must be supplied to improve perfor-
mance. In the current study, 70% of the data was used to train the
network, with the remaining 30% split between testing and validation
of the model. The input layer (independent variables), hidden layer
(neurons, bias –B, weight –W), and output layer (neurons, bias –B,
weight –W) are the three layers that make up an ANN (expected re-
sponse). A weighted input (W × 1), a transfer function, and an output
are all present in each neuron. The neural neuron is activated by the



Table 1
Characteristics (physical and chemical) of ethylene glycol.

Ignition temperature Saturation concentration (air) Molar mass Melting point Density Boiling point pH Vapor pressure

410 (°C) 0.15 (g/cm3) 62.07 (g/mol) −13 (°C) 1.11 (g/cm3) 197.6 (°C) 6–7.5 0.053 (kPa)
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weighted sum of inputs, which is subsequently passed via a transfer
function to give a single output to the output layer. Tansig (tangent sig-
moid) and purelin (linear) activation functions are widely used in the
hidden layer and output layer. The network continues to run until a
compelling level of assessment accuracy is achieved.

2.6.2. Boosted regression tree
Boosting can build an integrated model from several basic regres-

sion tree models to offer more robust estimates of the response. This
technique differs from standard regression-based approaches, which
only produce a single “best” model. The BRT method combines the
key benefits of regression tree-based methods, such as the ability to
model non-linear complex data, the ability to automatically detect in-
teractions between explanatory variables. Also, the fact that trees are
built with variables that are useful for prediction, making BRT implic-
itly species-based. The single models in the BRT are classification and
regression trees that are iteratively fitted by randomly picking a sub-
set from the training data set. Furthermore, the single tree-based re-
gression models are improved using a boosting method, which
improves regression accuracy and overcomes the shortcomings of de-
cision tree outcomes. In general, the boosting technique is a strong
forward and stage-wise procedure for increasing the accuracy of the
final model by minimizing the predetermined loss function [75,76].
Fig. 1. Figures of rGO-Fe3O4-TiO2 nanoparticles (a), EG (b), Sonics VCX-750 Probe Sonicator (c-d
(f).

4

It is based on the building, integrating, and averaging of individual
models in an iterative process. In this study, the missing function in
the boosting approach was a minor square function. The learning
rate (LR) parameter in the BRT model determines the contribution
of each decision tree in the model's creation; the lower the number
of LR [77].

The boosting technique develops the final model in a forward step,
gradually adding trees to the model and re-weighting the data to
strengthen the prior bad tree predictions. Outliers are separated into a
node and have no influence on splitting; therefore, the technique is un-
affected bymonotonic changes of explanatory variables. The user deter-
mines the complexity of the decision tree (i.e., the total number of trees
and nodes in a tree). The residual value is calculated at the end of each
regression tree. This sequence moves through the model stage by
stage rather than step by step, so old trees aren't altered, but model es-
timates are updated when new trees are added [78]. This process con-
tinues until the defined number of trees is reached or the residual has
reached its optimum value, at which point improvements in model es-
timates are negligible. A learning rate further defines the contribution,
or weight, of each tree to themodel. Based on the results of the boosted
regression trees, the model can then quantify the relative influence of
each predictor variable on the response variable. A detailed description
of BRT is available in the literature [79,80].
), Density meter: DMA 4100M (e), Malvern Kinexus Pro, UK Stress Controlled Rheometer



Fig. 2. (a). Neural network structure for viscosity model. (b). Neural network structure for density model.
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2.6.3. Support vector machines
Cortes and Vapnik [81] were the first to suggest SVM, which was

chosen as the modeling algorithm in this investigation. It is used for
classification, regression, and outlier identification and belongs to the
supervised learning category. The SVM design's goal is to examine a hy-
perplane in an N-dimensional feature space that accurately separates
the different class points. Support vectors are feature points that are
close to the hyperplane and have an influence on its position and ar-
rangement. The margin between the classifier and the support vectors
is optimized by support vectors. Hyperplanes serve as selection limits
for labeling feature data. On either side of the hyperplane, data points
may be associated with separate groups. The hyperplane's dimension
is, however, determined by the number of feature points [82]. SVM is
a relatively recent learning algorithm, and themain distinction between
it and the other ML methods is that it decreases viable liability rather
than decreasing classification error. The paradigm for this technique is
to use hyperplanes to segregate feature points into the many classes
to which they belong while maintaining the largest gap between clas-
ses. A nonlinear mapping moves feature points from primordial space
to higher-dimensional feature space and searches for the best hyper-
plane [83].

Given a set of data, in which:

X ¼ x1, x2, x3, . . . . . . :, xnð Þ, ð1Þ

also

Y ¼ y1, y2, y3, . . . . . . :, ynð Þ ð2Þ

xn represents input, yn is the forecast target variables. SVM aims to use
the set of data to develop a function of regression f(x)capable of
predicting target values from n numbers of inputs. The weight vector
5

is denoted with w, b represents bias term, and non-linear model func-
tion is shown with ψ(x), then the regression function can be shown as:

y ¼ f xð Þ ¼ w:ψ xð Þ þ b ð3Þ

A detailed description of SVM for regression is presented by several
researchers [84,85].

2.6.4. Model evaluation and uncertainty analysis
The modern machine learning-based models for viscosity and

density were evaluated using established statistical measures. In the
present study, Pearson's R, coefficient of determination (R2), mean ab-
solute percentage error (MAPE), root mean squared error (RMSE),
Kling-Gupta efficiency (KGE) were applied to measure the prognostic
ability of the model. Pearson's R denotes the strength of the correlation
between measured and predicted values, while RMSE is a typical
method of calculating a model's error in predicting quantitative data.
The mean percentage error in prediction results is measured with
MAPE. The KGE, which more evenly balances the three major compo-
nents of the Nash-Sutcliffe efficiency (NSE) of predictive model's errors
(i.e. ratio of variances, correlation, bias, or coefficients of variation), was
also calculated in the present study [86]. The calculated values for these
statistical measures are listed in Table 3. The following expressions
(Eq. 4 to Eq.8) were used for statistical metrics:

R ¼
∑
n

i¼1
xi−xð Þ yi−yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
xi−xð Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
yi−yð Þ2

s ð4Þ
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R2 ¼ 1−
∑
n

i¼1
xi−yið Þ2

∑
n

i¼1
yið Þ2

0
BBB@

1
CCCA ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

yi−xið Þ2
n

s
ð6Þ

MAPE ¼ 1
n
∑
n

i¼1

xi−yi
xi

����
����� 100 ð7Þ

KGE ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−1ð Þ2 þ α−1ð Þ2 þ r−1ð Þ2

q
ð8Þ

where ‘n’ represents total elements, ‘i’ denotes term under consider-
ation, ‘xi’ denotes the actual value, ‘yi’ denotes predicted value, 0x0 is
average of actual values, y is average of predicted values, ‘β’ denotes
bias error, ‘α’ denotes error in flow variability, and correlation is
shown with ‘r’.

Thiel's statistics were used in the present study to estimate the
uncertainty in the prognosticmodel developed for viscosity and density.
Theil proposed two statistical measures for predictive models. The first
one is, Theil's U1which is used for the evaluation of prediction accuracy.
However, Theil's U2 (also known as Theil's U) is a more popular statis-
tical measure used to estimate the forecast quality of the predictive
model. Theil's U2 is a collection of mean error and error differences
between observed and expected values [87]. It provides a broad range
of standardized measurements, with a lower value indicating better
prediction quality. The expression used for the calculation of Theil's
U2 is appended below as Eq. (9):

⌈U2⌉Theil ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
yi−xið Þ2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
xi2

s
2
666664

3
777775 ð9Þ

3. Result and discussion

3.1. Characterization

The FTIR spectra were measured for ranges from 4000 to 500 cm−1

to examine the functional groups confined to the surface of nanocom-
posites. The ternary nanocomposites' FTIR spectra and whether there
are various absorption peaks from the sample are shown in Table 2
and Fig. 3c. According to the mentioned FTIR, there has been excellent
composting of rGO-Fe3O4-TiO2 nanocomposites, demonstrated by
every absorption group's view from every material utilized [88–90].

The synthesized nanocomposites' morphology was examined by a
scanning electron microscope (SEM). The nanocomposite's SEM
image, showing the platelet-like structure, is demonstrated in Fig. 3a.
Table 2
Determined frequencies of the FT-IR spectra of rGO-Fe3O4-TiO2.

Assignment FTIR peak of
rGO-Fe3O4-TiO2

(cm−1)

O−H 3430
CH2 2918
C=O carbonyl stretching vibration and which specifies the GO
deoxidization in the solvothermal process

1729

C=C aromatic rings 1564
C−O 1200
Ti−O 700
Fe−O 560

6

There is the anchoring of Fe3O4 and TiO2 across the GO surface. The fig-
ure shows that TiO2 and Fe3O4 nanoparticles are distributed across rGO
sheets. Areas of white color are named high-density regions, which are
determined as Fe3O4, whereas gray areas are called TiO2, and the
remaining flakes of dark gray color are identified as rGO.

EDX analysis was accomplished for the rGO-Fe3O4-TiO2 ternary
nanocomposites to establish the elemental composition (Fig. 3b). The
results of EDX analysis of rGO-Fe3O4-TiO2 samples are presented in
Table inserted in Fig. 3b. The spectra of rGO-Fe3O4-TiO2 showed the
characteristic peaks of O, Fe, C, and Ti.

Fig. 4 presents XRD patterns of rGO-Fe3O4-TiO2 ternary hybrid
composites. During the formation of rGO-Fe3O4-TiO2, at 25.5° a broad
anatase peak of TiO2 is observed, which overlaps the characteristic
peak of rGO [91,92]. At 2θ = 11.2° diffraction peak of GO is observed
[69]. Once the reaction has taken place, this peak disappears, and a
new peak at 2θ = 26° develops, showing the characteristic of rGO.
Therefore, it is noticed that GO was decreased exclusively to rGO. A
large intensity is observed due to the intersection of two peaks: TiO2

and rGO, shown in Fig. 4. Prominent six diffraction peaks indexed are
examined at30.6°, 36°, 43.44°, 53.35°, 57.6°, and 63.1° to (220), (311),
(400), (422), (511), and (440) planes of Fe3O4 (JCPDS65–3107), respec-
tively. Furthermore, it is capable of allocating TiO2 peaks to the
tetragonal anatase phase (JCPDS 21–1272) spotted at 63°, 53.9°,48°,
37.8°, and 63° to (204), (105), (200), (004), and (101), respectively.
While handling the ternary composite phase, the anatase phase of
Fe3O4 and TiO2 is kept. While handling the ternary composite, the
anatase phase of TiO2 and Fe3O4 is maintained. The crystalline
behavior of the composite was defined by the distinct sharp peak that
formed in the XRD. Configuration of the composite is validated to
assemble anatase TiO2, Fe3O4, and rGO, based on the description
presented above.
3.2. Stability, density, and viscosity of rGO-Fe3O4-TiO2/EG nanofluid

The stability is also a major concern that impacts nanofluids charac-
teristics for several applications, and it is essential to investigate and ex-
amine the parameters that affect nanofluids' stability. The zeta potential
is the electric potential in the interfacial double layer versus a point in
the bulk fluid at the sliding plane's location outside the boundary. It de-
picts the possibility for change between the dispersionmedium and the
stationary fluid film near the suspended particle. The Zeta potential
characterization has been employed to classify the ternary nanofluids'
stability as this is one of the simplest and most important techniques
to demonstrate the dispersion performance of nanoparticles. The zeta
potential is significant because it is related to the stability of colloidal
dispersions. Nanofluids with high zeta potential values, positive or neg-
ative, are electrically stable, whereas nanofluids with lower zeta poten-
tial values agglomerate. Nanofluids with zeta potential values between
40 and 60 mV are regarded as more stable. In comparison, those with
a zeta potential of more than 60 mV are considered to perform better
in terms of stability [93]. In general, the nanofluid is referred to have
poor stability when the zeta potential values are less than 30 mV [94].
Nanoparticles in suspensionmay create clusters by intensifying size, de-
scending due to gravity [93]. The zeta potential of ternary hybrid
nanofluids with ranging particle loading from 0.01 to 0.25 wt% was car-
ried out. Among various categories of graphene, GO comprises epoxide,
hydroxyl, carboxyl, and carbonyl functional groups. Such clusters show
excellent stability when combined with the base fluid [95].

The results show enhancement in the suspension stability of ternary
nanofluids as compared to the rGO nanofluids. The reason may be that
Fe3O4 and TiO2 nanoparticles are combined and support the rGO
surface. This means evading the overlapping and assembling layers of
graphene and presented by SEM images as shown in Fig. 3. Hybrid
nanofluid at 0.01 wt% showed+63.45 mV value of zeta potential, as
displayed in Fig. 5. The zeta potential values were more than



Fig. 3. a) SEM images of rGO-Fe3O4-TiO2 b) Energy-dispersive X-ray spectroscopy (EDX) spectra, and c) FTIR spectra of rGO-Fe3O4-TiO2 composites.
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+52.43 mV for all samples obtained, which presents remarkable
stability.

The density of ternary hybrid nanofluids is investigated with diverse
weight fractions ranging from 0.01 wt% to 0.25 wt%. Density values of
hybrid nanofluids at different temperatures are presented in Fig. 6 for
different mass concentrations. Initially, to demonstrate the accuracy of
Fig. 4. Ternary hybrid nanocomposite with XRD patterns. Fig. 5. Values of zeta potential for ternary hybrid nanofluid.
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Fig. 6. Density versus temperature graph of rGO-Fe3O4-TiO2/EG nanofluid at different mass fractions [96].
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the experimental measurement analogy, pure ethylene glycol densities
measured at varying temperatureswere comparedwith Ref. [96] and as
can be understood from this comparison, it is seen in Fig. 6 that the re-
sults of the present study and the referenced study are quite compatible.
It is observed that at a low concentration of 0.01 wt% the density is al-
most similar to EG. As the mass concentration is increased, the density
of rGO-Fe3O4-TiO2/EG increases at different operating temperatures.
However, when the temperature is raised, the density of nanofluids
decreases. As density is a crucial parameter of hybrid nanofluids that
significantly impacts the friction factor, Nusselt number, Reynolds
number, and pressure loss, so in the present study, our attention is on
computing the density of rGO-Fe3O4-TiO2/EG nanofluids. The highest
density was recorded at 0.25 wt% to be 1.13 (g/ml) at 25 °C. However,
when the temperature was raised to 50 °C, the density dropped to
1.11 (g/ml). Aside from that, the density followed the base fluid's
pattern. Similar trends as those in literature were obtained [61].

By applying a force that is regulated by the viscosity versus shear
rate values, the viscosity of the nanofluid changes. The temperature
and mass concentration of the rGO-Fe3O4-TiO2 ternary nanocomposite
generally impact the viscosity of the nanofluid. The viscosity of
nanocomposite-based nanofluids decreases exponentially as the shear
rate decreases [77]. The Newtonian and non-Newtonian behavior may
be determined by plotting shear stress versus shear rates. A Newtonian
fluid is defined as one that has a linear relationship between shear stress
and shear rate. The Newtonian fluid is expressed as:

τ ¼ μ:γ ð10Þ

where, shear rate and shear stress are given byγ and τ, respectively. The
constant factor (μ) presented in the above expression is known as the
fluid viscosity. For a Newtonian fluid, the value of viscosity is indepen-
dent of the shear rate. Temperature affects the viscosity of nanofluids
with Newtonian behavior. Non-Newtonian behavior is found when a
linear relationship between shear stress and shear rate is not observed.
It is necessary to describe a connection that is linked to the Newtonian
8

fluid expression to model a fluid with non-Newtonian behavior
[97,98]. The viscosity of different mass fractions (0.01 wt%, 0.05 wt%,
0.1 wt%, 0.2 wt%, and 0.25 wt%) of rGO-Fe3O4-TiO2/EG ternary
nanofluid was computed ranges from 25 °C to 50 °C. All
measurements were repeated at various shear rates for each
temperature and mass fraction for reliable findings.

The present experimental density ratio of rGO-Fe3O4-TiO2/EG
ternary nanofluid is compared with Oliveira et al. [99] data of ND-Ag/
EG hybrid nanofluid and the comparison is made in Fig. 7. It is observed
from the figure, the present data of rGO-Fe3O4-TiO2/EG ternary
nanofluid is showing higher values than the Oliveira et al. [99] data of
ND-Ag/EG hybrid nanofluid. This is caused because of the use of ternary
nanoparticles in the present study. The density of ternary nanoparticles
is higher than that of the density of hybrid nanoparticles.

Shear rate viscosity for EG is presented for the range of 25 °C to 50 °C,
shown in Fig. 8. A clear Newtonian behavior of pure EG for the studied
temperature range and shear rate is observed.Moreover, with the rising
temperature, a reduction in the viscosity of EG is observed.

The viscosity of the hybrid nanofluid increases as the mass concen-
tration of nanoparticles increases at various temperatures, following a
similar pattern. To be familiar with the rheological behavior such as
non-Newtonian or Newtonian in the case of rGO-Fe3O4-TiO2/EG
nanofluids at several particle loading concentrations, the shear
viscosity, which can be defined in terms of shear rate for the different
mass concentration, ranges from 0.01 wt% to 0.25 wt% is displayed in
Fig. 9. The linear trend between shear viscosity and the shear rate was
observed, which signifies that rGO-Fe3O4-TiO2/EG nanofluids show
Newtonian behavior. Fig. 10 shows the variations in the shear
viscosity versus the shear rate of rGO-Fe3O4-TiO2/EG nanofluids at
various temperatures with different particle loading concentrations. It
is determined that raising the concentration increases the viscosity of
nanofluids. It was also observed that the viscosity at lower
temperatures is more significant than at high temperatures [100].
Fig. 11 shows the shear viscosity vs. shear rate trend at various



Fig. 7. Comparison of present experimental density of rGO-Fe3O4-TiO2/EG ternary nanofluid with Oliveira et al. [99] data.
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concentrations and temperatures. It can be observed that as the
temperature rises, the viscosity reduces, but as the mass concentration
rises, the viscosity rises to owe to the increased friction force between
the fluid layers. Fig. 11 illustrates the shear viscosity as a function of
temperature for varying concentrations from 0.01 to 0.25 wt% for GO-
Fe3O4-TiO2/EG and pure ethylene glycol viscosity values are validated
with Ref. [101] for an accurate measurement. It is observed from the
figure that viscosity decreases with rising temperature and becomes
higher with higher particle loadings.

The results indicate the Newtonian behavior of rGO-Fe3O4-TiO2/
EG nanofluids. The molecules have entirely allied themselves at
larger shear rates and achieved the highest shear classification
because of the breaking molecules. This breaking down of
molecules occurs because of weak particle−particle interfaces.
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Fig. 8. Shear rate dependency of viscosity of ethylene glycol at different temperatures.
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The friction between the fluid layers and viscosity is reduced as a
result. Because of the cluster's growth in the fluid and internal
viscous tension caused by adding more nanoparticles to the base
fluid, the viscosity of various nanofluids gradually improves with
increased mass concentration.

In the meantime, the viscosity declined by temperature rise because
of the decrease in attractive molecular force. Furthermore, for all tem-
perature ranges experimentally analyzed, viscosity is improved by in-
creasing mass concentration. But, at high concentrations, the impact of
temperature has intensely greater than at low concentrations. The ag-
glomeration took place when the attractive forces of Brownian motion
and Van der Waals of the nanoparticles were more substantial than re-
pulsive forces sustained byDLVO theory [102]. The cumulative effects of
Brownian motion, Van der Waals force, and electric charge repulsive
force might be the cause of such viscosity variations. Conclusively, the
higher viscosity is mainly due to the higher Van der Waals force,
which could lead to aggregating the nanoparticles, therefore resulting
in an increment in dynamic viscosity; however, with higher tempera-
tures, the Van der Waals force becomes weaker, and the motion of the
nanoparticles becomes intensified due to Brownian motion, which re-
sults in giving reduced viscosity at higher temperatures. With the in-
creasing nanoparticles volume fraction, the viscosity enhanced, which
is due to the larger slip resistances between the layers of the fluid, be-
cause of the addition of the nanoparticles [17].

The present study's obtained viscosity ratio results are compared to
those reported in the literature by Kazemi et al. [103], Namburu et al.
[104], and Sundar et al. [105], which are presented in Fig. 12. The results
of the current study's viscosity ratio agree well with the data reported
by Kazemi et al. as similar concentrations were studied. The viscosity
ratio also showed a similar trend and data as those of Sundar et al. for
lower concentrations of similar ones as the current study. The acquired
results are in good conformity with the data provided in the literature,
further validating our findings.



Fig. 9.Variations of the rGO-Fe3O4-TiO2/EG viscosity versus the shear rate at differentmass concentrations and temperatures (a) 25 °C, (b) 30 °C, (c) 35 °C, (d) 40 °C, (e) 45 °C, and (f) 50 °C.

Fig. 10. Viscosity with respect to shear rate with changing temperature at 0.01 and 0.25 wt% of rGO-Fe3O4-TiO2/EG.
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Fig. 11. Shear viscosity as a function of temperature for varying mass concentrations from 0.01 to 0.25 wt% rGO-Fe3O4-TiO2/EG [101].
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The obtained outcomes of viscosity are also comparedwith those re-
ported by Sundar et al. [106] for hybrid (GO/Co3O4) nanoparticles
suspended in EG as a base fluid, as shown in Fig. 13. Since similar parti-
cle loadings were investigated, this makes it ideal for the sake of com-
parison. It is observed from Fig. 12 that both the studies showed a
similar trend and almost close values for the similar studied tempera-
ture range and particle loadings.
Fig. 12. Viscosity ratio comparison o
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3.3. Modeling with ANN

In the present work, data were collected from the experimental
characterization of rGO-Fe3O4-TiO2 -EG ternary hybrid nanofluids was
used for ANN-based modeling. The prognostic ANN model for density
was prepared using temperature and nanoparticle concentration
(wt%). The prediction model for viscosity was developed using
f current study with literature.



Fig. 13. Viscosity comparison of the current study with literature.

Fig. 14. ANN-based Density model (a) network architecture (b) regression graph (c) Model's residuals (d) Observed vs predicted values.
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Fig. 15. ANN based viscosity model (a) network architecture (b) regression graph (c) Model's residuals (d) Observed vs predicted values.
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temperature, nanoparticle concentration wt%, and shear rate. Two
separate ANN model was developed for density and viscosity due to
different input parameters.

3.3.1. Density model
The ANN-based predictive model for the density of ternary

hybrid nanofluid (rGO-Fe3O4-TiO2 -EG) was developed using the
experimental data. The acquired data set was separated into three
parts: 70% for training the network, 15% for testing and validation,
and 5% for both. In the current ANN-based modeling, the commercial
software MATLAB was utilized. The gradient descent technique
(LEARNGDM) was utilized as the adaptive learning function to min-
imize the mean squared error (MSE) between the network output
and the actual error rate. The hyperbolic tangent sigmoid transfer
function (TANSIG) and linear transfer function (PURELIN) were uti-
lized to generate a layer's output from its net input. The trial-and-
error approach was employed during training to choose the number
of neurons for the hidden layer. The ANNmodel architecture used for
the density model is shown in Fig. 14(a).
Table 3
Statistical measures and uncertainty of ANN model.

Statistical measures Uncertainty

Parameter R R2 MAPE RMSE KGE Theil's U2

Density 0.9985 0.9971 0.03% 0.0007 0.9858 0.0775
Viscosity 0.9972 0.9944 2.11% 0.00044 0.9971 0.129
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For training, the network with the suggested ANN design (Fig. 14
(a)) with one input layer with two neurons, one hidden layer with ten
neurons was used. The output layer with one neuron was used making
it a multi-input and single output network. Once the ANN model was
ready, it was used for density prediction on the entire input range of op-
erating parameters. The regression line between observed and ANN
model-based density values is illustrated in Fig. 13(b). An excellent ‘R'
(0.9985) and ‘R2’ indicate an efficient prognostic model developed
using ANN. Fig. 13(b) shows that almost all the data is split across the
45° line, indicating excellent compatibility between the test results
and the ANN projected outcomes [107]. The residuals in the ANN-
based model predicted values were low, as shown in Fig. 14(c). Barring
a few data points, the error is low throughout the residual plot.

A comparative graph of measured viscosity and ANN-based model
predicted viscosity for all the data points is illustrated in Fig. 14(d).
Most of the ANN predicted and measured values of density almost
replicate each other. The remarkable ‘R' with low errors shows the
excellent prognostic capability of ANN in modeling ternary hybrid
nanofluid density in the present study.

3.3.2. Viscosity model
A data set containing 1264 elements, each for input and output

parameters, was used for developing an ANN-based viscosity model.
The obtained data set was divided into three parts, 70% for training
the network, 15% each for testing and validation of the model. The gra-
dient descent approach (LEARNGDM)was used as the adaptive learning
function to reduce themean squared error (MSE) between the network
output and the actual error rate. The hyperbolic tangent sigmoid



Fig. 16. BRT based density model (a) regression graph (b) Model's residuals (c) observed vs predicted values.
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transfer function (TANSIG) and linear transfer function (PURELIN)were
used to compute a layer's output from its net input. The trial-and-error
method was used during training to select the number of neurons for
the hidden layer. The trainingwas startedwith 6 neurons, and the num-
ber of neurons was increased by 2 in the next training. A comparative
analysis of this data indicated the suitability of 10 neurons as it resulted
in the least mean squared error (MSE), among all results. Based on this
analysis, the architecture of the multilayered perceptron ANN was pre-
pared, as shown in Fig. 15(a). For training, testing, and validation, the
created network with one input layer with three neurons, one hidden
layer with ten neurons, and one output layer with one neuron was uti-
lized [55].

The developed artificial neural network-based model was used to
predict the viscosity for the entire range of input parameters. A compar-
ative graph depicting the observed and model forecasted viscosity
values are shown in Fig. 15(b). The linear trend line and coefficient of
determination are also shown. An excellent ‘R’ value of 0.9972 with
‘R2’ as 0.9954, both close to ‘1’, establishes it as an efficient model. Al-
most all the data is split across the 45° line, indicating excellent compat-
ibility between the test results and the ANN projected outcomes [108].
The errors in the ANN model were low, as illustrated in Fig. 15(c). A
comparative graph of observed and ANN-basedmodel predicted viscos-
ity is illustrated in Fig. 15(d). It is observed that most of the experimen-
tallymeasured and predicted values are close to each other, indicating a
robust predictive model.
3.3.3. Statistical analysis of ANN models
The ANN-based predictionmodel was evaluated with various statis-

tical indices and its predictive uncertainty was measured with Theil's
statistics as mentioned in Section 2.6.4. The model's MAPE was 0.03%
14
and 2.11% while RMSE was 0.0007 and 0.00041 for density and viscos-
ity, respectively (Table 3). On the model efficiency front, the KGE was
0.9858 and 0.9971 for density and viscosity, individually. Thiel's U2
value depicting the uncertainty in themodel was 0.0775 for the density
model while it was 0.129 for the viscosity model. The low errors, low
predictive uncertainty, and high KGE efficiency demonstrate the supe-
rior prognostic capability of ANN-based density and viscosity models.
3.4. Modeling with BRT

The modern ensemble machine learning BRT technique was used to
develop a predictionmodel. The data from acquired from the character-
ization process of rGO-Fe3O4-TiO2-EG ternary hybrid nanofluids was
employed. Temperature and nanoparticle concentration was used to
create a predictive BRT model for density (wt. percent). Temperature,
nanoparticle concentration in weight percent, and shear rate were
used to create a viscosity prediction model. Due to different input
values, two distinct BRT models were created for density and viscosity.

3.4.1. Density model
The density model developed using the BRT technique was used to

forecast the density of hybrid nanofluids at different temperatures and
wt% concentration. A comparative analysis of observed density values
during characterization and BRT model-based predicted values is illus-
trated in Fig. 16(a). The comparative graph also has a linear trend line,
correlation equation, and R2 value. The BRT-based density model is es-
tablished as an efficient model with an outstanding ‘R' value of 0.9989
and ‘R2’ of 0.9978, both near to ‘1’. Almost all the data is divided over
the 45° line, suggesting that the test results and the ANN's predicted
outcomes are quite similar. As shown in Fig. 16(b) the ANN model's



Fig. 17. BRT based viscosity model (a) regression graph (b) Model's residuals (c) observed vs predicted values.
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errors wereminimal. Fig. 16(c) shows a comparative graph of observed
density and BRT-based model projected density for the entire range of
test conditions [79]. Most of the experimentally measured and
projected values were found to be near to each other, suggesting a reli-
able predictive model.
3.4.2. Viscosity model
The modern ensemble machine learning algorithm BRT was em-

ployed to develop the viscosity model. A data set collected from exper-
imental characterization of rGO-Fe3O4-TiO2-EG ternary hybrid
nanofluids, containing 1264 elements, each for input and output param-
eters, was used for developing a BRT-based viscosity model. A compar-
ative graph depicting the experimentally observed and BRT-based
model predicted model is shown in Fig. 17(a). It was observed that all
datapoints were close to the linear trendline with excellent ‘R2’ as
0.9959, demonstrating a high degree of correlation between experi-
mental and BRT-based model predicted values of viscosity [77]. A qua-
dratic equation is also established to obtain a prediction for any input
data. The robust quality of correlation is further established by a residual
plot illustrated in Fig. 17(b).
Table 4
Statistical measures and uncertainty of BRT based model.

Statistical measures Uncertainty

Parameter R R2 MAPE RMSE KGE Theil's U2

Density 0.9989 0.9978 0.004% 0.00059 0.9861 0.0689
Viscosity 0.9979 0.9959 2.03% 0.00035 0.9974 0.121
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The BRT-based model was used to predict the viscosity of triple
hybrid nanofluids used in this study. A comparative graph of experi-
mental and forecasted viscosity values for all the data points is illus-
trated in Fig. 17(c). It is observed that both experimental and
forecasted viscosity values are close to each other, demonstrating a ro-
bust prediction model [26].

3.4.3. Statistical analysis of BRT models
As indicated in Section 2.6.4, the BRT-based prediction model was

evaluated using different statistical indices and its predicted uncertainty
was assessed with Theil's statistics. The MAPE errors were 0.004% per-
cent and 2.03%, respectively, while the RMSE was 0.00059 and
0.00035 for density and viscosity (Table 4). The KGE for density and vis-
cosity, respectively, was 0.9861 and 0.9974 in terms ofmodel efficiency.
Thiel's U2 value, which represents model uncertainty, was 0.0689 for
the density model and 0.121 for the viscosity model. The robust prog-
nostic capacity of BRT-based density and viscosity models is demon-
strated by the low errors, low prediction uncertainty, and high KGE
efficiency [80].
3.5. Modeling with SVM

TheMATLAB platformwas used for the computational component of
SVM-basedmodeling of density and viscosity of triple hybrid nanofluids
used in this study. The Bayesian optimization function was used to op-
timize the SVM regression parameters. First, the SVM regression algo-
rithm splits the experimental findings into training and testing
datasets at random. Following that, the training dataset was normalized



Fig. 18. SVM based density model (a) regression graph (b) Model's residuals (c) observed vs predicted values.
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to ensure the model's computational efficiency. During the algorithm
training, a 5-fold cross-validation process was used to ensure a robust
model that could generalizewell to a newdataset. The best SVM regres-
sion parameter values were determined by minimizing the training
cross-validation error.

3.5.1. Density model
The density of hybrid nanofluids was predicted using a density

model created using the SVM approach at various temperatures and
weight percent concentrations. Fig. 18(a), shows a comparison between
observed density values during characterization with predicted values
based on the SVM model. A linear trend line, correlation equation, and
R2 value are also shown in the comparative graph. With an exceptional
‘R’ value of 0.9973 and ‘R2’ of 0.9947, both close to ‘1’, the SVM-based
density model is proven as an efficient prediction model. The 45°-line
divides almost all the data, implying that the test results and the
SVM's projected outcomes are quite close. As shown in Fig. 18(b), a re-
sidual plot for the SVM-based prediction model further establishes the
robust nature of association in observed and prediction data [83].

The observed and SVMmodel-predicted density of the triple hybrid
nanofluids tested in this work over the entire range of input conditions
is depicted in Fig. 18(c). Both experimental and projected density values
are found to be near to one other, indicating a reliable predictionmodel
over all the data points.

3.5.2. Viscosity model
SVM, a contemporary ensemble machine learning tool was used to

develop a viscosity model. The prediction model was developed using
data from experimental characterization of rGO-Fe3O4-TiO2 -EG
16
ternary hybrid nanofluids, which included 1264 components, each for
input and output parameters. The developed model was used to
predict the viscosity values over the entire range of input conditions.
Fig. 19(a) shows a comparison graph of the observed and SVM-based
model predicted viscosity values. All data points were found to be
close to a linear trend line, with an outstanding ‘R2’ of 0.9922, indicating
a high degree of correlation between experimental and SVM-based
model predicted viscosity values [84].

A quadratic equation is also established to produce a forecast for
any input data. As shown in Fig. 19(b), a residual plot further estab-
lishes the strong nature of the association. The viscosity of the triple
hybrid nanofluids utilized in this work was predicted using an SVM-
based model over an entire range of input conditions. Fig. 19(c),
shows a comparison graph of experimental and predicted viscosity
values for all data points. Both experimental and projected viscosity
values are found to be near to one other, indicating an efficient predic-
tion model [85].
3.5.3. Statistical analysis of SVM model
The projected uncertainty of the SVM-based prediction model was

examined using Theil's statistics and a variety of statistical indicators.
TheMAPE errors for density and viscositywere 0.04% and 2.95%, respec-
tively, whereas the RMSE was 0.00088 and 0.00051 (Table 5). In terms
of model efficiency, the KGE for density and viscosity were 0.9918 and
0.9728, respectively. The density model had a U2 value of 0.0981 and
the viscosity model had a U2 value of 0.3686, which reflects model un-
certainty. The low errors, low prediction uncertainty, and excellent KGE
efficiency of SVM-based density and viscosity models indicate their
strong prognostic potential [76,83].



Fig. 19. SVM based viscosity model (a) regression graph (b) Model's residuals (c) observed vs predicted values.
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3.6. Comparison of ANN, BRT, and SVM models

The preceding paragraphs indicate that all three machine learning
approaches employed in this work were successful in developing ex-
tremely accurate prediction models. It does, however, provide a venue
for comparative study of various techniques. For comparison evaluation,
two alternative techniques were employed. First, the statistical evalua-
tion, which included Theil’ U2, was utilized, as shown in Tables 3, 4,
and 6. Fig. 20 depicts the statistical indices utilized as bar graphs for
all three-machine learning-based models. Taylor's diagram was then
constructed in a single graph for simple visual comparative examina-
tion, as seen in Fig. 21. The bar graphs in Fig. 20 clearly illustrate that
BRT is superior in terms of greater correlation coefficients andmodel er-
rors. BRT outperforms both SVMand ANN in prediction efficiency (KGE)
and model uncertainty (Theil's U2). Taylor's figure (Fig. 21) shows the
same result: the BRT outperforms both SVM and ANN.
Table 5
Statistical measures and uncertainty of BRT based model.

Statistical measures Uncertainty

Parameter R R2 MAPE RMSE KGE Theil's U2

Density 0.9973 0.9946 0.04% 0.00088 0.99181 0.0981
Viscosity 0.9960 0.9922 2.95% 0.0005 0.9728 0.3686
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4. Conclusions

In the current study, a novel ternary nanocomposite is characterized
by FTIR, SEM, EDX, and XRD. The stability of the prepared rGO-Fe3O4-
TiO2/EG ternary hybrid nanofluids was evaluated using the zeta
potential approach. Later the nanofluids with excellent stability were
tested experimentally for density, rheological behavior ranging from
25 °C to 50 °C, and volume concentration in a range of 0.01–0.25 wt%.
Nanocompositeswere fabricated through the sol-gel technique. The sta-
bility of all of the produced hybrid nanofluids was found to be above
+52.04 mV, indicating good long-term stability. Lower zeta potential
values resulted from the increase in concentration. All the prepared hy-
brid nanofluids showed increased density and viscosity with increased
mass concentration and showed a decline in density and viscosity
with higher temperatures. An increment of 0.06% at 25 °C for 0.01 wt
%, and 0.19% at 50 °C for 0.01 wt%. the concentration of the rGO-
Fe3O4-TiO2 nanofluids was obtained in comparison with EG base fluid,
and for 0.25 wt% at temperatures of 25 °C and 50 °C, an increment of
2.56% and 2.45% was observed, respectively. The increment in density
observed is minimal.An increment of 8.2% at 25 °C for 0.01 wt%, and
8.2% at 50 °C for 0.01 wt%. the concentration of the rGO-Fe3O4-
TiO2nanofluids was obtained compared to EG base fluid, and for 0.25
wt% at temperatures of 25 °C and 50 °C, an increment of 64.5% and
133.5%was observed, respectively. The percentage increment in viscos-
ity concerning other shear rateswas similar for the entire range. Conclu-
sively, the density and viscosity mainly rely on the suspended mass
concentration of nanocomposites. Newtonian behavior for rheological
behavior was observed for all the studied particle loadings and



Fig. 20. Statistical indices of developed models.
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temperatures. Two modern ensembles (BRT and SVM) and one neural
network-based (ANN) machine learning technique were employed to
model-predict the density and viscosity of ternary hybrid nanofluids.
Using a statistical platform of error and performance measurements,
the results of the generated models were compared to the real out-
comes of the experimental research. The value of R for BRT-based den-
sity (0.9989) and viscosity (0.9979) model was superior to ANN-based
and SVM-based prediction models. The value of R2 (BRT > ANN >
SVM) and KGE (BRT > ANN > SVM) demonstrates the superiority of
BRT-based prognostic models. According to the error analysis, also the
BRT reported lower MAPE and RMSE than both ANN and SVM. Theil's
U2 uncertainty in developed density models was as low as 0.0689,
0.0775, and 0.0981 for BRT, ANN, and SVM, respectively. So, it is
concluded that BRT, ANN, and SVM can accurately emulate the
laboratory-based evaluation of density and viscosity values of ternary
hybrid nanofluids for a diverse range of temperature and nanoparticles
concentration ratios. The BRT, however,wasmarginally superior toANN
but more superior to SVM. The characterization of rGO-Fe3O4-TiO2/EG
18
ternary hybrid nanofluids, determination of properties such as
stability and density, and then the development of a prediction model
by using three different machine learning methods from the data
obtained provides a unique study in the literature. In a way, a
triggering study has been revealed that three different machine
learning methods can be applied to similar studies, and it will
encourage researchers in this context. In the future, we aim to further
our studies by considering different Newtonian or non-Newtonian
base fluids with different nanocomposites. It is planned to make appli-
cations in different technical fields such as diversified dimensional
tubes in the different heat and cooling, microchannel heat exchanger,
refrigeration, and air conditioning systemswith nanofluids whose char-
acterization analyzes have been completed. The present study out-
comes are suitable for applications requiring long-term stability and
higher heat transfer performance. These results discussed the stability,
density, and viscosity of fluids, which may be used to determine
pumping power, pressure drop, and lubricants in a variety of applica-
tions. Therefore, making the currently investigated ternary hybrid



Fig. 21. Taylor's diagram (a) density model (b) viscosity model.
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nanofluid a potential nanocomposite and nanofluid for various engi-
neering and biomedical applications.

Nomenclature

AI Artificial intelligence
ANFIS Adaptive neuro fuzzy inference system
ANN Artificial neural network
BRT Boosted regression tree
CNT Carbon nanotubes
DI Deionized
EG Ethylene glycol
FTIR Fourier transform infrared spectroscopy
GEP Gene expression programming
Gr Graphene
KGE Kling- Gupta efficiency
MAPE Mean absolute percentage error
ML Machine learning
19
MWCNT Multi walled carbon nanotubes
NSE Nash-Sutcliffe efficiency
RMSE Root mean square error
RSM Response surface methodology
SEM Scanning electron microscopy
SVM Support vector machines
XRD X-ray dispersion
GNP Graphene nanoplatelet
MEPCM Micro-encapsulated phase change material
wt. Particle mass fraction
W Watt
T Temperature, °C
mV Milivolts

Greek symbols
γ Shear rate, 1/s
τ Shear stress, Pa
μ Shear viscosity, Pa.s
cp Specific heat, J/Kg K
ρ Density, kg/m3
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