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Abstract The noncommutative QED (NCQED) has a non-
Abelian nature due to the presence of 3- and 4-photon ver-
tices in the lagrangian. Thus, NCQED predicts a new physics
contribution to the γ γ → γ γ scattering already at the tree
level. We have examined NCQED by studying the light-by-
light process at the 14 TeV LHC with intact protons. Our
results show that the NC scale up to �NC = 1.64(1.35) TeV
can be probed in the pp → p(γ γ )p → p′(γ γ )p′ colli-
sion for the time-space (space-space) NC parameters. These
bounds are stronger than the limits that can be obtained in
the light-by-light scattering at high energy linear colliders.

1 Introduction

The quantization of the electromagnetic field in a noncom-
mutative (NC) space-time has a long story [1,2]. To a large
extent, an interest in NC quantum field theories [3–5] was
mainly motivated by string theory [6–9]. In NC field the-
ories the conventional coordinates are represented by non-
commutative operators,

[X̂μ, X̂ν] = iθμν, (1)

where θμν is the NC constant of dimension (mass)−2. In
what follows,

θμν = cμν

�2
NC

, (2)

where the dimensionless elements of the antisymmetric
matrix cμν are assumed to be of order unity.

Let the field �̂(X̂) be an element of the algebra (1). The
noncommutativity of the space-time can be implemented by
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the Weyl–Moyal correspondence [10–14]

�̂(X̂) = 1

(2π)2

∫
d4x eik X̂φ(k),

φ(k) = 1

(2π)2

∫
d4k e−ikx�(x), (3)

where k, x are real variables. Thus, we associate �̂(X̂) with
a function of classical variable x . As it follows from (3),

�̂1(X̂)�̂2(X̂) = 1

(2π)4

∫
d4k d4 p eik X̂φ(k) eipX̂φ(p),

= 1

(2π)4

∫
d4k d4 p ei(k+p)X̂−kμ pν [X̂μ,X̂ν ]/2φ(k)φ(p),

(4)

where we used the Baker–Campbell–Hausdorff formula.
Thus, the NC version of a field theory is given by replac-
ing field products by the star product defined as

�̂1(X̂)�̂2(X̂) ↔ (�1 ∗ �2)(x),

(�1 ∗ �2)(x) = exp

[
i

2

∂

∂ξμ
θμν ∂

∂ην

]
�1(x + ξ)�2(x + η)

∣∣∣∣
ξ=η=0

.

(5)

It obeys the associative law. To the leading order in θ , the
star product is given by

�1 ∗ �2 = �1�2 + i

2
θμν∂μ�1∂ν�2 + O(θ2). (6)

It is useful to define a generalized commutator known as
the Moyal bracket (MB) by the relation

[�1,�2]MB = �1 ∗ �2 − �2 ∗ �1. (7)

As one can see, the MB of coordinates,

[xμ, xν]MB = xμ ∗ xν − xν ∗ xμ, (8)
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in agreement with the commutator relation on the NC space-
time (1).

There is a relation between the matrix cμν (2) and the
Maxwell field strength, since in string theory the quantiza-
tion of NC quantum field theory is described by the exci-
tations of D-branes in the presence of the background EM
field [6–9]. The c0i coefficients are defined by the direc-
tion of a background electric field, E = (c01, c02, c03)/�

2
NC.

The ci j elements are related to a background magnetic field,
B = (c23, c02,−c12)/�

2
NC.

Note that theories with nonzero c0i in (1) do not generally
obey unitarity [15–18]. However, theories with only space-
space noncommutativity, ci j �= 0, c0i = 0, are unitary.

2 Noncommutative QED

Noncommutative QED (NCQED), based on the group U (1),
has been studied in a number of papers [19–28]. It was shown
that unbroken U (N ) gauge theory is both gauge invariant
and renormalizable at the one-loop level [19,23]. The pure
noncommutative U (1) Yang-Mills action is defined as

SNCQED = − 1

4e2

∫
d4xFμν ∗ Fμν, (9)

with

Fμν = ∂μAν − ∂ν Aμ − i[Aμ, Aν]MB. (10)

We see that even in the U (1) case the potential Aμ couples
to itself. One can easily check that the action (9) is invariant
under U (1) transformation defined as

Aμ(x) → A′
μ(x) = U (x) ∗ Aμ(x) ∗ [U (x)]−1

+ iU (x) ∗ ∂μ[U (x)]−1, (11)

where

U (x) = eiα(x) = 1 + iα(x) − 1

2
α(x) ∗ α(x) + · · · . (12)

The covariant derivative

Dμϕ = ∂μϕ − i Aμ ∗ ϕ (13)

transforms covariantly. The ∗ product admits only the fields
ϕ with charge 0 or ±1 [20]. The field strength transforms as

Fμν → F ′
μν = U (x) ∗ Fμν ∗ [U (x)]−1. (14)

Using relations U ∗ U−1 = U−1 ∗ U = I and the cyclic
property of the star product under the integral [22], we find
that

SNCQED = − 1

4e2

∫
d4xFμνF

μν. (15)

The 2-point photon function is identical in NC and com-
mutative spaces, since the quadratic term in (15) remains the

Fig. 1 The Feynman rules of the noncommutative QED

same,

dμ1μ2(p) = −i
gμ1μ2

p2 + iε
. (16)

Due to the presence of the ∗ product and MB bracket, the
theory reveals non-Abelian nature. Namely, both 3-point and
4-point photon vertices are generated. The Feynman rules of
the pure NCQED [29–32] are shown in Fig. 1.

They are given by the following expressions

�μ1μ2μ3(p1, p2, p3) = −2e sin

(
1

2
p1 ∧ p2

)

× [
(p1 − p2)μ3gμ2μ3

+ (p2 − p3)μ1gμ2μ3

+ (p3 − p1)μ2gμ3μ1
]
, (17)

�μ1μ2μ3μ4 (p1, p2, p3, p4)

= −4ie2
[ (

gμ1μ3gμ2μ4 − gμ1μ4gμ2μ3
)

× sin

(
1

2
p1 ∧ p2

)
sin

(
1

2
p3 ∧ p4

)

+ (
gμ1μ4gμ2μ3 − gμ1μ2gμ3μ4

)

× sin

(
1

2
p1 ∧ p3

)
sin

(
1

2
p2 ∧ p4

)

+ (
gμ1μ2gμ3μ4 − gμ1μ3gμ2μ4

)
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× sin

(
1

2
p1 ∧ p4

)

× sin

(
1

2
p2 ∧ p3

)]
, (18)

where the wedge product is defined as

p ∧ k = pμkνθμν = pμkνcμν

�2
NC

. (19)

Note that p ∧ k = −k ∧ p and p ∧ p = 0. As one can see,
the Feynman rules are very similar to those in non-abelian
gauge theory, with the structure constants replaced by factors
2 sin[(pi ∧ p j )/2]. These factors arise as a consequence of
the MB. Indeed, we have

[Aμ, Aν]MB = i
∫
d4 pi d

4 p j e
i(pi+p j )x Aμ(pi )Aν(p j )

×
[

2 sin

(
1

2
pi ∧ p j

)]
. (20)

Thus, NCQED predicts new tree-level contributions to the
γ γ → γ γ collision.

Note that cμν (2) is not a tensor. It means that the Lorentz
symmetry is explicitly violated. However, it is quite different
from Lorentz breaking models discussed often in the litera-
ture, since it can hold only at energies of order �NC. More-
over, since the NCQED is CPT invariant, available experi-
mental bounds on observables which are simultaneouslyCPT
and Lorentz violating cannot be used to constrain NCQED.

A number of noncommutative extensions of the Standard
Model is constructed [33–41]. Since we are interested in the
light-by-light collision, we will work in the framework of the
NCQED.

3 Light-by-light scattering at the LHC

The observable signatures in a number of NCQED processes
in e+e− collisions has been considered in [42–47]. The light-
by-light (LBL) scattering in ultraperipheral Pb+Pb collisions
in the NCQED context have been recently studied in [48,49].
Our goal is to examine the LBL scattering in pp collisions
at the 14 TeV LHC through the process pp → p(γ γ )p →
p′(γ γ )p′. Here the final state photons are detected in the
central detector and the scattered intact protons are measured
with forward detectors.

To detect the protons scattered at small angles, so-called
forward detectors are needed. The ATLAS is equipped with
the Absolute Luminosity For ATLAS (ALFA) [50,51] and
ATLAS Forward Physics (AFP) [52,53]. The CMS collab-
oration uses the Precision Proton Spectrometer (PPS) as a
subdetector which was born from a collaboration between
the CMS and TOTEM [54] (previously named CT-PPS). The
ALFA system is made of four Roman Pot stations located in

a distance of about 240 m at both sides of the ATLAS interac-
tion point. The AFP detector consists of four detectors placed
symmetrically with respect to the ATLAS interaction point
at 205 m (NEAR stations) and 217 m (FAR stations). The
PPS detector has four Roman Pots on each side placed sym-
metrically in the primary vacuum of the LHC beam pipe, at
a distance between 210 and 220 m from the CMS interac-
tion point. These forward detectors are installed as close as
a few mm to the beamline to tag the intact protons after elas-
tic photon emission. It allows detecting the fractional proton
momentum loss in the interval ξmin < ξ < ξmax. The larger
value of ξ can be achieved when a detector is installed closer
to the interaction point.

Two types of examinations included by the AFP are (i)
exploratory physics (anomalous couplings between γ and
Z or W bosons, exclusive production, etc.); (ii) standard
QCD physics (double Pomeron exchange, exclusive pro-
duction in the jet channel, single diffraction, γ γ physics,
etc.). PPS experiments aim at a study of the elastic proton–
proton interactions, the proton–proton total cross-section and
other diffractive processes. Moreover, precise search can be
done with the forward detectors [55–57]. In such interactions
involving high energy and high luminosity, the pile-up back-
ground may be formed. This background can be extremely
reduced by using kinematics, timing constraints, and exclu-
sivity conditions [58–60]. There are many phenomenological
papers that use photon-induced reactions for searching new
physics at the LHC [61–82].

We examine the process pp → pγ γ p → p′(γ γ )p′.
Emitted photons have very small virtualities, hence they are
almost-real photons and can be considered as on-mass-shell
particles. The main detector (ATLAS or CMS) registers the
final state γ γ , while the proton momentum loss ξ is mea-
sured by the forward detector (AFP or CT-PPS). This makes
it possible to determine the invariant energy of the γ γ colli-
sion, W = 2E

√
ξ1ξ2, where E is the energy of the incoming

protons. These type of collision can be studied using equiv-
alent photon approximation (EPA) [83–85]. In the EPA, a
photon emitted with small angles by the protons shows the
following spectrum in photon virtuality Q2 and energy frac-
tion x = Eγ /E ,

f (x, Q2) = α

π

1

xQ2

[
(1 − x)

(
1 − Q2

min

Q2

)
FE (Q2)

+ x2

2
FM (Q2)

]
, (21)

where

Q2
min = m2

p x
2

1 − x
, FE = 4m2

pG
2
E + Q2G2

M

4m2
p + Q2 , FM = G2

M ,

(22)
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G2
E = G2

M

μ2
p

=
(

1 + Q2

Q2
0

)−4

, Q2
0 = 0.71,

μ2
p = 7.78 GeV2. (23)

Here, mp is the mass of the proton, μp is its magnetic
moment, FE and FM are electric and magnetic form fac-
tors of the proton. To obtain the cross section of the process
pp → p(γ γ )p → p′(γ γ )p′, the cross section dσγγ→γ γ

of the subprocess γ γ → γ γ should be integrated over the
photon spectrum,

dσ =
∫

dW
dLγ γ

dW
dσγγ→γ γ (W ). (24)

The effective photon luminosity in (24) is given by

dLγ γ

dW
= W

2E2

∫ Q2
max

Q2
min

dQ2
1

∫ Q2
max

Q2
min

dQ2
2

∫ xmax

xmin

dx

x

× f1

(
W 2

4E2x
, Q2

1

)
f2(x, Q

2
2), (25)

where

xmin = max(ξmin,W
2/(4E2ξmax)), xmax = ξmax. (26)

We put Q2
max = 2 GeV2, since the contribution of more than

this value is very small.
The diagrams describing the γ γ → γ γ scattering in the

order e2 are presented in Fig. 2. The nonzero independent
helicity amplitudes of NCQED have been derived in [44,49]

MNC++++(p1, p2; k1, k2)

= −32πα

[
s

t
sin

(
1

2
p1 ∧ k1

)
sin

(
1

2
p2 ∧ k2

)

+ s

u
sin

(
1

2
p1 ∧ k2

)
sin

(
1

2
p2 ∧ k1

) ]
,

MNC+−−+(p1, p2; k1, k2)

= −32πα

[
t

s
sin

(
1

2
p1 ∧ k1

)
sin

(
1

2
p2 ∧ k2

)

+ t2

su
sin

(
1

2
p1 ∧ k2

)
sin

(
1

2
p2 ∧ k1

) ]
, (27)

where α = e2/(4π), and s = (p1 + p2)
2, t = (p1 − k1)

2,
u = (p1 − k2)

2 are Mandelstam variables of the γ γ → γ γ

process (s + t + u = 0). To derive expressions (27) form
those presented in [44], we have used the Moyal-Weyl star
product Jacobi identity in momentum space [49]

sin

(
1

2
p1 ∧ p2

)
sin

(
1

2
k1 ∧ k2

)

+ sin

(
1

2
p1 ∧ k2

)
sin

(
1

2
p2 ∧ k1

)

− sin

(
1

2
p1 ∧ k1

)
sin

(
1

2
p2 ∧ k2

)
= 0. (28)

The amplitude MNC+−+− is defined by the crossing relation

MNC+−+−(p1, p2; k1, k2) = M+−−+(p1, p2; k2, k1)

= −32πα

[
u2

st
sin

(
1

2
p1 ∧ k1

)
sin

(
1

2
p2 ∧ k2

)

+ u

s
sin

(
1

2
p1 ∧ k2

)
sin

(
1

2
p2 ∧ k1

) ]
. (29)

The other nonzero NC helicity amplitudes are related to the
amplitudes (27) and (29) by the parity relations

MNC−−−−(p1, p2; k1, k2) = MNC++++(p1, p2; k1, k2),

MNC−++−(p1, p2; k1, k2) = MNC+−−+(p1, p2; k1, k2),

MNC−+−+(p1, p2; k1, k2) = MNC+−+−(p1, p2; k1, k2). (30)

After simple arithmetic we find from (27), (29), and (30)

∑
pol

|MNC|2 = 2
(
|MNC++++|2 + |MNC+−−+|2 + |MNC+−+−|2

)

= 2(32πα)2 s4+t4+u4

s2

[
1

t
sin

(
1

2
p1 ∧ k1

)

sin

(
1

2
p2 ∧ k2

)
+ 1

u
sin

(
1

2
p1 ∧ k2

)
sin

(
1

2
p2 ∧ k1

) ]2

.

(31)

As it is shown in Appendix A, this equation can be written
as

∑
pol

|MNC|2 = 2
(
|MNC++++|2 + |MNC+−−+|2 + |MNC+−+−|2

)

= 2(−2)(32πα)2

×
{( s

u
+u

s
+ su

t2

) [
sin

(
1

2
p1 ∧ k1

)
sin

(
1

2
p2 ∧ k2

)]2

+
(
t

s
+ s

t
+ st

u2

) [
sin

(
1

2
p1 ∧ k2

)
sin

(
1

2
p2 ∧ k1

)]2

+
(
u

t
+ t

u
+ tu

s2

)[
sin

(
1

2
p1 ∧ p2

)
sin

(
1

2
k1 ∧ k2

)]2 }
,

(32)

in a full agreement with eq. (93) in [49], after changing
momenta notations, (p1, p2, k1, k2) → (k1, k2, k4, k3). Note
that the second term in the brackets in Eq. (32) is obtained
from the first term if one uses the replacements k1 � k2,
t � u. Analogously, the third term comes from the first one
after the replacements k1 � p2, t � s.

There is a one-to one correspondence between the color
ordering in QCD and the star product in pure NCQED [86].
As it was mentioned in the end of Sect. 2, all vertices of
NCQED are similar to gluon vertices in QCD in which the
structure constants f ai a j c are replaced by 2 sin[(li ∧l j )/2]. A
correspondence between NCQED and QCD amplitudes can
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be achieved, if one makes in (32) the following replacements
[49]

[
2 sin

(
1

2
li ∧ l j

)]2 [
2

(
1

2
lk ∧ lr

)]2

→
(
f ai a j c f ai a j d

) (
f akar c f akar d

)
= 32δcdδcd = 72,

(33)

where (li , l j , lk, lr ) is a combination of the photon momenta
p1, p2, k1, k2, and the sum over all color indices is assumed.
The gluon–gluon amplitude square is a sum of helicity ampli-
tudes square,

|Mgg→gg|2 = 1

8222

∑
pol

|Mλ1λ2λ3λ4 |2, (34)

and the differential cross section is given by

dσ

d�
(gg → gg) = 1

64π2

|Mgg→gg|2
s

. (35)

After summation over Mandelstam variables in (32),

( s

u
+ u

s
+ su

t2

)
+

(
t

s
+ s

t
+ st

u2

)
+

(
u

t
+ t

u
+ tu

s2

)

= −
(

3 − tu

s2 − su

t2 − ts

u2

)
, (36)

and replacement α → αs , we come from (32)–(35) to the
well-known expression for the differential cross section of
the gluon–gluon scattering [87]

dσ

d�
(gg → gg) = 9α2

s

8s

(
3 − tu

s2 − su

t2 − ts

u2

)
. (37)

Thus, our NC amplitude square and its counterpart in QCD
are closely connected.

4 Numerical analysis

We work in the c.m.s. of the colliding protons. Let x1 and x2

be momentum fractions of the protons carried by the scattered
photons which can be considered to be on-shell particles.
Then the photon momenta look like

p1 = x1E(1, 0, 0, 1), p2 = x2E(1, 0, 0,−1). (38)

Thus, the γ (p1) + γ (p2) → γ (k1) + γ (k2) collision goes
in the non-center-of mass system. For the massless case the
momenta of the outgoing photons are given by

k1 = E1(1, sθcφ, sθ sφ, cθ ),

k2 = (
(x1 + x2)E − E1,−E1sθcφ,

−E1sθ sφ, (x1 − x2)E − E1cθ

)
, (39)

where

E1 = 2x1x2E

x1 + x2 − (x1 − x2)cθ

. (40)

Here cθ = cos θ, sθ = sin θ, cφ = cos φ, sφ = sin φ, with
θ and φ being the scattering angles of the outgoing photon
with momentum k1.

Then the wedge products of the photon momenta in the
formulas for the NC helicity amplitudes take the form [44,49]

p1 ∧ k1 = − x1E1E

�2
NC

[c03(1 − cθ ) − (c01 − c13)sθcφ

− (c02 − c23)sθ sφ],
p2 ∧ k1 = x2E1E

�2
NC

[c03(1 + cθ ) + (c01 + c13)sθcφ

+ (c02 + c23)sθ sφ],
p1 ∧ k2 = − x1E1E

�2
NC

[
x2

x1
(1 + cθ ) + (c01 − c13)sθcφ

+ (c02 − c23)sθ sφ

]
,

p2 ∧ k2 = x2E1E

�2
NC

[
x1

x2
(1 − cθ ) − (c01 + c13)sθcφ

− (c02 + c23)sθ sφ

]
. (41)

The Mandelstam variables of the γ γ → γ γ process are
given by

s = 4E2x1x2, t = −2x1EE1(1 − cθ ),

u = −2x2EE1(1 + cθ )]. (42)

The differential cross section of the γ γ → γ γ process in
the frame (38)–(39) is given by [49]

dσ

d�
(γ γ → γ γ ) =

(
E1

4πs

)2 1

22

∑
pol

|MNC
λ1λ2λ3λ4

+MSM
λ1λ2λ3λ4

|2, (43)

where d� = sin θdθdφ. Note that the first factor in the right-
hand side of this equation coincides with the conventional
factor 1/(64π2s) only if x1 = x2.

To do our calculations, we choose the region of 0.015 <

ξ < 0.15 for both protons which is a standard acceptance
in the central detectors at the nominal accelerator and beam
conditions. It is in accordance with the intervals for ξ used
by the ATLAS [88] and CMS-TOTEM [89] collaborations,
as well as in several papers that examine processes with the
proton tagging at the LHC [90–96]. We also have applied the
cut on the rapidity of the outgoing photons, |η| < 2.5, in all
calculations.

123



845 Page 6 of 11 Eur. Phys. J. C (2022) 82 :845

Fig. 2 The tree level
contributions to the γ γ → γ γ

scattering in the
noncommutative QED

The SM contribution to the γ γ → γ γ scattering is
described by diagrams with charged fermion loops and W
boson loops [97–101]. As it is shown in [73], the gluon-
initiated production of two photons via quark loops can
be neglected for the center-of-mass energy greater than
200 GeV. In our study, minimum mass energy may be
2×7000 GeV×0.015 = 210 GeV due to ξmin = 0.015 value.
Therefore, we could safely ignore QCD corrections. Explicit
analytical expressions for the SM helicity amplitudes, both
for the fermion and W boson terms are too long. That is why
we do not present them here. They can be found in [102].
In such high-energy and luminosity collisions, pile-up back-
grounds can occur. With the use of kinematics, exclusivity
conditions, and timing constraints such backgrounds can be
extremely reduced [58,59].

As it follows from Eqs. (27), (29), (30), and (41), two
options, c01 = 1, with all other cμν vanishing, and c13 = 1,
with all other cμν vanishing, result in the same NC helic-
ity amplitudes. The same is true for the amplitudes with
c02 = 1 and c23 = 1. Given only one of the parameters
cμν is taken to be nonzero, the NC amplitudes are insensitive
to its sign, since they are invariant under the cμν → −cμν

replacement. Note also that four-photon NC helicity ampli-
tudes do not depend on c12. Thus, only three possibilities
should be addressed: (i) c03 = 1, with all other cμν van-
ishing; (ii) c13 = 1, all other NC parameters are zero; (iii)
c23 = 1, with all other cμν vanishing.

In Fig. 3 we show the results of our calculations of the total
and SM differential cross section for the diphoton production
at the 14 TeV LHC with intact protons. The cross section is
presented as a function of the invariant mass of outgoing
photons, mγ γ , for two values of the NC scale �NC. We see
that in the region mγ γ > 400(600) GeV the NC contribution
strongly dominate the SM one for �NC = 0.5(1.0) TeV. For
both values of the NC scale, the time-space NC (blue curves
in Fig. 3) is larger that the space-space NC (red curves). Only
for �NC = 0.5 TeV and mγ γ > 1800 GeV the time-space
and space-space curves merge. From Eqs. (27), (29), and (41)
one makes sure that after integrations over angular variables,
the NC amplitudes should give the same contribution to the
differential cross section both for c13 = 1 and for c23 = 1.
Our numerical calculations confirm this statement. That is
why, we do not present curves for case (iii) in Fig. 3.

In Fig. 4 the total and SM cross sections σ(mγ γ >

mγ γ, min) versus mγ γ, min, the minimal invariant mass of
the outgoing photons, is presented. As one can see, for
�NC = 0.5 TeV this cross section is approximately two
order of magnitude larger than the SM cross section in all
mass region. For �NC = 1 TeV the deviation of the cross
section from the SM one is also very large and becomes more
and more prominent as mγ γ, min grows. Thus, the bigger is
the value of mγ γ, min, the larger is the difference between the
new physics and SM. Note that the time-space NC exceeds
the space-space NC for all mγ γ, min. Only for �NC = 0.5
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Fig. 3 The differential cross
section for the
pp → pγ γ p → p′γ γ p′
scattering at the LHC in the
noncommutative QED versus
invariant mass of the final
photons

Fig. 4 The cross section
σ(mγ γ >mγ γ, min) for the
pp → pγ γ p → p′γ γ p′
scattering at the LHC in the
noncommutative QED versus
minimal invariant mass of the
diphoton system

TeV it becomes comparable with the space-space NC in the
large mγ γ, min region.

Knowing cross sections and SM backgrounds, we have
calculated upper bounds on the NC scale �NC which can
be obtained from the pp → pγ γ p → p′γ γ p′ scattering
at the LHC. To obtain the exclusion region, we applied the
following equation for the statistical significance (SS) [103]

SS = √
2[(S − B ln(1 + S/B)], (44)

where S is the number of signal events and B is the number of
background events. We define the regions SS � 1.645 as the
regions that can be excluded at the 95% CL. To reduce the SM
background, we used the cut mγ γ > 1000 GeV. The results

are shown in Fig. 5. We see that two-photon process at the
LHC can probe the NC scale �NC up to 1.64(1.35) TeV for
time-space (space-space) NC parameters for the integrated
luminosity L = 3000 fb−1. If L = 1000 fb−1, the upper
bounds are approximately 1.40 TeV and 1.15 TeV, for time-
space and space-space NC parameters, respectively.

5 Conclusions

We have examined the light-by-light scattering in the non-
commutative (NC) quantum electrodynamics (NCQED) in
the pp → pγ γ p → p′γ γ p′ collision at the 14 TeV LHC.
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Fig. 5 95% CL bounds on the noncommutative scale �NC coming
from the pp → pγ γ p → p′γ γ p′ scattering as functions of integrated
luminosity of proton–proton collision at 14 TeV. The curves are obtained
with the use of the cut on diphoton invariant mass, mγ γ > 1000 GeV

The NC geometry of space-time appears within a framework
of string theory. NCQED is based on the U (1) group, but
it exhibits the non-Abelian nature in having both 3-photon
and 4-photon vertices in the Lagrangian. That is why the
γ γ → γ γ scattering must be sensitive to the NC contribu-
tions at the tree level, see Fig. 2.

We have calculated the differential cross sections as func-
tions of the invariant mass of the outgoing photons (Fig. 3),
as well as the cross sections as functions of the minimum
invariant mass of the outgoing photons (Fig. 4). Both time-
space and space-space NC parameters have been considered.
The SM background is defined by the contributions from the
W and charged fermion loops. It allowed us to estimate the
95% CL bounds for the NC scale �NC. We have shown that
the scales up to �NC = 1.64(1.35) TeV can be probed at
the LHC, for the time-space (space-space) NC parameters,
see Fig. 5. Our bounds are stronger than the limits that can
be obtained in the 4-photon scattering at high energy linear
colliders [44]. Note that γ γ → γ γ is the more appropriate
channel to probe �NC also in Pb-Pb collisions at the LHC
[49].

In the present paper we have made tree level calculations.
The one-loop corrections in NC Yang-Mills theories were
considered in a number of papers [19,20,29,104–106]. In
particular, one-loop beta function in NC QED has been cal-
culated [19,20]. In contrast to the commutative theory, it was
shown that NC QED is asymptotically free (provided the
number of copies of electron fields is less than six) [19,20].
Note that the very value of the beta function is independent of
the NC parameter θμν . Since the coupling constant decreases
as energy scale grows, we expect that an impact of loop cor-
rections to our tree level calculations should be small.
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Appendix A

The right-hand side of Eq. (31), with the factor 2(32πα)2

omitted, looks like

I = s4 + t4 + u4

s2
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1

t
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(
1

2
p1 ∧ k1

)
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(
1

2
p2 ∧ k2

)
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u
sin

(
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2
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)
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(
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2
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. (A.1)

From the Jacobi identity (28) it follows that
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. (A.2)

Then we obtain from (A.1)

I = − s4 + t4 + u4
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+ 1

s

[
sin

(
1

2
p1 ∧ p2

)
sin

(
1

2
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)]2 }
. (A.3)

Using relation s4 + t4 + u4 = 2(s2t2 + t2u2 + u2s2), we get
the equation

I = (−2)
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(A.4)

that results in formula (32).
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