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Abstract For the first time, the production of a massive
dark photon (DP) in the γ e− scattering at the future lepton
colliders ILC, CLIC, and CEPC is examined. The invisible
decay mode of the DP is addressed. We have studied both
the unpolarized scattering and the collision of the Compton
backscattered photons with the polarized electron. The miss-
ing energy distributions are shown. We have considered the
wide range 1–1000 GeV of the DP mass mA′ . The excluded
regions at the 95% CL in the plane (ε,mA′), where ε is the
kinetic mixing parameter, are obtained. In particular, in the
low mass region, 1–10 GeV our bounds for the 90 GeV CEPC
are several times stronger than experimental limits obtained
by the BaBar collaboration. For the polarized scattering, the
excluded bounds for all three colliders are approximately
20% stronger as compared with the unpolarized case.

1 Introduction

One of the main goals of the present and proposed collider
experiments is to search for dark matter (DM) particles. The
DM makes up approximately 85% of the total mass in the
Universe. Its existence is firmly confirmed by gravitational
experiments [1,2], but composition and nature are still an
open question. We consider a DM scenario in which no
DM fields are charged under the SM gauge group, and the
lightest stable DM particles, χ , can only interact with SM
through the exchange of a vector mediator, dark photon (DP)
(also known as hidden or heavy photon) [3–12]. It is usu-
ally denoted as A′. In its turn, the DP kinetically mixes with
the SM U (1)Y hypercharge gauge field at the renormaliz-
able level (kinematic-mixing portal) [7]. Such mixing can
be generated by loops of massive particles charged under
both U (1)Y and secluded U (1)′ symmetries. That kinetic-
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mixing portal model may be extended to 5D by adding one
flat ED [13]. The existence of a new light dark sector can be
also connected to a generation of neutrino masses [14]. An
electroweak gauge extension of the SM by adding an extra
U (1)′, with mixing with the standard U (1)Y can also result
in a new boson [15–17]. For recent reviews on the DP, see,
for instance, [18–25]. In particular, astrophysical constraints
on the DP parameters can be found in [26–34], while bounds
from (g − 2)μ,e are presented in [35,36].

The main mechanisms of the DP production are meson
decays (π0, η → A′γ ) [37], bremsstrahlung (eZ → eZ A′
and pZ → pZ A′) [38,39], Drell-Yan (qq̄ → A′), and anni-
hilation (e+e− → A′γ ). The process of pair annihilation
into a dark and an ordinary photon provided a striking bench-
mark (mono-photon plus missing energy) for the DP search
at the LEP [40–43]. A probing new physics in final states
containing a photon and missing transverse momentum in
proton-proton collisions was presented by the ATLAS and
CMS Collaborations [44–47]. For the most recent results on
the DPs from the LHC, see [48–51]. The ATLAS and CMS
search sensitivities for DPs at the high luminosity LHC can
be found in [52,53]. A DP phenomenology at the LHC and
HL-LHC was studied in [54–57], and searches of the DPs at
the LHeC and FCC-he colliders were discussed in [58].

A probing new light gauge boson similar to the photon in
e+e− collisions is of particular interest [59–72]. The searches
for the DP at e+e− colliders [73–78] (see also review papers
[18–25]) have looked for its decays to the e+e−, μ+μ− and
π+π− final states, as well as for invisible decays of A′.
The DP production in the Compton-like γ e → A′e pro-
cess is studied in [79,80]. The inverse process, A′e → γ e, is
recently considered in [81]. The gamma factory’s discovery
potential through the low energy dark Compton scattering is
analyzed in [82]. In [83] the γ γ → γ A′ process for MeV
scale collider is considered.

In the present paper we examine a novel DP produc-
tion based on a high energy γ e− scattering at the lepton
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colliders ILC [84,85], CLIC [86,87], and CEPC [88,89], the
γ e− → A′e− process. Both unpolarized and polarized col-
lisions are considered in the wide DP mass region 1–1000
GeV. We expect the DP to decay predominantly into invisi-
ble dark-sector particles. Let us underline that up to now the
DP production at high energy lepton colliders was studied
only for the e+e− mode of these colliders [68–71].

2 Massive dark photon

As it was already mentioned above, the DP does not directly
couple to SM fields. But there could be a small coupling to
the electromagnetic current Jμ due to kinetic mixing between
the SM hypercharge and the field strength tensor of the DP
field. Consider the case when the dark sector is represented
by just a single extra U (1)′ gauge group. Let Bμ, Ā′

μ be
the mediator fields of the SM U (1)Y symmetry and dark
U (1)′ gauge group. The gauge Lagrangian can be taken in
the following form

Lgauge = −1

4
BμνB

μν − 1

4
F̄ ′

μν F̄
′μν − ε

2cW
F̄ ′

μνB
μν , (1)

where Bμν = ∂μBν −∂νBμ and F̄ ′
μν = ∂μ Ā′

ν −∂ν Ā′
μ are the

field strength tensors ofU (1)Y andU (1)′, respectively, cW is
the cosine of the Weinberg angle θW , and ε � 1 is the kinetic
mixing parameter. The kinetic mixing can be generated at
the one-loop level by massive particles charged under both
U (1)Y and U (1)′ symmetries. After diagonalization of the
gauge fields W 3

μ, Bμ, and DP field Ā′
μ [23],

⎛
⎝
W 3

μ

Bμ

Ā′
μ

⎞
⎠ =

⎛
⎝

cW sW −sW ε

−sW cW −cW ε

tW ε 0 1

⎞
⎠

⎛
⎝

Zμ

Aμ

A′
μ

⎞
⎠ , (2)

where sW and tW are the sine and tangent of θW , we obtain
the interaction Lagrangian up to O(ε2)

Lint = eJμA
μ − εeJμA

′μ + εe′tW J ′
μZμ + e′ J ′

μA
′μ

+LA′χ . (3)

Here Aμ, Zμ are the physical gauge fields, and A′μ is the
physical field of the DP. J ′

μ and e′ are the DM matter current
and DP coupling to the dark-sector matter, respectively. In
(3) we have added the last term which describes a A′χχ

interaction, where χ is a dark matter particle. The form of
this interaction is left unspecified. As one can see in (3), the
coupling of the massive DP the SM fermions is −εe. The Z
gauge boson acquires the coupling strength εe′tW to the dark
sector current.

Thus, there are three unknown parameters: the DP mass,
mA′ , the mixing parameter, ε, and the A′ → χχ̄ branching.
The latter is taken to be unity, if we assume that mA′ > 2mχ .
The dimensionless mixing parameter ε is a priori unknown

Fig. 1 The existing limits for the massive dark photon going to invisi-
ble final states. The constraints from ae = (g − 2)e and aμ = (g − 2)μ
are also shown. The figure is taken from [24]

and presumably lies in the 10−12−10−2 region, depending on
the DP mass [33,39,90–95] (see also Fig. 8.16 in [96], where
sensitivities for the DP in the plane mixing parameter ε versus
mA′ are collected). The DP mass mA′ can also vary in a wide
range, but most of experimental searches for the invisible DP
were aimed at the mA′ in the region 1 MeV − 10 GeV [18–
25], see Fig. 1. We will examine the wider DP mass region
1–1000 GeV.

3 Invisible dark photon production in Compton-like
scattering

The production of the DP in the center-of-mass system of the
γ e− scattering,

γ + e− → A′ + e−, (4)

is depicted in Fig. 2. As is known, linear e+e− colliders can
operate in γ e and γ γ modes [97–99]. The γ γ facilities at
the future circular colliders are examined in [100–104]. In
particular, a number of processes in γ e and γ γ collisions at
the CEPC have been studied in [105]. At the lepton collider
hard real photons may be generated by the laser Compton
backscattering, when soft laser photons collide with electron
beams. As a result, a large flux of photons is produced which
carry a great amount of the parent electron energy. A γ e
(γ γ ) collider has a number of advantages over e+e− collider.
Among they are (i) Higgs can be s-channel produced; (ii)
higher cross sections for charged particles; (iii) higher mass
reach in some channels; (iv) pure QED interaction (in e+e−
a Z boson exchange is present); (v) higher polarization of
initial states. The γ e and γ γ modes were considered for a
number of processes at the future lepton colliders [106–117],
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γ

e−
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e−
θ

Fig. 2 The production of the dark photon A′ in the γ e− collision

but the DP production in γ e or γ γ collisions have not yet
been studied at the ILC, CLIC, or CEPC.

Let E0 be the energy of the initial laser photon beam,
Ee be the energy of the initial electron beam, while Eγ be
the energy of the Compton backscattered (CB) photon. The
differential cross section for the unpolarized DP production
accompanied by electron at the lepton collider operating in
the γ e mode is defined as

dσ

d cos θ
=

∫ xmax

xmin

dx fγ /e(x)
dσ̂

d cos θ
. (5)

Here fγ /e(x) is the distribution of the CB photon in the vari-
able x = Eγ /Ee,

xmin = p2⊥
E2
e

, xmax = ζ

1 + ζ
, ζ = 4E0Ee

m2 , (6)

p⊥ is the transverse momentum of the outgoing particles, m
is the electron mass, and θ represents the scattering angle of
the outgoing DP (see Fig. 2). The laser beam energy E0 is
chosen to maximize Eγ . It is achieved, if ζ = 4.8, and we
get xmax = 0.83, see Eq. (6).

The spectrum of the CB photons in formula (5) is defined
as follows [97]

fγ /e(x) = 1

g(ζ )

[
1 − x + 1

1 − x
− 4x

ζ(1 − x)

+ 4x2

ζ 2(1 − x)2

]
, (7)

where

g(ζ ) =
(

1 − 4

ζ
− 8

ζ 2

)
ln (ζ + 1) + 1

2
+ 8

ζ
− 1

2(ζ + 1)2 .

(8)

The differential cross section for the process γ e− → A′e− in
the center-of-mass system of the colliding particles is defined
as

dσ̂

d cos θ
= 1

32π ŝ

√
(ŝ + m2

A′ − m2)2 − 4ŝm2
A′

ŝ − m2

× |F(ŝ, cos θ)|2 , (9)

where
√
ŝ = √

sx is the center-of-mass energy of the
backscattered photon and electron, ŝ � (mA′ +m)2. A matrix
element of the process (4) is a sum of two diagrams in Fig. 3,
in which the A′e−e+ coupling constant is equal to −εe.
An explicit expression for the square matrix element |F |2
is given in Appendix A.

The main background comes from the SM process

γ e− → e−νν̄ , (10)

see the diagrams in Figs. 4 and 5. In detector it looks like
an event with an isolated electron and missing transverse
energy. We apply the cut on the transverse momenta of the
final electron, p⊥ > 10 GeV, and its rapidity, |η| < 2.5.
In order to reduce the SM background, we also impose the
cut on an invisible invariant mass, |mA′ − minvis| < 5 GeV.

Fig. 3 The diagrams for the
production of the dark photon in
the γ e− collision, with its
subsequent invisible decay into
dark matter particles
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Fig. 4 The s-channel diagrams
for the SM process
γ e− → e− + E/
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Fig. 5 The u-channel diagrams
for the SM process
γ e− → e− + E/

γ
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γ
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W
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Fig. 6 The differential cross sections for the unpolarized γ e− → e− + E/ scattering at the collider CEPC. The mixing parameter is fixed to be
ε = 0.1

In numerical calculations, especially in background calcula-
tions, CalcHEP program was also used [118]. We have used
the following statistical significance (SS) formula [119],

SS = √
2[(S + B) ln(1 + S/B) − S], (11)

where S and B are the numbers of the signal and background
events, respectively. Note that SS � S/

√
B for S � B.

In Figs. 6, 7 and 8 we present differential cross sections
of the γ e− → e− + E/ scattering as functions of the miss-
ing energy for a fixed value of the mixing parameter ε. The
results for the colliders CEPC, ILC, and CLIC are given,
for the DP masses mA′ = 50 GeV, 100 GeV, and 200 GeV,
respectively. In all figures, red (black) curves correspond to
the cross sections with (without) account of the dark photon
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Fig. 7 The same as in Fig. 6, but for the collider ILC

Fig. 8 The same as in Fig. 6, but for the collider CLIC

contributions. It turns out that DP is the dominant effect for
high missing energy values. We have also made calculations
for different values of mA′ . Our calculations show that devi-
ations of the cross sections from the SM predictions become
smaller as the DP mass mA′ grows.

The excluded bounds for the massive DP going to invisible
final states are presented in Figs. 9 and 10 in the plane the

kinetic mixing parameter ε versus DP mass mA′ . In Fig. 9
the results for the unpolarized γ e− → A′e− collision are
given for the CEPC (left panel), ILC (middle panel), and
CLIC (right panel). The strongest bound on ε is achieved
for the 90 GeV CEPC. In the region mA′ = 1–10 GeV it
is 2–4 orders of magnitude stronger than the experimental
bounds obtained by the BaBar collaboration shown in Fig. 1.
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Fig. 9 The excluded bounds at the 95% CL on the dark photon mass mA′ and kinetic mixing parameter ε for the invisible dark photon production
in the unpolarized γ e− → A′e− collision

Fig. 10 The excluded bounds at the 95% CL on the dark photon mass mA′ and kinetic mixing parameter ε for the invisible dark photon production
in the collision of the unpolarized real photon with the electron whose polarization is equal to 80%

The constraints for the ILC collider with the energy of 160
GeV and 240 GeV are comparable with the BaBar constraints
in this mass region. The sensitivity decreases as mA′ grows.

The results for the polarized case are shown in Fig. 10. The
polarized electron sources of the future linear colliders have
been discussed in the current ILC [85], CLIC [86], and CEPC
[88] designs. We consider the unpolarized CB photons and

P(e−) = 80% polarization of the initial electron beam for all
three colliders. By analogy with the ILC project, we assume
that for the polarized γ e− collision, the CEPC integrated
luminosity is 50% less than the integrated luminosity for the
unpolarized γ e− scattering. One can see that the obtained
excluded bounds are on average 20% better compared to the
unpolarized bounds (Fig. 9). For the CLIC, a 10% improve-
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ment takes place only for the energy
√
s = 380 GeV. As for

the electron beam polarization of P(e−) = −80%, our cal-
culations show that it does not offer any advantage over the
unpolarized case. The reason is that the SM background gets
larger for P(e−) = −80% with respect to the unpolarized
collision, while the signal remains almost the same.

4 Conclusions

In the present paper, we have studied the production of the
massive dark photon (DP) in the γ e− scattering at the future
lepton colliders ILC, CLIC, and CEPC, when the DP decays
predominantly into invisible dark matter particles. The real
photons are generated by the laser Compton backscattering
when the soft laser photons collide with the electron beams.
Both the unpolarized and polarized collisions are studied. For
the polarized γ e− → A′e− process we have assumed that the
incoming CB photon is unpolarized, while the polarization
of the electron beam is taken to be 80% for all three colliders.
The wide region 1–1000 GeV of the DP mass mA′ is consid-
ered. The missing energy distributions for signal and back-
ground are presented. We have derived the excluded regions
at the 95% CL in the plane (ε,mA′), where ε is the kinetic
mixing parameter. Our excluded bounds for the polarized col-
lisions at the ILC and CEPC are approximately 20% stronger
compared to the unpolarized excluded bounds. In particular,
in the low mass region 1–10 GeV our excluded bounds for
the 90 GeV CEPC are in average 2–4 orders of magnitude
stronger that the experimental bounds obtained by the BaBar
collaboration. The CEPC constraints with energies of 160
GeV and 240 GeV are comparable with the BaBar bounds
in this mass range, and the ILC excluded bounds are close to
them.

Note that up to now the production of the DP at future
lepton colliders (both for the visible and invisible DP decays)
was studied only for the e+e− mode of these colliders.

As was already mentioned in Introduction, the DP pro-
duction in the Compton-like γ e → A′e process was studied
in the fixed target experiments [79,80,82]. However, these
low energy experiments were dealing with low mass DPs
(mA′ < 100 MeV), while we examine heavy DPs (mA′ > 1
GeV).

Our method can be also applied to dark axionlike pseu-
doscalars (scalars). Consider the coupling of a pseudoscalar
ALP a to a electron field ψ . It is given by the Lagrangian
(see, for instance, [120])

L = gaψ̄ψ∂μaψ̄γ μγ 5ψ . (12)

Then the amplitude of the process γ e− → ae− will be pro-
portional to the electron mass me. So, we expect that the

pseudoscalar cross section will be suppressed with respect
to the dark photon cross section. Nevertheless, we consider
studying axionlike (pseudo)scalars as a future direction.
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Appendix A

The matrix element of the process (4) is given by the sum of
s- and u-channel diagrams presented in Fig. 3. Correspond-
ingly, we get

|F(s, cos θ)|2
= (εe2)2 [|Fs |2 + |Fu |2 + (Fs F

∗
u + F∗

s Fu)
]

, (A.1)

where

|Fs |2 = 2

(s − m2)2

[−su + m2(3s + u + 2m2
A′) + m4] ,

|Fu |2 = 2

(u − m2)2

[−su + m2(3u + s + 2m2
A′) + m4] ,

Fs F
∗
u = F∗

s Fu = 2

(s − m2)(u − m2)

× [
m2

A′(s + u) − m4
A′ + m2(s + u − 2m2

A′) + 2m4] .

(A.2)

The Mandelstam variable u is equal to

u = m2
A′ + m2 − 1

2s

[
(s + m2)(s + m2

A′ − m2)

+ (s − m2)

√
(s + m2

A′ − m2)2 − 4s m2
A′ cos θ

]
, (A.3)

where θ is a scattering angle of the DP in the center-of-mass
frame of the colliding particles (see Fig. 2). FormA′ = 0, ε =
1, the above formulas coincide with well-known formulas for
the Compton scattering [121].
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