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In this paper, pseudosymmetric and Ricci pseudosymmetric almost C(α)-manifold are studied. For an almost C(α)-manifold,
Riemann pseudosymmetric, Riemann Ricci pseudosymmetric, Ricci pseudosymmetric, projective pseudosymmetric, projective
Ricci pseudosymmetric, concircular pseudosymmetric, and concircular Ricci pseudosymmetric cases are considered and new
results are obtained.

1. Introduction

In the period from the known past to the present, the place of
geometry science in science and technology has always been
preserved. Geometry was divided into various branches
according to the needs of mankind over time and the studies
were carried out more succinctly. One of these areas is
di�erential geometry, where di�erential computation is
applied to geometry. Di�erential geometry is one of the most
popular �elds of study in modern mathematics, as it �nds
applications in many disciplines. �e beginning of di�er-
ential geometry is based on Gauss’s work on the curvature of
surfaces. �ese works of Gauss pioneered the concept of
Riemannian manifold. Di�erential geometry is very closely
concerned with the properties of Riemannian manifolds
where the derivative is de�ned.

In a Riemannian manifold, the Riemannian curvature
tensor is R and for each U1, U2 ∈ χ(M), if R(U1, U2). R � 0,
then the manifold is said to be semisymmetric. Similarly, if
R(U1, U2). S � 0, the manifold is called Ricci semi-
symmetric, if R(U1, U2). P � 0; the manifold is called pro-
jective semisymmetric, ifR(U1, U2). Z̃ � 0; and themanifold
is called concircular semisymmetric, where S is the Ricci
curvature tensor, P is the projective curvature tensor, and Z̃
is concircular curvature tensor. Studies on the symmetric
Riemannian manifolds started with Cartan [1]. In the fol-
lowing periods, many authors have studied the symmetry
cases of various manifolds ([2–12]).

Again, interesting and important studies by many ge-
ometers continued to contribute to this �eld over time. In
2011, Dileo presented an important study on the geometry of
the Kenmotsu type manifolds [13], while in 2019, a very
important study was made for α− cosymplectic manifolds by
Kupeli [14]. Many studies have also been made about almost
C(α)−manifolds in [15–18] and important characterizations
of this type of manifolds have been obtained ([19, 20]).

Let M(φ, ξ, η, g) be the (2n + 1)− dimensional almost
contact metric manifold given by the (φ, ξ, η, g) contact
structure, and let the Riemann curvature tensor of the
manifold be R. If manifold M satis�es the following
condition:

R U1, U2, U3, U4( ) � R U1, U2,φU3,φU4( )

+ α −g U1, U3( )g U2, U4( ){

+ g U1, U4( )g U2, U3( )

+ g U1,φU3( )g U2,φU4( )

− g U1,φU4( )g U2,φU3( )}.

(1)

�en, manifold M is called almost C(α)− manifold, where
every U1, U2, U3, U4 ∈ χ(M) and at least one α ∈ R [21].

A C(α)− manifold is the general case of the co-Keahler,
Sasakian, and Kenmotsu manifolds. �at is, specially, if
α � 0, it is co-Keahler, if α � 1, it is Sasakian, if α � −1, it
is the Kenmotsu manifold [21]. Although many studies
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have been conducted on these manifolds, studies on
C(α)− manifold is quite limited.

In this article, the pseudosymmetry and Ricci pseudo-
symmetry properties of almost C(α)− manifold, which are a
subclass of almost contact metric manifolds and the general
case of the co-Keahler, Sasakian, and Kenmotsu manifolds,
have been studied geometrically.

2. Preliminaries

Let M be a differentiable manifold with (2n + 1) dimen-
sional. If the condition

φ2
U1 � −U1 + η U1( 􏼁ξ,

η(ξ) � 1,
(2)

satisfies on M, where φ is tensor field with type (1, 1), ξ is a
vector field and η is a 1− form, then we say that (φ, ξ, η) is an
almost contact structure. Also, we say that (M,φ, ξ, η) is an
almost contact manifold [22]. Let g be a metric with
condition

g φU1,φU2( 􏼁 � g U1, U2( 􏼁 − η U1( 􏼁η U2( 􏼁,

g U1, ξ( 􏼁 � η U1( 􏼁,
(3)

for all U1, U2 ∈ χ(M) and ξ ∈ χ(M). In this case, we say that
(φ, ξ, η, g) is an almost contact metric structure and
(M,φ, ξ, η, g) is almost contact metric manifold [22].
Moreover, we have the property

g φU1, U2( 􏼁 � −g U1,φU2( 􏼁, (4)

for all U1, U2 ∈ χ(M) on M manifold with (2n + 1) di-
mensional.&e fundamental 2-form of the (φ, ξ, η, g) almost
contact metric structure is the Φ transformation such that

Φ U1, U2( 􏼁 � g U1,φU2( 􏼁, (5)

for all U1, U2 ∈ χ(M), where

η∧Φn ≠ 0. (6)

We can write the Riemann curvature tensor of an almost
C(α)-manifold which has a c− constant sectional curvature
by

R U1, U2( 􏼁U3 �
c + 3α
4

􏼒 􏼓 g U2, U3( 􏼁U1 − g U1, U3( 􏼁U2􏼈 􏼉

+
c − α
4

􏼒 􏼓 g U1,φU3( 􏼁φU2 − g U2,φU3( 􏼁φU1􏼈

+ 2g U1,φU2( 􏼁φU3 + η U2( 􏼁η U3( 􏼁U1

+g U1, U3( 􏼁η U2( 􏼁ξ − g U2, U3( 􏼁η U1( 􏼁ξ􏼉.

(7)

If we take U1 � ξ in (4), then we obtain as follows:

R ξ, U2( 􏼁U3 � α g U2, U3( 􏼁ξ − η U3( 􏼁U2􏼂 􏼃. (8)

If we take U3 � ξ in (4), then we have as follows:

R U1, U2( 􏼁ξ � α η U2( 􏼁U1 − η U1( 􏼁U2􏼂 􏼃. (9)

Moreover, if we take U2 � ξ in (9), then we obtain as
follows:

R U1, ξ( 􏼁ξ � α U1 − η U1( 􏼁ξ􏼂 􏼃. (10)

Let us take an inner product of (7) by ξ ∈ χ(M).&en, we
obtain as follows:

η R U1, U2( 􏼁U3( 􏼁 � α g U2, U3( 􏼁η U1( 􏼁 − g U1, U3( 􏼁η U2( 􏼁􏼂 􏼃.

(11)

Let for k≥ 1, σ be a (0, k)-type tensor field, a A be a
(0, 2)-type tensor field and M is a Riemannian manifold. We
define Q(A, σ)-tensor field by

Q(A, σ) X1, X2, . . . , Xk; U1, U2( 􏼁 � −σ U1ΛAU2( 􏼁X1, X2, . . . , Xk( 􏼁 . . .

− σ X1, X2, . . . , Xk−1, U1ΛAU2( 􏼁Xk( 􏼁,
(12)

for all X1, X2, . . . , Xk, U1, U2 ∈ Γ(TM), where

U1∧AU2( 􏼁U3 � A U2, U3( 􏼁U1 − A U1, U3( 􏼁U2. (13)

Lemma 1. Let M be an almost C(α)− manifold with
(2n + 1)− dimensional. ,en, we have as follows:

S U1, U2( 􏼁 �
α(3n − 1) + c(n + 1)

2
􏼢 􏼣g U1, U2( 􏼁

+
(α − c)(n + 1)

2
η U1( 􏼁η U2( 􏼁,

(14)

S U1, ξ( 􏼁 � 2nαη U1( 􏼁, (15)

QU1 �
α(3n − 1) + c(n + 1)

2
􏼢 􏼣U1 +

(α − c)(n + 1)

2
η U1( 􏼁ξ,

(16)

Qξ � 2nαξ, (17)

for eachU1, U2, ∈ χ(M), whereQ is the Ricci operator and S is
the Ricci tensor of manifold M.

If S and g are linearly dependent, that is, there is a
constant λ provided

S U1, U2( 􏼁 � λg U1, U2( 􏼁, (18)

the almost C(α)− manifold is called the Einstein manifold
[23]. In particular, if the S Ricci tensor satisfies the relation

2 Journal of Mathematics



S U1, U2( 􏼁 � ag U1, U2( 􏼁 + bη U1( 􏼁η U2( 􏼁, (19)

for each U1, U2 ∈ χ(M),M is called an η− Einstein manifold
[23].

Let (M, g) be a Riemannian manifold. For two-di-
mensional subspace Π of the tangent, let space Tp(M) be

g U1, U1( 􏼁g U2, U2( 􏼁 − g U1, U2( 􏼁
2 ≠ 0, (20)

for each U1, U2 ∈ Π. In this case, K(U1ΛU2) defined as
follows

K U1 ΛU2( 􏼁 �
g R U1, U2( 􏼁U2, U1( 􏼁

g U1, U1( 􏼁g U2, U2( 􏼁 − g U1, U2( 􏼁
2, (21)

is called the sectional curvature of the plane Π. If
K(U1pΛU2p) is a constant for eachU1, U2 ∈ Tp(M), p ∈M,
M is called a c− constant section curvature space or real
space form [22]. In this case, if the M Riemann manifold is a
real space form and c− constant section curvature, the
Riemann curvature tensor of M is as follows:

g R U1, U2( 􏼁U3, U4( 􏼁 � c g U2, U3( 􏼁g U1, U4( 􏼁􏼂

− g U1, U3( 􏼁g U2, U4( 􏼁􏼃,
(22)

for each U1, U2, U3, U4 ∈ χ(M).

3. Pseudosymmetric and Ricci
Pseudosymmetric Almost C(α)-Manifold

In this section, the cases of pseudosymmetry and Ricci
pseudosymmetry of an almost C(α)− manifold are inves-
tigated. According to Riemann, Ricci, projective, and con-
circular curvature tensors, the pseudosymmetrical and Ricci
pseudosymmetrical cases of the almost C(α)− manifold can
be given as follows.

Definition 1. Let M be an almost C(α)− manifold with
(2n + 1)− dimensional, R be the Riemann curvature tensor
of M, and S be the Ricci curvature tensor of M.

(i) If the pair R · R and Q(g, R) are linearly dependent,
that is, if a λ1 function can be found on the set
M1 � x ∈M|g(x) ≠R(x)􏼈 􏼉 such that

R · R � λ1Q(g, R), (23)

the M manifold is called a Riemann pseudosym-
metric manifold.

(ii) If the pair R · R and Q(S, R) are linearly dependent,
that is, if a λ2 function can be found on the set
M2 � x ∈M|S(x)≠R(x){ } such that

R · R � λ2Q(S, R), (24)

the M manifold is called a Riemann Ricci pseudo-
symmetric manifold.;
Particularly, if λ1 � 0, then this manifold is said to be
semisymmetric.

Let us now investigate the cases of Riemann pseudo-
symmetry and Riemann Ricci pseudosymmetry.

Theorem 1. If a (2n + 1)− dimensional M almost
C(α)− manifold is a Riemann pseudo-symmetric manifold,
then λ1 � 0.

Proof. Let us assume that the manifold M is a Riemann
pseudosymmetric manifold. &en, we can write

R U1, U2( 􏼁 · R( 􏼁 U3, U4, U5( 􏼁 � λ1Q(g, R) U5, U4, U3; U1, U2( 􏼁,

(25)

for each U1, U2, U3, U4, U5 ∈ χ(M). In this case, we obtain as
follows:

R U1, U2( 􏼁R U3, U4( 􏼁U5 − R R U1, U2( 􏼁U3, U4( 􏼁U5

− R U3, R U1, U2( 􏼁U4( 􏼁U5 − R U3, U4( 􏼁R U1, U2( 􏼁U5,

� − λ1 R U1ΛgU2􏼐 􏼑U5, U4􏼐 􏼑U3 + R U5, U1ΛgU2􏼐 􏼑U4􏼐 􏼑U3􏽮

+ R U5, U4( 􏼁 U1ΛgU2􏼐 􏼑U3􏽯.

(26)

If necessary arrangements are made in here, and we
choose U1 � U3 � ξ and using the expression (8) in (26), we
obtain as follows:

αg U2, R ξ, U4( 􏼁U5( 􏼁ξ − αη R ξ, U4( 􏼁U5( 􏼁U2

− α2η U2( 􏼁g U4, U5( 􏼁ξ + α2η U5( 􏼁η U2( 􏼁U4

+ αR U2, U4( 􏼁U5 + α2η U5( 􏼁g U2, U4( 􏼁ξ

− α2η U5( 􏼁g U2, U4( 􏼁ξ + αη U4( 􏼁R ξ, U2( 􏼁U5

− α2η U4( 􏼁g U2, U5( 􏼁ξ + α2g U2, U5( 􏼁U4

+ αη U5( 􏼁R ξ, U4( 􏼁U2 � −λ1 αg U2, U5( 􏼁η U4( 􏼁ξ􏼈

− αg U2, U5( 􏼁U4 − η U5( 􏼁R U2, U4( 􏼁ξ

− αg U2, U4( 􏼁η U5( 􏼁ξ + αg U2, U4( 􏼁U5

− η U4( 􏼁R U5, U2( 􏼁ξ + αη U4( 􏼁η U2( 􏼁U5

−αη U5( 􏼁η U2( 􏼁U4 − R U5, U4( 􏼁U2􏼉.

(27)

If we use the expression (8) again in (27) and make the
necessary adjustments, then we obtain as follows:

αR U2, U4( 􏼁U5 + α2g U2, U5( 􏼁U4 − α2g U4, U5( 􏼁U2

� −λ1 αg U2, U5( 􏼁η U4( 􏼁ξ􏼈

− αg U2, U4( 􏼁η U5( 􏼁ξ − αg U2, U5( 􏼁U4

+ αg U2, U4( 􏼁U5 − R U5, U4( 􏼁U2􏼉.

(28)

If we apply ξ ∈ χ(M) to both sides of (28) and make use
of (11), then we obtain as follows:

λ1η R U5, U4( 􏼁U2( 􏼁 � 0. (29)

Since η(R(U5, U4)U2)≠ 0, it is clear that

λ1 � 0. (30)

&is completes our proof. □
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Corollary 1. If a (2n + 1) − dimensional M almost
C(α) − manifold is a Riemann pseudosymmetric manifold,
then M is a Riemann semisymmetric manifold.

Corollary 2. If a (2n + 1) − dimensional M almost
C(α)− manifold is a Riemann pseudosymmetric manifold,
then M is a real space form with a constant section curvature.

Theorem 2. If a (2n + 1) − dimensional M almost
C(α)− manifold is a Riemann Ricci pseudosymmetric
manifold, then M is either co-Keahler manifold or λ2 � 0.

Proof. Let us assume that the manifoldM is a Riemann Ricci
pseudosymmetric manifold. &en, we can write as follows:

R U1, U2( 􏼁 · R( 􏼁 U3, U4, U5( 􏼁 � λ2Q(S, R) U5, U4, U3; U1, U2( 􏼁,

(31)

for each U1, U2, U3, U4, U5 ∈ χ(M). In this case, we obtain as
follows:

R U1, U2( 􏼁R U3, U4( 􏼁U5 − R R U1, U2( 􏼁U3, U4( 􏼁U5

− R U3, R U1, U2( 􏼁U4( 􏼁U5 − R U3, U4( 􏼁R U1, U2( 􏼁U5

� − λ2 R U1ΛSU2( 􏼁U5, U4( 􏼁U3 + R U5, U1ΛSU2( 􏼁U4( 􏼁U3􏼈

+R U5, U4( 􏼁 U1ΛSU2( 􏼁U3􏼉.

(32)

If necessary arrangements are made in here, and we
choose U1 � U3 � ξ and using (8), (15) in (32), we obtain as
follows:

αg U2, R ξ, U4( 􏼁U5( 􏼁ξ − αη R ξ, U4( 􏼁U5( 􏼁U2

− α2η U2( 􏼁g U4, U5( 􏼁ξ + α2η U5( 􏼁η U2( 􏼁U4

+ αR U2, U4( 􏼁U5 + α2η U5( 􏼁g U2, U4( 􏼁ξ

− α2η U5( 􏼁g U2, U4( 􏼁ξ + αη U4( 􏼁R ξ, U2( 􏼁U5

− α2η U4( 􏼁g U2, U5( 􏼁ξ + α2g U2, U5( 􏼁U4

+ αη U5( 􏼁R ξ, U4( 􏼁U2 � −λ2 αS U2, U5( 􏼁η U4( 􏼁ξ􏼈

− αS U2, U5( 􏼁U4 − 2nαη U5( 􏼁R U2, U4( 􏼁ξ

− αS U2, U4( 􏼁η U5( 􏼁ξ + αS U2, U4( 􏼁U5

− 2nαη U4( 􏼁R U5, U2( 􏼁ξ + 2nα2η U4( 􏼁η U2( 􏼁U5

−2nα2η U5( 􏼁η U2( 􏼁U4 − 2nαR U5, U4( 􏼁U2􏽯.

(33)

If we use the expression (5) again in (33) and make the
necessary adjustments, then we obtain as follows:

αR U2, U4( 􏼁U5 + α2g U2, U5( 􏼁U4 − α2g U4, U5( 􏼁U2

� − λ2 αS U2, U5( 􏼁η U4( 􏼁ξ − αS U2, U4( 􏼁η U5( 􏼁ξ − αS U2, U5( 􏼁U4􏼈

+ αS U2, U4( 􏼁U5 − 2nαR U5, U4( 􏼁U2􏼉.

(34)

If we apply ξ ∈ χ(M) to both sides of (34) and make use
of (11), then we obtain as follows:

2nαλ2η R U5, U4( 􏼁U2( 􏼁 � 0. (35)

Since η(R(U5, U4)U2)≠ 0, it is clear that

αλ2 � 0. (36)

&us, either α � 0 or λ2 � 0 is obtained. &is completes
our proof. □

Corollary 3. If a (2n + 1) − dimensional M almost
C(α) − manifold is a Riemann Ricci pseudosymmetric
manifold, then M is either co-Keahler manifold or a Riemann
semisymmetric manifold.

Corollary 4. If a (2n + 1) − dimensional M almost
C(α)− manifold is a Riemann Ricci pseudosymmetric manifold,
then M is a real space form with a constant section curvature.

Definition 2. Let M be an almost C(α) − manifold with
(2n + 1)− dimensional, R be the Riemann curvature tensor
of M and S be the Ricci curvature tensor of M. If the pair
R · S and Q(g, S) are linearly dependent, that is, if a λ3
function can be found on the set M3 � x ∈M|g(x) ≠ S(x)􏼈 􏼉

such that

R · S � λ3Q(g, S), (37)

the M manifold is called a Ricci pseudosymmetric manifold.
Let us now investigate the case of Ricci pseudosymmetry.

Theorem 3. If a (2n + 1) − dimensional M almost
C(α)− manifold is a Ricci pseudosymmetric manifold, thenM

is either an Einstein manifold or λ3 � −α.

Proof. Let us assume that the manifold M is a Ricci pseu-
dosymmetric manifold. &en, we can write as follows:

R U1, U2( 􏼁 · S( 􏼁 U5, U4( 􏼁 � λ3Q(g, S) U5, U4; U1, U2( 􏼁, (38)

for each U1, U2, U4, U5 ∈ χ(M). In this case, we can write as
follows:

S R U1, U2( 􏼁U5, U4( 􏼁 + S U5, R U1, U2( 􏼁U4( 􏼁

� − λ3 S U1ΛgU2􏼐 􏼑U5, U4􏼐 􏼑 + S U5, U1ΛgU2􏼐 􏼑U4􏼐 􏼑􏽮 􏽯.
(39)

In equation (39), first U1 � ξ is chosen and then (8) and
(15) are used, we obtain as follows:

c2nα2g U2, U5( 􏼁η U4( 􏼁 − αη U5( 􏼁S U2, U4( 􏼁

+ 2nα2g U2, U4( 􏼁η U5( 􏼁 − αη U4( 􏼁S U5, U2( 􏼁

� − λ3 2nαη U4( 􏼁g U2, U5( 􏼁 − η U5( 􏼁S U2, U4( 􏼁􏼈

+2nαη U5( 􏼁g U2, U4( 􏼁 − η U4( 􏼁S U5, U2( 􏼁􏼉.

(40)

If we choose U5 � ξ in (40) and make the necessary
adjustments, we obtain as follows:

−αS U2, U4( 􏼁 + 2nα2g U2, U4( 􏼁 � −λ3 −S U2, U4( 􏼁 + 2nαg U2, U4( 􏼁􏼈 􏼉,

(41)

and from here, we can write that

α + λ3( 􏼁 −S U2, U4( 􏼁 + 2nαg U2, U4( 􏼁􏼂 􏼃 � 0. (42)
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It is clear from equation (42) that either

α + λ3 � 0, (43)

or S U2, U4( 􏼁 � 2nαg U2, U4( 􏼁. (44)

&is completes the proof of the theorem.
&e projective curvature tensor P is defined as follows:

P U1, U2( 􏼁U3 � R U1, U2( 􏼁U3 −
1
2n

S U2, U3( 􏼁U1 − S U1, U3( 􏼁U2􏼂 􏼃,

(45)

for all each U1, U2, U3 ∈ χ(M), by Yano and Sawaki [24]. If
U1 � ξ, U2 � ξ, and U3 � ξ are selected, respectively, in (45),
then we obtain as follows:

P ξ, U2( 􏼁U3 � αg U2, U3( 􏼁ξ −
1
2n

S U2, U3( 􏼁ξ, (46)

P U1, ξ( 􏼁U3 � −αg U1, U3( 􏼁ξ +
1
2n

S U1, U3( 􏼁ξ, (47)

P U1, U2( 􏼁ξ � 0. (48)

Let us take inner product of (45) by ξ ∈ χ(M), we get

ccη P U1, U2( 􏼁U3( 􏼁 � η U1( 􏼁 αg U2, U3( 􏼁 −
1
2n

S U2, U3( 􏼁􏼔 􏼕

− η U2( 􏼁 αg U1, U3( 􏼁 −
1
2n

S U1, U3( 􏼁􏼔 􏼕.

(49)

□

Definition 3. Let M be a (2n + 1)− dimensional almost
C(α)− manifold, R be the Riemann curvature tensor of M, S

be the Ricci curvature tensor of M, and P be the projective
curvature tensor of M.

(i) If the pair R · P and Q(g, P) are linearly dependent,
that is, if a λ4 function can be found on the set
M4 � x ∈M|g(x) ≠P(x)􏼈 􏼉 such that

R · P � λ4Q(g, P), (50)

the M manifold is called a projective pseudosym-
metric manifold.

(ii) If the pair R · P and Q(S, P) are linearly dependent,
that is, if a λ5 function can be found on the set
M5 � x ∈M|S(x)≠P(x){ } such that

R · P � λ5Q(S, P). (51)

&e M manifold is called a projective Ricci pseu-
dosymmetric manifold.

Let us now investigate the case of projective pseudo-
symmetry and projective Ricci pseudosymmetry.

Theorem 4. If a (2n + 1)− dimensional M almost
C(α)− manifold is a projective pseudosymmetric manifold,
then M is either an Einstein manifold or λ4 � α.

Proof. Let us assume that the manifold M is a projective
pseudosymmetric manifold. &en, we can write as
follows:

R U1, U2( 􏼁 · P( 􏼁 U5, U4, U3( 􏼁

� λ4Q(g, P) U5, U4, U3; U1, U2( 􏼁,
(52)

for each U1, U2, U3, U4, U5 ∈ χ(M). In this case, we obtain as
follows:

R U1, U2( 􏼁P U5, U4( 􏼁U3 − P R U1, U2( 􏼁U5, U4( 􏼁U3

− P U5, R U1, U2( 􏼁U4( 􏼁U3 − P U5, U4( 􏼁R U1, U2( 􏼁U3

� − λ4 P U1ΛgU2􏼐 􏼑U5, U4􏼐 􏼑U3 + P U5, U1ΛgU2􏼐 􏼑U4􏼐 􏼑U3􏽮

+ P U5, U4( 􏼁 U1ΛgU2􏼐 􏼑U3􏽯.

(53)

In the last equation, if U1 � ξ is chosen and necessary
corrections are made, we can write

R ξ, U2( 􏼁P U5, U4( 􏼁U3 − P R ξ, U2( 􏼁U5, U4( 􏼁U3

− P U5, R ξ, U2( 􏼁U4( 􏼁U3 − P U5, U4( 􏼁R ξ, U2( 􏼁U3

� − λ4 g U2, U5( 􏼁P ξ, U4( 􏼁U3 − g ξ, U5( 􏼁P U2, U4( 􏼁U3􏼈

+ g U2, U4( 􏼁P U5, ξ( 􏼁U3 − g ξ, U4( 􏼁P U5, U2( 􏼁U3

+ g U2, U3( 􏼁P U5, U4( 􏼁ξ − g ξ, U3( 􏼁P U5, U4( 􏼁U2􏼉.

(54)

If (8), (46), and (47) are used in (54), we obtain follows:

αg U2, P U5, U4( 􏼁U3( 􏼁ξ − αη P U5, U4( 􏼁U3( 􏼁U2

− αg U2, U5( 􏼁P ξ, U4( 􏼁U3 + αη U5( 􏼁P U2, U4( 􏼁U3

− αg U2, U4( 􏼁P U5, ξ( 􏼁U3 + αη U4( 􏼁P U, U2( 􏼁U3

− αg U2, U3( 􏼁P U5, U4( 􏼁ξ + αη U3( 􏼁P U5, U4( 􏼁U2

� − λ4 αg U2, U5( 􏼁g U4, U3( 􏼁ξ −
1
2n

g U2, U5( 􏼁S U4, U3( 􏼁ξ􏼚

− η U5( 􏼁P U2, U4( 􏼁U3 − αg U2, U4( 􏼁g U5, U3( 􏼁ξ

+
1
2n

g U2, U4( 􏼁S U5, U3( 􏼁ξ − η U4( 􏼁P U5, U2( 􏼁U3

− η U3( 􏼁P U5, U4( 􏼁U2􏼛.

(55)

If U5 � ξ is chosen in (55), equation (8) is used and
necessary adjustments are made, we obtain as follows:
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l − α2g U4, U3( 􏼁U2 + αR U2, U4( 􏼁U3

+
α
2n

S U2, U3( 􏼁U4 + α2g U2, U3( 􏼁η U4( 􏼁ξ

−
α
2n

η U4( 􏼁S U2, U3( 􏼁ξ + α2η U3( 􏼁g U4, U2( 􏼁ξ

−
1
2n

η U2( 􏼁S U4, U3( 􏼁ξ − R U2, U4( 􏼁U3

−
α
2n

η U3( 􏼁S U4, U2( 􏼁ξ � −λ4􏼚αg U4, U3( 􏼁η U2( 􏼁ξ

+
1
2n

S U4, U3( 􏼁U2 −
1
2n

S U2, U3( 􏼁U4

− αη U4( 􏼁g U2, U3( 􏼁ξ +
1
2n

η U4( 􏼁S U2, U3( 􏼁ξ

− αg U4, U2( 􏼁η U3( 􏼁ξ +
1
2n

η U3( 􏼁S U4, U2( 􏼁ξ􏼛.

(56)

If we apply ξ ∈ χ(M) to both sides of equation (54) and
make use of equation (11), we obtain as follows:

α − λ4( 􏼁αη U3( 􏼁g U4, U2( 􏼁 −
1
2n

α − λ4( 􏼁η U3( 􏼁S U4, U2( 􏼁 � 0.

(57)

If U3 � ξ is chosen in the last equation, we obtain as
follows:

α − λ4( 􏼁 −S U4, U2( 􏼁 + 2nαg U4, U2( 􏼁􏼂 􏼃 � 0, (58)

that is,

α � λ4,

S U4, U2( 􏼁 � 2nαg U4, U2( 􏼁.
(59)

&us, the proof of the theorem is complete. □

Theorem 5. If a (2n + 1) − dimensional M almost C(α) −

manifold is a projective Ricci pseudosymmetric manifold, then
M is either an Einstein manifold, co-Keahler or λ5 � (1/2n).

Proof. Let us assume that the manifold M is a projective
Ricci pseudosymmetric manifold. &en, we can write

R U1, U2( 􏼁 · P( 􏼁 U5, U4, U3( 􏼁 � λ5Q(S, P) U5, U4, U3; U1, U2( 􏼁,

(60)

for each U1, U2, U3, U4, U5 ∈ χ(M). In this case, we obtain as
follows:

R U1, U2( 􏼁P U5, U4( 􏼁U3 − P R U1, U2( 􏼁U5, U4( 􏼁U3

− P U5, R U1, U2( 􏼁U4( 􏼁U3 − P U5, U4( 􏼁R U1, U2( 􏼁U3

� − λ5 P U1ΛSU2( 􏼁U5, U4( 􏼁U3 + P U5, U1ΛSU2( 􏼁U4( 􏼁U3􏼈

+ P U5, U4( 􏼁 U1ΛSU2( 􏼁U3􏼉.

(61)

In the last equation, if U1 � ξ is chosen and necessary
corrections are made, we can write

R ξ, U2( 􏼁P U5, U4( 􏼁U3 − P R ξ, U2( 􏼁U5, U4( 􏼁U3

− P U5, R ξ, U2( 􏼁U4( 􏼁U3 − P U5, U4( 􏼁R ξ, U2( 􏼁U3

� − λ5 S U2, U5( 􏼁P ξ, U4( 􏼁U3 − S ξ, U5( 􏼁P U2, U4( 􏼁U3􏼈

+ S U2, U4( 􏼁P U5, ξ( 􏼁U3 − S ξ, U4( 􏼁P U5, U2( 􏼁U3

+ S U2, U3( 􏼁P U5, U4( 􏼁ξ − S ξ, U3( 􏼁P U5, U4( 􏼁U2􏼉.

(62)

If (8), (46), and (47) are used in (62), we obtain as
follows:

αg U2, P U5, U4( 􏼁U3( 􏼁ξ − αη P U5, U4( 􏼁U3( 􏼁U2

− αg U2, U5( 􏼁P ξ, U4( 􏼁U3 + αη U5( 􏼁P U2, U4( 􏼁U3

− αg U2, U4( 􏼁P U5, ξ( 􏼁U3 + αη U4( 􏼁P U5, U2( 􏼁U3

− αg U2, U3( 􏼁P U5, U4( 􏼁ξ + αη U3( 􏼁P U5, U4( 􏼁U2

� − λ5 αS U2, U5( 􏼁g U4, U3( 􏼁ξ −
1
2n

S U2, U5( 􏼁S U4, U3( 􏼁ξ􏼚

− 2nαη U5( 􏼁P U2, U4( 􏼁U3 − αS U2, U4( 􏼁g U5, U3( 􏼁ξ

+
1
2n

S U2, U4( 􏼁S U5, U3( 􏼁ξ − 2nαη U4( 􏼁P U5, U2( 􏼁U3

− 2nαη U3( 􏼁P U5, U4( 􏼁U2􏼛.

(63)

If U5 � ξ is chosen in (63), equation (8) is used and
necessary adjustments are made, we obtain as follows:

l − α2g U4, U3( 􏼁U2 + αR U2, U4( 􏼁U3

+
α
2n

S U2, U3( 􏼁U4 + α2g U2, U3( 􏼁η U4( 􏼁ξ

−
α
2n

S U2, U3( 􏼁U4 + α2η U3( 􏼁g U4, U2( 􏼁ξ

−
α
2n

η U3( 􏼁S U4, U2( 􏼁ξ � −λ5 2nα2g U4, U3( 􏼁η U2( 􏼁ξ􏽮

− αη U2( 􏼁S U4, U3( 􏼁ξ − 2nαR U2, U4( 􏼁U3

+ αS U4, U3( 􏼁U2 − αS U2, U3( 􏼁U4

− 2nα2η U4( 􏼁g U2, U3( 􏼁ξ + αη U4( 􏼁S U2, U3( 􏼁ξ

− 2nα2g U4, U2( 􏼁η U3( 􏼁ξ + αη U3( 􏼁S U4, U2( 􏼁ξ􏽯.

(64)

If we apply ξ ∈ χ(M) to both sides of equation (65) and
make use of equation (11), we obtain as follows:
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2nα2 1 − 2nλ5( 􏼁η U3( 􏼁g U4, U2( 􏼁 − α 1 − 2nλ5( 􏼁η U3( 􏼁S U4, U2( 􏼁 � 0.

(65)

If U3 � ξ is chosen in the last equation, we yield as
follows:

α 1 − 2nλ5( 􏼁 −S U4, U2( 􏼁 + 2nαg U4, U2( 􏼁􏼂 􏼃 � 0, (66)

that is,

α � 0, 1 − 2nλ5 � 0,

or S U4, U2( 􏼁 � 2nαg U4, U2( 􏼁.
(67)

&us, the proof of the theorem is complete.
Let M be a Riemannian manifold with (2n + 1)− di-

mensional. &en, the concircular curvature tensor 􏽥Z is
defined as

􏽥Z U1, U2( 􏼁U3 � R U1, U2( 􏼁U3

−
r

2n(2n + 1)
g U2, U3( 􏼁U1 − g U1, U3( 􏼁U2􏼂 􏼃,

(68)

for each U1, U2, U3 ∈ χ(M) [25]. If we choose, respectively,
U1 � ξ, U2 � ξ, and U3 � ξ in (68), then we obtain as
follows:

􏽥Z ξ, U2( 􏼁U3 � α −
r

2n(2n + 1)
􏼠 􏼡 g U2, U3( 􏼁ξ − η U3( 􏼁U2􏼂 􏼃,(69)

􏽥Z U1, ξ( 􏼁U3 � α −
r

2n(2n + 1)
􏼠 􏼡 −g U1, U3( 􏼁ξ + η U3( 􏼁U1􏼂 􏼃,

(70)

􏽥Z U1, U2( 􏼁ξ � α −
r

2n(2n + 1)
􏼠 􏼡 η U2( 􏼁U1 − η U1( 􏼁U2􏼂 􏼃.

(71)

In addition, we choose U3 � ξ in (69), we obtain as
follows:

􏽥Z ξ, U2( 􏼁ξ � α −
r

2n(2n + 1)
􏼠 􏼡 η U2( 􏼁ξ − U2􏼂 􏼃. (72)

and finally, we take inner product of (68) by ξ ∈ χ(M), we
have

η 􏽥Z U1, U2( 􏼁U3􏼐 􏼑 � η R U1, U2( 􏼁U3( 􏼁 −
r

2n(2n + 1)

· g U2, U3( 􏼁η U1( 􏼁 − g U1, U3( 􏼁η U2( 􏼁􏼂 􏼃.

(73)

□

Definition 4. Let M be a (2n + 1)− dimensional almost
C(α)− manifold, R be the Riemann curvature tensor of M, S

be the Ricci curvature tensor of M, and 􏽥Z be the concircular
curvature tensor of M.

(i) If the pair R · 􏽥Z and Q(g, 􏽥Z) are linearly dependent,
that is, if a λ6 function can be found on the set
M6 � x ∈M|g(x) ≠ 􏽥Z(x)􏽮 􏽯 such that

R · 􏽥Z � λ6Q(g, 􏽥Z), (74)

the M manifold is called a concircular pseudo-
symmetric manifold.

(ii) If the pair R · 􏽥Z and Q(S, 􏽥Z) are linearly dependent,
that is, if a λ7 function can be found on the set
M7 � x ∈M|S(x)≠ 􏽥Z(x)􏽮 􏽯 such that

R · 􏽥Z � λ7Q(S, 􏽥Z), (75)

the M manifold is called a concircular Ricci pseu-
dosymmetric manifold.

Let us now investigate the cases of concircular pseu-
dosymmetry and concircular Ricci pseudosymmetry.

Theorem 6. If a (2n + 1)− dimensional M almost
C(α)− manifold is a concircular pseudosymmetric manifold,
then we can see either λ6 � 0 or α � (r/2n(2n + 1)).

Proof. Let us assume that the manifold M is a concircular
pseudosymmetric manifold. &en, we can write

R U1, U2( 􏼁 · 􏽥Z􏼐 􏼑 U5, U4, U3( 􏼁 � λ6Q(g, 􏽥Z) U5, U4, U3; U1, U2( 􏼁,

(76)

for each U1, U2, U3, U4, U5 ∈ χ(M). In this case, we yield as
follows:

R U1, U2( 􏼁􏽥Z U5, U4( 􏼁U3

− 􏽥Z R U1, U2( 􏼁U5, U4( 􏼁U3

− 􏽥Z U5, R U1, U2( 􏼁U4( 􏼁U3 − 􏽥Z U5, U4( 􏼁R U1, U2( 􏼁U3

� − λ6 􏽥Z U1ΛgU2􏼐 􏼑U5, U4􏼐 􏼑U3 + 􏽥Z U5, U1ΛgU2􏼐 􏼑U4􏼐 􏼑U3􏽮

+ 􏽥Z U5, U4( 􏼁 U1ΛgU2􏼐 􏼑U3􏽯.

(77)

If necessary arrangements are made in here and we
choose U1 � U5 � ξ and using (8), (69) in (77), we obtain as
follows:
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αg U2,
􏽥Z ξ, U4( 􏼁U3􏼐 􏼑ξ − αη 􏽥Z ξ, U4( 􏼁U3􏼐 􏼑U2

− α α −
r

2n(2n + 1)
􏼠 􏼡η U2( 􏼁g U4, U3( 􏼁ξ + α α −

r

2n(2n + 1)
􏼠 􏼡η U3( 􏼁η U2( 􏼁U4

+ α􏽥Z U2, U4( 􏼁U3 + α α −
r

2n(2n + 1)
􏼠 􏼡η U3( 􏼁g U2, U4( 􏼁ξ

− α α −
r

2n(2n + 1)
􏼠 􏼡η U3( 􏼁g U2, U4( 􏼁ξ + αη U4( 􏼁􏽥Z ξ, U2( 􏼁U3

− α α −
r

2n(2n + 1)
􏼠 􏼡η U4( 􏼁g U2, U3( 􏼁ξ + α α −

r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁U4

+ αη U3( 􏼁􏽥Z ξ, U4( 􏼁U2 � −λ6 α −
r

2n(2n + 1)
􏼠 􏼡g U4, U3( 􏼁η U2( 􏼁ξ􏼨

− α −
r

2n(2n + 1)
􏼠 􏼡η U2( 􏼁η U3( 􏼁U4 − 􏽥Z U2, U4( 􏼁U3

− α −
r

2n(2n + 1)
􏼠 􏼡g U2, U4( 􏼁η U3( 􏼁ξ + α −

r

2n(2n + 1)
􏼠 􏼡g U2, U4( 􏼁η U3( 􏼁ξ

− η U4( 􏼁􏽥Z ξ, U2( 􏼁U3 + α −
r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁η U4( 􏼁ξ

− α −
r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁U4 − η U3( 􏼁􏽥Z ξ, U4( 􏼁U2􏼩.

(78)

If we use the expression (69) again in (78) and make the
necessary adjustments, then we obtain as follows:

− α α −
r

2n(2n + 1)
􏼠 􏼡g U4, U3( 􏼁U2 + α􏽥Z U2, U4( 􏼁U3

− α α −
r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁U4 � −λ6 α −

r

2n(2n + 1)
􏼠 􏼡g U4, U3( 􏼁η U2( 􏼁ξ􏼨

− 􏽥Z U2, U4( 􏼁U3 + α −
r

2n(2n + 1)
􏼠 􏼡η U4( 􏼁η U3( 􏼁U2

− α −
r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁U4 − α −

r

2n(2n + 1)
􏼠 􏼡g U4, U2( 􏼁η U3( 􏼁ξ􏼩.

(79)

If we replace the expression (68) in (79) and make the
necessary adjustments, we have the following:
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− α2g U4, U3( 􏼁U2 + α2g U2, U3( 􏼁U4 + αR U2, U4( 􏼁U3

� −λ6 α −
r

2n(2n + 1)
􏼠 􏼡g U4, U3( 􏼁η U2( 􏼁ξ − R U2, U4( 􏼁U3􏼨

+
αr

2n(2n + 1)
g U4, U3( 􏼁U2 −

αr

2n(2n + 1)
g U2, U3( 􏼁U4

+ α −
r

2n(2n + 1)
􏼠 􏼡η U4( 􏼁η U3( 􏼁U2

− α −
r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁U4

− α −
r

2n(2n + 1)
􏼠 􏼡g U4, U2( 􏼁η U3( 􏼁ξ􏼩.

(80)

If we apply ξ ∈ χ(M) to both sides of (80) and make use
of (11), then we obtain as follows:

λ6 α −
r

2n(2n + 1)
􏼠 􏼡 −g U4, U2( 􏼁 + η U4( 􏼁η U2( 􏼁􏼂 􏼃 � 0. (81)

On the other hand, we know that there is a g metric such
that

g φU4,φU2( 􏼁 � g U4, U2( 􏼁 − η U4( 􏼁η U2( 􏼁, (82)

on a (2n + 1) dimensional almost contact manifold [26].
&erefore, equation (81) can be written as follows:

λ6 α −
r

2n(2n + 1)
􏼠 􏼡g φU4,φU2( 􏼁 � 0. (83)

It is clear from the last equation that

λ6 � 0,

or α �
r

2n(2n + 1)
.

(84)

&is completes our proof. □

Corollary 5. If a (2n + 1)− dimensional M almost
C(α)− manifold is a concircular pseudosymmetric manifold,
then M is either α � (r/2n(2n + 1)) or a concircular semi-
symmetric manifold.

Corollary 6. If a (2n + 1)− dimensional M almost
C(α)− manifold is a concircular pseudosymmetric manifold,
then M is a real space form with a constant section curvature.

Theorem 7. If a (2n + 1)− dimensional M almost
C(α)− manifold is a concircular Ricci pseudosymmetric
manifold, then M is either a co-Keahler, α � (r/2n(2n + 1))

or λ7 � 0.

Proof. Let us assume that the manifold M is a concircular
Ricci pseudosymmetric manifold. &en, we can write as
follows:

R U1, U2( 􏼁 · 􏽥Z􏼐 􏼑 U5, U4, U3( 􏼁 � λ7Q(S, 􏽥Z) U5, U4, U3; U1, U2( 􏼁,

(85)

for each U1, U2, U3, U4, U5 ∈ χ(M). In this case, we yield the
following:

R U1, U2( 􏼁􏽥Z U5, U4( 􏼁U3 − 􏽥Z R U1, U2( 􏼁U5, U4( 􏼁U3

− 􏽥Z U5, R U1, U2( 􏼁U4( 􏼁U3

− 􏽥Z U5, U4( 􏼁R U1, U2( 􏼁U3

� −λ7 􏽥Z U1ΛSU2( 􏼁U5, U4( 􏼁U3􏽮

+􏽥Z U5, U1ΛSU2( 􏼁U4( 􏼁U3

+ 􏽥Z U5, U4( 􏼁 U1ΛSU2( 􏼁U3􏽯.

(86)

If necessary arrangements are made in here and we
choose U1 � U5 � ξ and using (8), (69), and (70) in (86),
then we obtain as follows:

αg U2,
􏽥Z ξ, U4( 􏼁U3􏼐 􏼑ξ − αη 􏽥Z ξ, U4( 􏼁U3􏼐 􏼑U2

− α α −
r

2n(2n + 1)
􏼠 􏼡η U2( 􏼁g U4, U3( 􏼁ξ

+ α α −
r

2n(2n + 1)
􏼠 􏼡η U3( 􏼁η U2( 􏼁U4

+ α􏽥Z U2, U4( 􏼁U3 + α α −
r

2n(2n + 1)
􏼠 􏼡η U3( 􏼁g U2, U4( 􏼁ξ

− α α −
r

2n(2n + 1)
􏼠 􏼡η U3( 􏼁g U2, U4( 􏼁ξ + αη U4( 􏼁􏽥Z ξ, U2( 􏼁U3

− α α −
r

2n(2n + 1)
􏼠 􏼡η U4( 􏼁g U2, U3( 􏼁ξ

+ α α −
r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁U4

+ αη U3( 􏼁􏽥Z ξ, U4( 􏼁U2 �

− λ7 α −
r

2n(2n + 1)
􏼠 􏼡g U4, U3( 􏼁S U2, ξ( 􏼁ξ􏼨

− α −
r

2n(2n + 1)
􏼠 􏼡S U2, ξ( 􏼁η U3( 􏼁U4 − 2nα􏽥Z U2, U4( 􏼁U3

− α −
r

2n(2n + 1)
􏼠 􏼡S U2, U4( 􏼁η U3( 􏼁ξ

+ α −
r

2n(2n + 1)
􏼠 􏼡S U2, U4( 􏼁η U3( 􏼁ξ

− 2nαη U4( 􏼁􏽥Z ξ, U2( 􏼁U3 + α −
r

2n(2n + 1)
􏼠 􏼡S U2, U3( 􏼁η U4( 􏼁ξ

− α −
r

2n(2n + 1)
􏼠 􏼡S U2, U3( 􏼁U4 − 2nαη U3( 􏼁􏽥Z ξ, U4( 􏼁U2􏼩.

(87)
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If we use the expression (69) again in the last equation
and make the necessary adjustments, then we obtain as
follows:

− α α −
r

2n(2n + 1)
􏼠 􏼡g U4, U3( 􏼁U2 + α􏽥Z U2, U4( 􏼁U3

+ α α −
r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁U4 � −λ7 2nα α −

r

2n(2n + 1)
􏼠 􏼡g U4, U3( 􏼁η U2( 􏼁ξ􏼨

− 2nα􏽥Z U2, U4( 􏼁U3 − 2nα α −
r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁η U4( 􏼁ξ

+ 2nα α −
r

2n(2n + 1)
􏼠 􏼡η U4( 􏼁η U3( 􏼁U2 + α −

r

2n(2n + 1)
􏼠 􏼡S U2, U3( 􏼁η U4( 􏼁ξ

− α −
r

2n(2n + 1)
􏼠 􏼡S U2, U3( 􏼁U4 − 2nα α −

r

2n(2n + 1)
􏼠 􏼡g U4, U2( 􏼁η U3( 􏼁ξ􏼩.

(88)

If we replace the expression (68) in (88) and make the
necessary adjustments, we have as follows:

− α2g U4, U3( 􏼁U2 + α2g U2, U3( 􏼁U4

+ αR U2, U4( 􏼁U3 � −λ7 2nα α −
r

2n(2n + 1)
􏼠 􏼡g U4, U3( 􏼁η U2( 􏼁ξ􏼨

− 2nαR U2, U4( 􏼁U3 +
2nαr

2n(2n + 1)
g U4, U3( 􏼁U2

−
2nαr

2n(2n + 1)
g U2, U3( 􏼁U4 − 2nα α −

r

2n(2n + 1)
􏼠 􏼡g U2, U3( 􏼁η U4( 􏼁ξ

+ 2nα α −
r

2n(2n + 1)
􏼠 􏼡η U4( 􏼁η U3( 􏼁U2 + α −

r

2n(2n + 1)
􏼠 􏼡S U2, U3( 􏼁η U4( 􏼁ξ

− α −
r

2n(2n + 1)
􏼠 􏼡S U2, U3( 􏼁U4 − 2nα α −

r

2n(2n + 1)
􏼠 􏼡g U4, U2( 􏼁η U3( 􏼁ξ􏼩.

(89)

If we apply ξ ∈ χ(M) to both sides of (89) and make use
of (11), then we get

2nα α −
r

2n(2n + 1)
􏼠 􏼡λ7 −g U4, U2( 􏼁 + η U4( 􏼁η U2( 􏼁􏼂 􏼃 � 0.

(90)

On the other hand, we know that there is a g metric such
that

g φU4,φU2( 􏼁 � g U4, U2( 􏼁 − η U4( 􏼁η U2( 􏼁, (91)

on a (2n + 1) dimensional almost contact manifold [26].
&erefore, equation (90) can be written as follows:

2nα α −
r

2n(2n + 1)
􏼠 􏼡λ7g φU4,φU2( 􏼁 � 0. (92)

It is clear from the last equation that

α � 0,

λ7 � 0,

or α �
r

2n(2n + 1)
.

(93)

&is completes our proof. □
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Corollary 7. If a (2n + 1)− dimensional M almost
C(α)− manifold is a concircular Ricci pseudosymmetric
manifold, then M is either a co-Keahler, α � (r/2n(2n + 1))

or a concircular semisymmetric manifold.

Corollary 8. If a (2n + 1)− dimensional M almost
C(α)− manifold is a concircular Ricci pseudosymmetric manifold,
then M is a real space form with a constant section curvature.
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