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Preface 
It is our immense pleasure to introduce the book titled Materials Development and Processing for 
Biomedical Applications. This book is mainly focused on various methods of manufacturing, sur-
face modifcations, and advancements in biomedical applications for all kinds of readers. In particu-
lar, the fundamental aspects are discussed for a better understanding of the processing of various 
biomedical materials such as metals, ceramics, polymers, composites, etc. Besides, advancements 
in various felds of biomedical applications are emphasized. The book is basically focusing on fve 
different aspects such as materials properties, development, processing, surface coatings, and future 
perspectives of advanced biomedical device fabrications. 

The development and applications of various metallic and non-metallic materials are given 
importance in recent days and advancements in the development of new materials are highly appre-
ciated. Biomedical materials from the micro-nano scale possess various properties which will 
signifcantly affect the resulting properties. The introduction to biomaterial and the properties of 
various biomedical materials are important to understand for the further development of biomedical 
materials with better biocompatibility and without any adverse effects. Authors have elaborated the 
various properties of biomedical materials at the beginning in several chapters which will enrich the 
fundamental knowledge of the readers. Furthermore, synthesis of nano materials, the properties of 
degradable and non-degradable (permanent) implant materials are discussed extensively. Following 
the materials properties part, the development of degradable and polymeric materials is discussed. 
Interestingly, Mg alloys have similar mechanical properties close to the natural bone; however, their 
chemical reactivity is much faster and a faster degradation rate limits them for implant applications. 
Ultra-pure Mg possesses a very low corrosion rate (~0.1 mm/y), yet mechanical properties are 
poor, and alloying and processing are necessary to enhance the properties. The degradable metallic 
implant materials, particularly of Mg-based alloys developments, processing through severe plastic 
deformation (SPD) processes are discussed for manufacturing degradable stent materials which 
shows the improvement in the required properties. Besides, the development of 2D materials and 
applications of 3D printing technology to fabricate polymeric materials for biomedical applications 
are discussed. 

Laser processing is one of the precise techniques used for the fabrication of micro/nano func-
tional surfaces and is attractive for biomedical applications. Surface laser texturing to fabricate 
the micro/nano surfaces and their biomedical applications are discussed. Laser powder bed fusion 
(LPBF) to fabricate Ti-based alloys are discussed in two parts. Part 1 discusses fabrication, the 
process details, and the infuencing parameters of LPBF. Further, Part 2 discusses the characteristic 
properties of as-built and post-treated titanium alloys. These chapters comprehensively discuss the 
prospects of LPBF, and it is one of the promising topics for the fabrication of Ti-based alloys for 
biomedical applications and readers can get the benefts from these chapters. Online monitoring 
during laser processing is one of the interesting topics to understand and optimizing the processing 
condition are discussed. In particular, collaborative monitoring and artifcial intelligence of optical 
signals, photoacoustic signals, image signals, temperature signals, etc., during high potential laser 
surgeries (such as orthopedic surgery, eye surgery, and so on) will be benefcial for the precise con-
trol of the process. It is one of the demanding technologies for the modern biomedical industries. 
Furthermore, laser processing and ablation as one of the rapid processes has also been focused on 
fabricating the nanoparticles for various biomedical applications. In this context, the laser-assisted 
production of calcium phosphate nanoparticles from marine origin has also been discussed, which 
will give the idea to the readers to expand the laser processing for nanoparticle synthesis for the 
applications in various scales for energy and environmental applications. 

Surface treatments and modifcation of implant materials are benefcial to alter the surface-
related properties such as surface energies, chemical composition, corrosion resistance, mechanical 



 x Preface 

properties, and biocompatibility. Furthermore, surface treatments and subsurface modifcation in 
certain cases are advantageous for the implant to introduce porous structures without altering the 
bulk properties of implants. Surface treatments such as surface mechanical attrition treatments 
(SMAT), chemical conversion treatments/coatings, anodic oxidation, plasma electrolytic oxida-
tion, polymeric coatings, ceramic coatings, composite coatings, vacuum deposition, plasma coat-
ings, electrospinning, etc. are some of the techniques commonly used for metallic implants. The 
introduction to these techniques, processing conditions, and properties are emphasized by several 
authors and discussed in detail. The SMAT is a mechanical treatment used to refne the microstruc-
ture at the surface and subsurface levels to enhance the corrosion resistance. Anodic oxidation of 
titanium alloys results in the formation of ordered nanotubes and enhances the biocompatibility 
of implants. Further, control of process parameters such as anodizing environment, condition, and 
post-treatments result in porous to ordered surfaces and altered properties. A detailed discussion 
about the infuencing parameters and results properties are explained. Electrospinning is one of the 
evolving techniques to coat polymeric and composite materials directly over implant surfaces; one 
of the studies on electrospinning of polymers on degradable implants is discussed for biomedical 
applications. A wide range of surface treatments covered in this book will be helpful for readers to 
understand the importance of surface treatments and their future perspectives. 

At the end of this book, the chapters discuss the advanced techniques such as fexible electronics, 
biosensors, microfuidic devices, chips, etc. for advanced health care applications. An overview of 
the key advances in wearable, fexible, smart biosensors and their potential in sensitivity and reli-
ability is discussed. In particular, materials/components used for advanced health care diagnostic 
devices, signal measurements, and exercise-based wearable devices, ocular wearable, internet-of-
things-based biosensors for the biomedical feld are explained. Various types of organs-on-a-chip 
(OOc), also called micro physiological systems, used in biomedical applications are also explained. 
Overall, the chapters present in the book are comprised of a wide range of topics for the beneft of 
the readers working in the area of biomedical applications. Therefore, the editors strongly believe 
that the resources given in this book from various authors will be helpful for researchers from basic 
to advanced levels. 

Thank you. 

Editorial Team 
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1.1 INTRODUCTION 

Not all things that are big, are always beautiful. Tiny things make wonders. Nano—a unit prefx— 
meaning “one billionth”—an element of 10−9 or 0.000000001. The term “nano” has its root deep 
from the Greek term “nanos” or Latin “nanus”, meaning “dwarf”. Nanomaterials are exploited to 
designate the fabrication of materials stretching in size from 1–100 nm. Progressive and prospec-
tive research over a couple of decades has facilitated the development of hybrid materials via inte-
grated design. The conceptualization of nanotechnology attracted more attention during the 1990’s. 
However, the word nanotechnology was rediscovered and publicized in a lecture delivered by phys-
ics Nobel laureate Richard P. Feymann titled “There’s Plenty of Room at the Bottom” on the eve of a 
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gathering of the American Physical Society at Caltech on 29th December 1952. Nanotechnology has 
reformed the era of science and engineering over a span of two decades since the beginning of the 
21st century. The tailor-made nanomaterials have initiated researchers to discover, design, develop, 
and manipulate the sole properties of constituents on nano scale. The fabrication of nanomaterials 
has rendered a tremendous contribution to material science. Nanomaterials possess certain unique 
physiochemical characteristics which make them unique and account for their vivid applications in 
comparison with the corresponding bulk material. 

The incorporation of engineered materials in science and technology has quintessentially 
replaced the traditional metals to reach new horizons in therapeutics. The implementation of 
nanoparticles in the recapitulation of technologies is attributable to the nanoscale size of the rein-
forcing phase and the fact that the surface to volume ratio is expressively higher than conventional 
materials. 

Nanomaterials are vibrantly used in medicine and therapeutics for the profound recognition of 
strategic biological molecules, specifc and benign imaging of ailing tissues, and new forms of 
therapeutics. In the recent past, numerous nanoparticle-based therapeutic and diagnostic mediators 
have been established for the treatment of numerous diseases. The exploitation of nanoparticles 
in medicine provides exceptional choice to alter some essential properties of therapeutic carriers 
which include their solubility, diffusivity, bio-distribution, release characteristics, and immunoge-
nicity. Accurate nanoparticle engineering has generated longer fow half-lives, enhanced bioavail-
ability, and lower toxicity. 

1.2 PROPERTIES OF NANOMATERIALS 

Nanomaterials possess remarkable properties that make them distinct from their bulk counterparts 
as depicted in Figure 1.1. Materials when reduced to nano scale reveal properties exclusively diverse 
from their bulk material. 

For instance, copper in its bulk state is opaque, whereas nano copper is transparent. Similarly, 
aluminum is stable even at a higher temperature, but nano-aluminum is combustible. Thus materi-
als in their nano scale have signifcant changes in properties which are entirely different from the 
micro- and macroscopic materials. The distinctive size, shape, and structure of the nanomaterials 
justify the reactivity, sensitivity, mechanical, magnetic, optical, and thermal properties of nanoma-
terials. This accounts for the unique and ubiquitous properties of the nanomaterials, thereby inviting 
intense scientifc research providing a prospective outlook into the future. 

FIGURE 1.1 Materialistic properties of nanomaterials. 
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1.2.1 MECHANICAL PROPERTIES 

Mechanical properties of metals are often associated with mechanical characteristics of metal 
which include strength, toughness, hardness, brittleness, plasticity, elasticity, rigidity, malleability, 
and ductility. The traditional inorganic metals are brittle, hard, and rigid but lack plasticity and 
elasticity. Alternatively, organic materials are fexible but are not rigid, brittle, and strong. These 
disadvantages are overcome by the nanomaterials which possess high surface area, volume, and 
quantum effects when compared to micro- and macroscopic materials. The infuence of the selec-
tion of nanomaterials, the process of fabrication, grain size, and structure of the grain boundary 
has a noteworthy effect on the mechanical properties of nanomaterials. In comparison with the 
bulk, nanomaterials refne the grain size and form inter/intragranular structure, improving the grain 
boundary and thereby enhancing the mechanical properties of nanostructured materials. The fex-
ural strength of nano-Al2O3 ceramics is comparatively stronger when compared with micro-scale 
monolithic alumina ceramics (Teng et al. 2007). 

1.2.2 MAGNETIC PROPERTIES 

Nanomaterials have properties entirely different from bulk material. The reduction in size or dimen-
sion of the nanomaterial introduces quantum confnement by reducing the symmetry of the system. 
The total energy of a ferromagnetic material is the summation of exchange energy, anisotropic 
energy, demagnetization energy, and energy due to the applied magnetic feld. As in the case of 
nanomaterials, interaction among the exchange energy, anisotropic energy, and demagnetization 
energy is more pronounced. When the dimensions of the grain size become smaller, exchange 
forces dominate because of strong coupling and cause all the neighboring atoms to align in a par-
ticular spin. From the alignment, there exists a diameter called critical diameter that can be calcu-
lated. When the size of the particle more reduced than the critical diameter, magnetization becomes 
unstable and loses magnetization and the ferromagnetic material becomes superparamagnetic. The 
shrinkage in particle size increases the saturated magnetization and the reversal of magnetiza-
tion becomes insignifcant in nanomaterials. The structural and magnetic features of biocompatible 
Fe3O4 magnetic nanoparticles are used in labeling units of biomedical applications. 

1.2.3 OPTICAL PROPERTIES 

The surface morphology has a great effect on the optical and semiconducting properties of nano-
materials. The general optical properties of materials include refection, refraction, transmission, 
absorption, and emission. The origin of the color of materials is caused by the surface plasmons. The 
surface plasmon is a natural phenomenon of oscillation of an electron at the junction of the material. 
The optical properties are largely dependent on the electronic structure—nanosphere in particular, 
which in turn varies with the morphology as it depends on the surface atoms. When the sphere is 
small in comparison with the wavelength of the incident light, and the frequency is quite close to 
that of the surface plasmon, then the surface plasmon absorbs more energy. Because of reduced 
dimensionality, the drift of electrons is restricted in nano scale when related to its bulk counterpart. 
The smaller the magnitude of the particle, the wider will be the optical band gap and shorter will be 
the wavelength and hence will be blue shifted. For example, spherical gold nanomaterial of 25-nm 
diameter appears in the region of green whereas gold nanomaterials of 100 nm appear orange. The 
factors that govern the size-dependent optical properties in nanomaterials are augmented energy 
level spacing—quantum effect and Surface Plasmon Resonance. When the dimension of the nano-
material is confned to the nanometer range, with its characteristic wavelength approaching either 
closer to or less than the de Broglie wavelength of the respective charge carriers, which may be 
electrons or holes or the wavelength of the light, the periphery of the crystal gets ruptured in case of 
crystalline solids, whereas the atomic density of amorphous solids changes in the nanometer range. 
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1.2.4 THERMAL PROPERTIES 

The thermal properties involve the transfer of heat in nanomaterials. The thermal properties of mate-
rials in nanoscale dimensions largely depend on the surface properties, classical or quantum size, 
interfacial structure, which is usually insignifcant in bulk materials. The thermal properties could 
be accounted for the conduction of electrons as well as phonons which causes lattice vibrations. In 
nanostructured materials, the size of the nanomaterial becomes comparable to the mean free path 
of phonons through phonon scattering, phonon confnement, and quantization effects of phonon. 
Nanoscale thermal management suffers a slow progression because of the diffculties experimental 
setup and a controlled thermal transportation feature in the nanoscale dimension. 

1.2.5 CATALYTIC PROPERTIES 

Nanomaterials have been used as a catalyst in enormous chemical reactions. Nanocatalyst stands as 
a perfect boundary between the homogeneous and heterogeneous catalyst. Nanocatalyst embarks 
supreme effcacy in terms of its high activity, selectivity, sensitivity, effciency, and stability. The 
catalytic activity of nanomaterials is confned to the structural, quantum size and electronic effects. 
It is a well-known fact that a decrease in the dimension of the particles increases the surface area 
thereby enabling more and more reactant molecules to get adsorbed on the nanomaterials, eventu-
ally resulting in enhanced catalytic activity. The existence of a greater quantity of surface atoms 
creates more active sites for the adsorption of reactant molecules. These phenomena cause a greater 
dissociation of the binding energy of the reactants and a pronounced catalytic activity of the nano-
materials resulting in the formation of the products. 

1.2.6 ELECTRICAL PROPERTIES 

The electrical conductivity of nanomaterials can be expressed in terms of conductivity or resistiv-
ity. The electrical conductivity is justifed by the band structure of solids. Unlike nanomaterials, the 
conductivity of bulk material is independent of measurements like diameter, area of cross-section, 
twist of conductivity, etc. When a material is condensed to nano size, the electron is restricted for 
movement to a confned particular dimension and there is an increase in surface scattering. Hence 
the electrical conductivity drops down with reduced dimensions. However, the electrical conduc-
tivity may be altered due to the establishment of a well-ordered microstructure when the particle 
size is diminished to the nm range. The nanomaterials are associated parallel to the axis, which 
contributes to the conduction through the tunneling effect. The smaller the diameter, the better 
alignment of nanomaterials, which results in higher electrical conductivity. The conductivity of a 
multi-walled carbon nanotube is very much different from the single-walled carbon nanotube of the 
same dimensions. 

1.2.7 ENERGY BAND CONDUCTION PROPERTIES 

Semiconductor nanomaterials often refer to a variety of compounds of group II–VI, III–V, or IV–VI 
of the periodic table into which these elements are formed. For example, silicon and germanium 
occupy group IV, gallium and indium constitute group III–V, while those compounds of zinc and 
cadmium form II–VI semiconductors. The semiconducting properties are associated with the elec-
tronic structure and as discussed in the previous section, electrical property. The precise surface area 
and surface-to-volume ratio considerably increase as the size of the material decreases. Factors such 
as size, shape, and surface characteristics can be changed to control their properties for exclusive 
applications of interest. A decrease in the particle size towards the nanometer range causes an esca-
lation in the bandwidth between the valence band and conduction band. In other words, the confne-
ment of an electron restricts the transition of an electron from the highest occupied molecular orbital 
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to the lowest unoccupied molecular orbital. This eventually results in the blue shift of the absorbed 
light, which is towards the high energy region. The transfer of electrons and holes in semiconductor 
nanomaterials is predominantly directed by the distinguished quantum confnement, and the means 
of transport of phonons and photons are essentially varied by the size and geometry of the materials. 

1.3 CLASSIFICATION OF NANOMATERIALS 

1.3.1 CLASSIFICATION BASED ON SPATIAL DIMENSION 

According to Richard W. Siegel (Siegel 1993), based on the spatial dimensions, nanomaterials are 
classifed into zero dimensional (0D) nanomaterials, one dimensional (1D) nanomaterials, two 
dimensional (2D) nanomaterials, and three dimensional (3D) nanomaterials. 

1.3.1.1 Zero Dimensional (0D) Nanomaterials 
When all the three dimensions are confned to one particular point and thus the movement of elec-
tron is restricted in all the three x,y,z directions, it is called zero dimensional. Example: nano dots, 
nanoparticles, quantum dots. 

1.3.1.2 One Dimensional (1D) Nanomaterials 
In case of one dimensional nanomaterials, two dimensions are reduced to nm range; only one 
dimension remains large and the electron is permitted to move in this one dimension. Example: 
nanowires, nanotubes, nano rods. 

1.3.1.3 Two Dimensional (2D) Nanomaterials 
Two dimensional nanomaterials have one dimension restrained to nm range and the electron is per-
mitted to move freely in the remaining two dimensions which remains large. Example: nanowells, 
nanoflms, nanocoatings, nanolayers, nanofakes, nanoplatelets. 

1.3.1.4 Three Dimensional (3D) Nanomaterials 
Three dimensional nanomaterials have no confnement in the nm range and the electron is permit-
ted to move in all the x,y,z directions. They possess an arbitrary dimension above 100 nm. Example: 
bulk nanomaterials, nanopowders. 

1.3.2 CLASSIFICATION BASED ON COMPOSITION 

On the basis of composition, nanomaterials can be classifed as organic nanomaterials, inorganic 
nanomaterials, and hybrid nanomaterials. 

1.3.2.1 Organic Nanomaterials 
Organic nanomaterials entail carbon-based nanomaterials taking different forms of spheres, cylin-
ders, ellipsoids, or tubes. There exist non-covalent interactions like hydrogen bonding, pi staking, 
and electrostatic interactions. Organic nanomaterials are assembled upon either natural or synthetic 
organic molecules. Example: fullerenes, carbon nanotubes (CNTs), single-walled and multi-walled 
carbon nanotubes (SWCNTs and MWCNTs) and electrospun nanofbers. 

1.3.2.2 Inorganic Nanomaterials 
Inorganic nanomaterials include metals based, oxides of metal based, and quantum dots— 
nanomaterial metalloids in nano dimensions. They may extract the form of the oxide or hydroxide 
or phosphate or sulphide or chalcogenide of the metal. Example: gold nanoparticles, zinc oxide 
nanoparticles, mesoporous silica nanoparticles. 
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1.3.2.3 Hybrid Nanomaterials 
Hybrid nanomaterials are composite nanomaterials and are a combination of organic-organic 
nanomaterial, organic-inorganic nanomaterial and inorganic-inorganic nanomaterials. They are 
unique chemical conjugates of organic and inorganic nanoparticles; as a result, multifunctional 
hybrid materials are obtained, which possess immense applications. Example: lipid-polymer hybrid 
nanoparticle, hybrid silica particles. 

1.4 BIOMEDICAL APPLICATION OF NANOMATERIALS 

The rise of inventive and fabricated nanomaterials is at the forefront in emergent areas of bio-
medical applications. The exploitation of rationally designed nano biomaterials in clinical applica-
tions has surpassed traditional therapeutic modalities. Nanomaterials have invoked engrossment 
among researchers because of their unique physicochemical properties, biocompatibility, and 
desired functionalization modifcation, size- and shape-dependent optical and magnetic proper-
ties. Nanomaterials scale well in biomedical applications which include diagnosis, targeted drug 
delivery, prostheses, and implants. A multifunctional framework centered around metal, carbon, 
polymer, biological moieties, and lipid-based nanomaterials is associated with biomedical imaging, 
diagnostics, and/or therapeutics and serves as a synergistic combinational platform in biomedical 
applications. 

1.4.1 BIOMEDICAL IMAGING 

Early detection and diagnosis offer a quintessential role in biomedical studies. Fluorescence imag-
ing is vividly used for the characterization of novel drugs or of new formulations of prevailing drugs 
exclusively at the preclinical level. Integrating photo luminescent imaging analytics and molecular 
probes over the preceding years have been used in imaging of cell/tissue in diagnostics. Photo lumi-
nescent imaging constitutes the preliminary stage in the drug development process for the transla-
tion phase from in vitro assays to preclinical systems, as well as to evaluate their ADME. Functional 
imaging will provide a detailed picture of the local and real time biological activity of the drug. The 
technique involves the radioactive labeling of the fuorescent material which can be applied in the 
early progress of a drug and transform the applicability, in vitro on cells, then in vivo in small ani-
mals and fnally rendered into the clinic with restrictions. It is not appropriate to use this method for 
small drugs due to the large size of the fuorophores. But this can be applied for a nanoparticle, on 
the basis of the assumption that the labeling should not intensely modify the corresponding property 
of the nanoparticles or that the fuorophore could be a fragment of the fnal formulation. 

Prominent advances of recent times include the application of optical nanoprobes, such as per-
sistent luminescent nanoparticles (PLNPs) which are developed to replace the usage of long-lasting 
near infrared (NIR) luminescence capability. The added advantage to the usage of determined 
luminescence nanoparticles is optical imaging without constant excitation and autofuorescence. 
The most common and extensively used nanoparticles in biomedical imaging and cancer therapy 
include nanoparticles, nano rods, nanospheres, nano shells, and nano stars. Nanoparticles aid as 
drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation 
dose enhancers. Nanoparticles continue to be potential candidates in biomedical imaging for the 
major imaging techniques Magnetic Resonance Imaging (MRI), Positron Emission Tomography 
(PET), Single Photon Emission Computed Tomography (SPECT), Magnetic Particle Imaging 
(MPI), Nuclear Medicine, Ultrasound (US) imaging, Computed Tomography (CT), and Optical 
Imaging in particular. The breakthrough in the advances of NPs includes the use of iron oxide 
NPs (Pellico et al. 2017), the design of radio isotope chelator free particles for PET (Dash et al. 
2019), and the development of fuorescent NPs such as carbon dots and up-converting nanopar-
ticles (Siddique et al. 2020). 
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1.4.2 TARGETED DRUG DELIVERY AND CONTROLLED DRUG RELEASE 

Drug delivery often refers to the design, construction, engineering technologies and transport of a 
particular therapeutic compound to attain the desired therapeutic effect. Drugs can be directed into 
several routes into the human body which may be buccal, oral, pulmonary, transdermal, ocular, 
sublingual, vaginal, and anal. These conventional approaches of drug delivery involve the transpor-
tation of the drug through the blood to the target of interest. The major setback of the traditional 
method is the damage caused to the normal cells. Hence, research is intensifed in seeking a selec-
tive and targeted drug delivery where the drug is being delivered to the target without affecting the 
healthy cell. Another aspect of concern is the advance of biodegradable nanoparticles as drug deliv-
ery devices (Idrees et al. 2020). Various morphologies involving large surface-area-to-volume ratios 
such as nanoparticles, nanospheres, nano-encapsules are used as drug delivery systems. The small 
size of the nanoparticles penetrate through the smaller capillaries, being effortlessly taken up by the 
cells, and the biodegradability of the nanomaterial allows effcient and controlled drug accumula-
tion and controlled drug release to the target site over a duration of time. Nanomaterials also defend 
the captured drug from gastrointestinal interferences. The formulations of targeted drug delivery 
of nanoparticles and controlled drug release involve drugs to be dissolved, entrapped, adsorbed, 
attached, and encapsulated into the nanomaterial matrix (Yetisgin et al. 2020). 

Each nanomaterial has its own characteristic way of targeted drug delivery. For instance, nano 
capsules are a vesicular system with the drug bounded by a polymer membrane, whereas nano-
spheres are matrix types of structures where the drug is physically and uniformly spread. As in the 
case of nanospheres belonging to the matrix type of system, the drugs are adsorbed at their surface, 
entrapped or dissolved within the particle. Drug delivery systems are in general polymeric and nano 
sized and the different forms of drug delivery systems include nanoparticles, ceramic nanoparticles, 
micelles, polymeric micelles, dendrimers, and liposomes. Polymeric nanoparticles such as PLGA 
(poly(lactide-co-glycide)), PLA (polylactic acid) is largely used for the drug delivery of estradiol. 
The degradation of the polymer can be modifed by changing the block of the copolymer composi-
tion and the molecular weight of the polymer and thus the release of the encapsulated therapeutic 
agent from the polymeric nanoparticle can be transformed from days to months (Masood 2016). 

1.4.3 TISSUE ENGINEERING 

Tissue engineering deals with the art of creating, restoring, replacing, and maintaining tissues and 
organs using biological substituents, which have a very close resemblance to the body’s native tis-
sues/organs. It is a connecting discipline of integrated biology, engineering, material science, and 
medicine. Traditional bone substituents in the biomedical industry include bioceramics like alu-
mina, zirconia, hydroxyapatite, tricalcium phosphates, owing to their low density, biocompatibility, 
chemical stability, and high wear resistance (Eliaz et al. 2017). The implementation of nanotechnol-
ogy in tissue engineering has evolved as evolutionary and revolutionary changes. The most common 
feature of tissue engineering is the fabrication of a three dimensional porous scaffold which serves 
as a substrate and support for tissue growth and directs the cells to grow in the correct anatomi-
cal shape, thereby possessing biocompatibility to avoid inhibition of cell growth. Nanotechnology 
fabricates biomaterials of nanometer size like nanofbers, nanopatterns, and controlled-release 
nanoparticles to mimic native tissues/organs engineering. 

Tissue engineering involves functionality-dependent design and construction of nanostructures. 
For instance, the design and construction of neural tissue require electrical conductivity, while 
bone and cartilage tissues necessitate enhanced mechanical properties (Achachelouei et al. 2019). 
The fabrication of scaffolding material that reiterates the cellular environment on a nano scale has 
raised great interest in recent years. Carbon nanotubes are vividly used in tissue engineering as they 
are chemically stable, conduct electricity, and mechanically strong to be employed as scaffolds. 
Filamentous carbon nanotubes possess a structural alignment that is analogous to the extracellular 
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environment which supports surrounding cells. Thus the carbon nanotubes may have the capability 
to kindle cell function in the same way as the extracellular matrix (Huang 2020). The biocompati-
bility tests of carbon nanotubes in suspension and carbon nanotubes confned in a structure exposed 
that the loose carbon nanotubes suspended in cell culture were found to decline in cell viability. The 
cells that are directly attached to carbon nanotube-containing structures created cell growth and 
demonstrated excellent biocompatibility of carbon nanotubes with living cells. 

1.4.4 ARTIFICIAL IMPLANTS 

The infux of nanoparticles in medicinal devices is an upcoming feld. Devices or materials that 
are positioned within the body superfcially are called artifcial implants. They are intended 
to convey suppositories, monitor body functions, and deliver sustenance to organs and tissues. 
Earlier implants were made of skin, bone, or other body tissues. Later, metals, ceramics, poly-
mers and their composites were designed and largely employed to support, enhance, or to even 
replace a fraction. Artifcial implants can be used permanently as in the case of stents or hip 
implants, while chemotherapy ports or screws to repair broken bones are temporary and are 
removed after healing. But the safety and potential side effect remain a question, though the 
artifcial implants possess good dimensional tolerance, high fracture toughness, good fatigue 
resistance, comparable strength, and modulus close to the bone, high wear resistance of tissue, 
biocompatibility, high purity, and reproducibility. 

The interaction between the artifcial implants and cells has facilitated nanotech research towards 
the frame of nanomaterials towards artifcial implants. The norm of nano-engineered quantum dots 
and magnetic nanoparticles for stem cell tracking and the enrichment of material properties with 
carbon nanotubes and graphene are in progress (Zhao et al. 2020). The biocompatibility of the 
nanomaterials in artifcial implants includes promoting biological tissue for implant integration, 
promoting cell adhesion, providing pathways for vascularization, non-carcinogenesis, non-pyroge-
nicity, non-toxicity, and non-allergic response (Velu et al. 2020). The ability to undergo sterilization, 
autoclave and dry heating, ethylene oxide gas, and radiation account for the sterilizability. The pri-
mary functionality of nanomaterials in artifcial implants is the entrenchment of modulus of elastic-
ity for the stiffness of the material, ultimate tensile strength to withstand a load and dimensional 
accuracy on an economical fabrication process. The ease of molding, extrusion process, machin-
ability, and ability for fber forming elucidate the usage of nanomaterials in manufacturing artifcial 
implants. Nanostructures provide antibacterial properties to prevent implants against postoperative 
infections proposed for bone and implants. Nano-sized silver particles widely aid in the exploration 
of suitable size, shape as well as a novel method of surface modifcations such as SDP technology 
for orthopedic implants (Qing et al. 2018). 

1.4.5 GENE THERAPY 

Despite of the blooming advances in the feld of medicine, cancer remains with a high mortal-
ity rate, especially in developing and underdeveloped countries. One of the leading causes for 
such a high mortality rate is the limitation of actual treatments based on drugs and radiation. 
These confnes include lack of specifcity, reduced drug bioavailability, drug rapid blood clearance, 
poor drug solubility, patient resistance, and disease relapse. Traditionally used chemotherapeutics 
which include cisplatin or taxol have been favored over other therapies due to the selective killing 
of cancer cells preferentially by inhibiting replication or inducing apoptosis. Certain chemothera-
peutics produce adverse effects as well. Chemotherapeutics with anthracyclines and cyclophos-
phamide cores cause serious side effects in patients, killing healthy cells and tissues like bone 
marrow, epithelial cells, and hair follicles. Hence, the development of alternate and more effcient 
treatments that may offer fewer side effects in comparison to the actual therapies remains a chal-
lenge to researchers. 
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Novel technologies for cancer treatment have been employed in the recent past based on the 
research and application of nanotechnology and molecular biology. The targeted level treatment 
remains the limelight of treatment in the recent past and near future. The advance of molecular 
biology permits the manipulation of nucleic acid in the management of numerous genetic diseases 
like cancer. Gene therapy comprises the transmission of genetic material into a target cell nucleus 
for healing concerns with comparatively negligible side effects. This genetic material could be DNA 
or RNA, the complete gene sequence, gene segments, or an oligonucleotide. 

With the development of genomic technologies, nanoparticles owing to their greater penetrating 
power play a critical part in incorporating all the desirable characteristics of modifcation into a 
single gene delivery system (Rodrigues et al. 2020). Lipid and polymer-based gene delivery vectors 
are paved to be sophisticated delivery systems in gene therapy. Polymeric nanoparticles are largely 
employed for gene therapy and protein delivery. 

1.4.6 PHOTODYNAMIC THERAPY 

Photodynamic therapy is emerging to be a remedial modality for early detection and localized 
cancers. The three key components in photodynamic therapy include: photosensitizer, light, and 
molecular oxygen. The photosensitizer is administered either by intravenous injection or by local 
application depending on the part of the body to be treated. Once the drug is absorbed by the 
pathologic tissue, light is exposed. The photosensitizer gets activated by light and forms Reactive 
Oxygen Species (ROS), which in turn kill cancer directly. A major issue faced by prolonged pho-
todynamic therapy is the increased selective accumulation of the photosensitizers within the tumor 
thereby leading to a lower effective dose of the drug. To improve the effcacy of photodynamic 
therapy, efforts were laid to bind the photosensitizer itself by ligands such as monoclonal antibod-
ies or low-density lipoprotein (LDL) or via carrier system such as liposomes and micelles (Gibot 
et al. 2020). 

Nanoparticles are proving to be an emerging paradigm in photodynamic therapy. The fore-
most lead application of nanoparticles in photodynamic therapy is large surface area with a var-
ied functional group for modifed biochemical processes, large surface volume, controlled release 
of drugs, and easy transportation of hydrophobic drugs in blood, high permeability and retention 
effect. Nanoparticles encompassing inorganic oxide, metallic, ceramic and biodegradable polymer 
nanomaterials have successfully been in use in photodynamic therapy in the recent past (Chen et 
al. 2020). Nanoparticles used in photodynamic therapy can be broadly classifed into active and 
passive nanomaterials depending on the mechanism of activation of photosensitizer nanoparticles. 
The role of the mechanism of active nanoparticles can be sub-classifed as activation of photosen-
sitized nanoparticles, up-conversion nanoparticles, and self-lighting nanoparticles. In the case of 
active nanoparticles, materials for photosensitizers like CdSe/CdS/ZnS cause indirect excitation 
of photosensitizers through a Fluorescence Resonance Energy Transfer (FRET) mechanism from 
the nanoparticle to the photosensitizer. Fullerene aids in the transfer of energy from incident light 
directly to surrounding oxygen. 

Based on material composition, passive nanoparticles can be classifed as biodegradable 
and non-biodegradable nanoparticles. Biodegradable nanoparticles include alginate, chitosan, 
cyclodextrin, albumin, PLA, PLGA, wherein the drug is delivered by micelles, dendrimers, 
liposomes, or polymeric nanoparticles, ensures the controlled release of the encapsulated pho-
tosensitizer through biodegradation. Fabrication of non-biodegradable nanomaterials includes 
polyacrylamide in which the two-photon dye is encapsulated by microemulsion, silica which 
assists in the absorption of photosensitizer by covalently bonding through a porous shell, gold 
nanoparticles act as pure carriers, and magnetic iron oxide nanoparticles in which a drug is car-
ried directly or co-encapsulated in a micelle or polymeric nanoparticle. The added advantage of 
magnetic iron oxide nanoparticle is the achievement of target delivery by an external magnetic 
feld (Yang et al. 2019). 
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1.4.7 SONODYNAMIC THERAPY 

Sonodynamic therapy has been considered as a safe alternate to the conventional as SDT uses ultra-
sound at relatively low intensities (ranging from 0.5 to 4 W/cm2) when thermal or mechanical effects 
cannot be induced to living cells (Wan et al. 2016). Porphyrin-based molecules or Xanthene dyes 
are employed in the sonodynamic therapy, as the same were earlier used in photodynamic therapy 
(Buck et al. 2017). These molecules present a Reactive Oxygen Species (ROS)–mediated cytotoxic 
effect when stimulated by ultrasound. The major disadvantage of most of the sonosensitizing agents 
is they are strongly hydrophobic and aggregate easily in the physiological environment, thereby 
decreasing the effcacy and producing a retarding effect in the pharmacokinetic behavior. These 
molecules would indeed be toxic and show low selectivity towards tissues. 

The evolution of nanoparticle-mediated sonodynamic therapy has made a major stride forward 
in overcoming the challenges faced by deleterious side effects caused by chemotherapy and radio-
therapy (Canavese et al. 2018). Nanomaterials may serve as nano sensitizers or active carriers of 
sonosensitizers. Titanium dioxide nanoparticles are the most widely used nano sensitizers in SDT. 
Because of their semiconducting property, they are employed as photosensitizers in photodynamic 
therapy as well to obtain ROS. The therapeutic enhancements obtained with TiO2 NPs, an enriched 
and favored binding and internalization of NPs toward cancer cells and functionalization with tar-
geting molecules make nanoparticles auspicious for the advance towards targeted therapy (Kim et 
al. 2020). The sonodynamic therapy (SDT) of semiconductor metal oxide nanoparticles, for exam-
ple TiO2 and ZnO2, can provide a therapeutic platform in the future (Bogdan et al. 2017). As termed, 
the signifcant role played by the NPs in inducing the cytotoxic effects, as initiators of the SDT 
process, is tremendous. 

1.4.8 CRYOSURGERY 

Cryosurgery is a unique technique when extreme cold derived from liquid nitrogen or argon 
gas is used in surgery to terminate unusual or damaged tissues. Cryosurgery is otherwise 
called freezing therapy, cryotherapy, or cryoablation and has been increasingly used due to the 
controlled annihilation of tumor tissue. But a major setback of cryosurgery is when the gases 
undergo defcit or inappropriate freezing as it fails to destroy the target tumor tissues, and the 
probability of regenesis of tumor is high and the rate of treatment often a failure. Another major 
drawback is that the surrounding healthy tissues/cells may suffer from serious injury due to the 
extreme coldness. Hence, a new strategy of inculcating nanomaterials—nano cryosurgery is 
invoked in biomedical applications to overcome the freezing effciency of the traditional cryo-
surgical procedure. 

The primary protocol of nano cryosurgery is to carry a functional suspension of nanoparticles 
into the target tissues, which then helps as adjuvant or drug carrier either to maximize the freez-
ing heat transfer process, standardize freezing scale, alter ice-ball formation orientation, or avert 
the surrounding healthy tissues from being frozen (Hou et al. 2018). Furthermore, the introduction 
of nanoparticles in the course of cryosurgery with potential challenges and future prospects aid in 
the better imaging of the edge of a tumor as well as the margin of the ice ball. The nano cryosur-
gery is anticipated to move horizons emerging frontline of nano-biomedical engineering. Typical 
nanoparticles (NPs), which are nontoxic, biodegradable, and possess excellent thermal properties 
with a few side effects, produce an accelerated and enlargement of ice-ball formation and enhance 
cryoinjury, thereby promoting the generation of ice nuclei. The applicability of magnetic nanopar-
ticles with high thermal conductivity and good biological compatibility improves nucleation with 
increased kinetic and thermodynamic parameters. Polymeric NPs change the morphology of ice 
crystals and improve thermal conductivity (Stewart et al. 2020). TNF α—conjugated Au NPs causes 
contraction of the tumor without systematic toxicity and destroys tumor cells within the ice ball eff-
ciently with minimal side effects (Hou et al. 2018). Nanoparticle-encapsulated doxorubicin (nDOX) 
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achieves nearly complete eradication of the cancer stem-like cells (CSCs) with fewer side effects 
and enhanced targeting. 

1.4.9 MAGNETIC HYPOTHERMIA 

Over the era, cancer is still considered a deadly disease and most forms of human cancer are not 
curable. The reasons may be multifactorial. But the chief and primary limiting factor remains in the 
lack of understanding of the mechanism by which the tumor grows and the therapeutic intervention. 
The most common and principal types of cancer therapies include chemotherapy, radiation therapy, 
and surgery. Magnetic hyperthermia is an additional modality to cancer therapy but is yet to be 
considered as a standard-of-care therapy. 

The term hyperthermia involves the mild elevation of temperature to induce the death of cancer 
cells and to enhance the effect of radiotherapy and chemotherapy. Heat treatment is used as a chief 
aspect to destroy cancer cells. The principle behind magnetic hyperthermia involves the magnetic 
nanoparticles being activated by an alternating magnetic feld being reconnoitered by targeted heat-
ing of the tumors. The basis of heat generation under alternating magnetic felds both for in vivo 
and in vitro studies for biomedical applications has been a subject of intense research (Chang et al. 
2018). The effcacy of nanomaterials for magnetic imaging-guided hyperthermia, thermal cancer 
therapy, magnetically actuated drug delivery, and bioflm eradication is research of the recent past. 
A gradual increase in the temperature around the cancerous region to 40–43 °C induces signifcant 
cancer cell death in addition to the cytotoxic effect of radiotherapy and chemotherapy. The mag-
netic nanoparticles act as intermediaries for cancer therapy. A steady increase in the temperature 
of the cells above 40 °C produces pronounced effects in the membrane and the interior of the cells. 
Multifunctionalized hybrid nanocomposites involving the combination of magnetic nanoparticles 
with materials like graphene oxide (GO), photoactive materials, mesoporous nanoparticles, and 
polymeric nanoparticles—polymer matrix—embedded with active nanomaterials have been widely 
investigated (Kim et al. 2018). 

1.4.10 ANTIMICROBIAL AND WOUND HEALING 

The largest organ in the human body—skin—covers and integuments the entire body and provides 
protection against pathogens, toxins, and trauma and receives sensory stimuli from the external 
environment. The rupture of the skin leads to a wound, and the wound is often associated with 
infections. The healing of a wound is the extremely synchronized progression of restoring dam-
aged tissue encompassing four sequential, yet overlying biological stages: hemostasis, infamma-
tion, proliferation, and remodeling. A disconcertion in the previously stated wound-healing phases 
due to both external and internal factors may prolong the wound-healing stage and may lead to a 
disappointing outcome, causing a chronic wound status. The colonization of pathogens over the 
wound retards the healing process and infection control remains crucially important. In the emerg-
ing scenario of biomedical applications, nanomaterial-based wound-healing tactics have emerged 
as an effective tool against bacterial infections for their cell specifcity, which was not earlier attain-
able with conventional wound-dressing materials or present therapies. The constructive use of metal 
and alloy nanoparticles have minimal concomitant and enhanced curative activity as compared 
to its ionic counterpart, which is well documented by in vivo excision wound-healing activity of 
silver (Ag), gold (Au), and Ag/Au alloy nanoparticles. It was evident that Ag NPs and Ag/Au NPs 
actively inhibited the growth of gram-negative bacterial pathogens and opportunistic Candida spp. 
(Shanmugasundaram et al. 2017). Nanomaterials with their large surface-to-area volume ratio, 
stability, and tunable properties are designed as drug delivery vehicles or the drug may itself be 
formulated to the nanoscale. These physicochemical properties enable the nanomaterial to pen-
etrate through the layer of skin and interact effciently at the wounded site with a continuous and 
controlled release of therapeutics. Nano-based approaches for wound-healing applications include 
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micelles, polymeric nanocomposites, dendrimers, nanoemulsions, liposomes, cyclodextrins, lipid 
nanoparticles, magnetic nanoparticles, silica nanoparticles, nanographene oxide scaffolds, and 
metal nanoparticles. The applicability of nanomaterials as core antibacterial agents and as vehicles 
for the transportation to wound-healing therapeutic agents will be explored in the future. 

1.5 CONCLUSIONS 

This chapter summarizes the critical role of nanomaterials in biomedical applications. The port-
folio set forward by the nano effects anticipate the evolution of stemming growth towards the 
advancements in biomedicine with engineered structures with novel functionalities. The distinc-
tive properties of nanomaterials such as size, shape, chemical composition, surface structure and 
charge, biocompatibility, aggregation and agglomeration, and solubility, can prominently stimulate 
the interactions with biomolecules and cells, and can be exploited in a multifaceted spectrum of 
biomedical utilities ranging from drug delivery and biosensors to nanorobots. The revolutionary 
innovations—programmable and precise delivery of nanomaterials—impart a positive impact ren-
dered by the biomedical applications, minimizing the adverse effects of traditional therapeutics 
and practices on human health and the environment. The key concerns and encounters in nano-
technology-based approaches provide a futuristic scope and vision of inculcating nanomaterials in 
biomedical applications. 

TABLE 1.1 
Nanodrug Carries Approved in Recent Past in Clinical Trials [17] 

Drug Name Delivery Material Condition Therapeutic Clinical trials. Status 
Delivered Gov. Identifer 

Genexol Amphilic Non-small Paclitaxel NCT01023347 Completed 
PM diblock copolymer cell lung cancer 

forming micelle 

Docetaxel-PNP Polymeric nanomaterials Advanced Docetaxel NCT01103791 Completed 
(active nanocomponents solid 
loaded/entrapped malignancies 
in polymeric core) 

CYT-6091 Au NP Unspecifed TNF NCT00356980 Completed 
adult solid tumor 

Kogenate PEG-liposome Hemophilia Recombinant NCT00629837 Completed 
FS A factor VIII 

Long circulating Liposome Rheumatoid Prednisolone NCT00241982 Completed 
liposomal prednisolone arthritis 
disodium phosphate 

LE-DT Liposome Pancreatic Doxetaxel NCT01186731 Completed 
cancer 

Cisplatin Liposome Advanced Cisplatin and NCT00507962 Completed 
and Liposomal cancer Doxorubicin 
Doxorubicin 

Liposomal Liposome Kaposi’s Doxorubicin and NCT00923936 Completed 
doxorubicin and sarcoma bevacizumab 
bevacizumab 

AP5346 Drug polymer Head and AP5346 NCT00415298 Status 
conjugate neck cancer and Unknown 

Oxaliplatin 
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1.6 CHALLENGES AND FUTURE SCOPE OF NANOMATERIALS 
IN BIOMEDICAL APPLICATIONS 

The convergence of science and technology has provided a quintessential hope of developing nano-
structured materials in the feld of medicine. The widespread opportunities of nanomaterials in 
therapeutics have gained the attention of researchers from multidimensional aspects ranging from 
medical practitioners to health experts working in government, industries, and academia. Recent 
clinical trials of nanomaterials in therapeutics are enumerated in Table 1.1. However, the biocompat-
ibility of nanomaterials is a major concern because of adverse effects extending from cytotoxicity 
to hypersensitivity. Hence, prior to human exposure, all nanomaterials are imperiled to toxicologi-
cal studies to meet the regulatory standards. In addition to designing, identifying, and validating 
a nanomaterial down the lane of the pipeline of drug designing, the toxicological analysis, route 
of exposure, coating material and sterility of the nanomaterial, economic viability have to be con-
sidered with utmost care. The futuristic scope of nanomaterials in the bio-medicinal feld involves 
a perfect blend of nanotechnology and Computer-Aided Drug Designing (CADD). Nanorobots 
skilled in intruding biological system to identify cancer cells is the recent lead of nanomedicine. 
The potential of applying nanomaterials in this pandemic situation to arrive at more effective vac-
cines against COVID 19 is always a subject of major concern. 
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