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In this paper, a systematic design is proposed to generate multi-scroll attractors with
hyperchaotic behavior using fractional-order systems, in which switched SC-CNN is triggered

with error function. Sprott Systems Case H is reconstructed with fractional-order switched SC-

CNN system. Herein, the goal is to increase the complexity of chaotic signals, hence providing

safer and reliable communication by generating multi-scroll attractors with hyperchaotic
behavior using fractional-order systems. Theoretical analysis of the proposed system's

dynamical behaviors is scrutinized, while numerical investigations are carried out with

equilibrium points, Lyapunov exponent, bifurcation diagrams, Poincar�e mapping and 0/1 test
methods. Numerical results are validated through simulations and on an FPAA platform.
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1. Introduction

An information signal is transmitted with a carrier signal in a communication

system. The carrier signal's predictability level describes the level of communication

safety and reliability.1 In a chaotic-based communication system, chaotic signal

accounts for the carrier signal to transmit the information signal.2 Herein, lowering

the predictability level of chaotic signal amounts to safer communication.1,3–5

Actually, lowering the predictability level of chaotic signal means increasing the

complexity of the chaotic signal. In recent years, the security defects of chaotic

cryptosystem and chaotic communication built using single or double-dimensional

chaotic systems emerged due to their light complexity level.6 To overcome such
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issues, many researchers proposed design approaches with higher-dimensional cha-

otic systems.7 Herein, it should be noted that if the designed chaotic systems possess

the same number of positive Lyapunov exponent no matter what their number of

dimensions, i.e., single, double and higher dimensional, their chaotic behaviors'

complexity will be quite similar.7 The systems with more than one positive Lyapunov

exponents, i.e., hyperchaotic systems, o®er more complexity for chaotic cryptosys-

tems and communications. Hence, hyperchaotic systems' nonlinear dynamic be-

havior is more complicated and less predictable as compared to their chaotic

counterpart, independent of their dimensions. The complexity increases in the carrier

signal either by using memristor that provides initial condition sensitivity,8,9 coex-

isting attractors10,11 or image encryption algorithm12 and produces many applica-

tions areas, e.g., ¯ngerprint, image and cryptology.

In the design of chaotic signals, Cellular Neural Network (CNN) o®ers inter-

changeability among di®erent nonlinear structures just by adjusting the system

parameters in the dynamic equations. The most tedious limitation of CNN that

stems from the existence of one nonlinear term in the dynamic equations has been

handled with the presence of State Controlled-Cellular Neural Network (SC-CNN).

The presence of more than one nonlinear term in the dynamic equations, however,

appears as a challenge for the SC-CNN. All the e®orts to enhance and increase the

complexity of chaotic signals that give rise to unpredictability, hence safer com-

munication, led researchers to come up with Switched State Controlled-Cellular

Neural Network (Switched SC-CNN). Switched SC-CNN, however, cannot be acti-

vated with the sgn function and requires the use of error function series to create

multi-scroll chaotic attractors that o®er way more complexity than it is acquired

with single-scroll attractors. To upgrade the behavior of chaotic attractors, e.g.,

single or multiple, to hyperchaos, one needs either an additional dynamic equation or

a design of fractional-order with the aim of increasing the complexity of chaotic

signals, hence providing safer and reliable communication. Unlike integer-order de-

sign, fractional-order design su®ers from meticulous modeling process along with

challenging calculation steps, but it gives higher modeling accuracy with enhanced

complexity.13

Among the studies on chaotic oscillators, one of the most exciting aspects is to

generate attractors with more than one scroll, i.e., n-scroll attractors. On the gen-

eration of multi-scroll attractors, the quasi-linear function approach was the ¯rst

design idea. In 1991 and 1993, Suykens and Vandewalle introduced that piecewise

linear (PWL) functions can be used in the generation of multi-scroll attractors.14–16

In the following years, nonlinear modulating functions, e.g., trigonometric functions,

adjustable wave function approaches, e.g., sawtooth or triangular, and nonlinear

transconductor method were preferred more than PWL functions in the generation

of multi-scroll attractors.17 In addition to these functions, the Sine function for the

generation of multi-scroll chaotic attractors was deputed in 2001 by Tang et al. and

improved in 2003 by Cafagna and Grassi.18–20 The use of nonlinear transconductor
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method in the generation of multi-scroll attractors was ¯rst realized by Özoguz
et al.21 and Salama et al.22 Yalçin et al. in 2002 used a step circuit design to create a

set of scroll-grid chaotic attractors.23 The main purpose behind the generation of

multi-scroll chaotic structures is to increase the complexity in the chaos system.

There are too many methods to enhance the complexity in the chaos system, and a

multi-scroll structure is just one of them. The relevant literature comparison is

shown in Table 1. According to Shilnikov,24 nonlinear system's number of chaotic

attractors and the number of equilibrium points are highly related. To observe the

chaotic behavior in the system, there should be at least one unstable equilibrium

point. To this end, it can be inferred that the increase in the number of scrolls can be

acquired with the increase in the number of unstable equilibrium points. The way of

o®set boosting can be increased with the addition of polynomial, sawtooth, hyper-

bolic, tanh, step, etc., functions.17,25,26 In this paper, o®set boosting is provided with

error function.

SC-CNN-based chaotic oscillators, among many autonomous chaos generators,

draw a signi¯cant amount of attention because of their easier realization, i.e.,

inductorless design. It can be easily seen from the literature that a variety of chaotic

circuits and complex dynamic systems are modeled and used in chaotic cryptography

as well as secure communications as chaos generators in the development history of

SC-CNN. In the evolution of CNNs, SC-CNN composes a vital step, in which SC-

CNN has been used to create a prototype for complex dynamical systems. Various

complex dynamical systems and chaotic circuits have been modeled and utilized in

the realization of secure communications and chaotic cryptography.27–38 It has been

shown in several studies that SC-CNN can also be used in multi-scroll generation.

The use of PWL characteristic in the output function of SC-CNN was presented by

Arena et al. to show that multi-scrolls can be generated in SC-CNN29; n-double-scroll

attractors were generated using hypercubes as used in single-dimensional (1D)

Table 1. Related literature comparison.

Literature

Complexity of

the system

O®set boosting

method

Hardware

implementations

Suykens and

Vandewalle14
–16

Multi-scroll PWL NO

Lü and Chen17 Multi-scroll Trigonometric, adjustable wave,

sawtooth, triangular function

NO

Tang et al.18 Multi-scroll Sine function NO

Cafagna and Grassi19 Multi-scroll and
Hyperchaotic

Sine function NO

Özoguz et al.21 scroll grid Transconductor NO

Yalçin et al.23 Multi-scroll and

Hyperchaotic

State variable direction NO

Günay and Altun42 Multi-scroll tanh YES (Analog)

This paper Multi-scroll and

Hyperchaotic

Erf function YES (Analog)
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CNNs.39 To be able to have multi-scrolls in SC-CNN, Günay and Altun proposed

hyperbolic tangent function series.40 In the case of nonlinearity in a function that has

more than one variable, SC-CNN cell circuit's canonic PWL output function

becomes inadequate. This limitation can be overcome through the use of Switched

SC-CNN that can be used to imitate the nonlinear functions with more than one

variable.41,42 In these studies,41,42 R€ossler system, Sprott Case F and Lorenz system,

which have quadratic-type nonlinearities, are modeled using Switched SC-CNN. The

dynamic structure of the chaotic system can be enhanced with hyperchaotic

modeling. Herein, the fractional-order modeling is one of the widely used methods to

urge a dynamic system to exhibit hyperchaotic behavior.

In this paper, the fractional-order design in addition to switched SC-CNN is

proposed as a modeling approximation to generate multi-scrolls, i.e., improve and

increase the structure complexity. Chaotic systems that have enhanced dynamic

features are more suitable for providing safer and reliable communication. The

fractional-order systems increase the structure complexity as compared to integer-

order systems due to better approximation of their system behavior to reality.

Speci¯cally, fractional-order system designs urge chaotic-based oscillators to exhibit

hyperchaos. Hyperchaos behavior among chaotic dynamic systems is preferred in

chaos-based applications, e.g., cryptology, reliable communication, embedded sys-

tem and signal processing. To increase the complexity in the generation of pseudo-

random number, and in the encryption of image, hyperbolic tangent-cubic nonlinear

function, coexisting multiple attractors, transient period, intermittent chaos and

o®set boosting are proposed.43–46 To this end, we propose a systematic design ap-

proach to generate multi-scroll attractors with hyperchaotic behavior using frac-

tional-order systems, where switched SC-CNN is triggered with error function.

This paper is organized as follows. First, we mention about the Charef approxi-

mation method and give the derivation of fractional-orders. Later, Sprott Case H,

which depicts the quadratic nonlinearity, is transferred to Switched SC-CNN version

and then analyzed from the perspective of dynamical system behaviors. Theoretical

analysis of the proposed system's dynamical behaviors is scrutinized, while numerical

investigations are carried out with equilibrium points, Lyapunov exponent, bifur-

cation diagrams, Poincar�e mapping and 0/1 test methods. Numerical results are also

veri¯ed on an FPAA (Field Programmable Analog Array) platform. Finally, a dis-

cussion and conclusion parts are presented.

2. Fractional Calculus

Nonlinear functions cannot always exhibit chaotic behavior and require the third-

order state equation to provide chaos condition. On the other hand, with the help of

the nonlinear equations that are generated using fractional-order derivative opera-

tors, the third-order state equation is not required to provide chaos conditions. In

such a case, chaotic behavior can be observed even in the case total order of the
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dynamic systems is < 3.47 The nonlinear equations generated using fractional-order

derivative operators, even with the order of < 3, can further increase the unpre-

dictability of chaotic systems.47

The question of whether the meaning of an integer-order derivative can be gen-

eralized to noninteger orders led Leibniz and L'Hopital to introduce the fractional-

order derivative with the order of 0.5.48,49 In fact, this scholar's curiosity reveals that

fractional calculus is indispensable to system modeling, especially for the control

systems.50–54 On the other hand, the calculation process of fractional-order is com-

plicated, challenging and time-consuming. In general, to alleviate the di±culties of

this process for analysis and simulations of control systems, the fractional-order

operators are rounded to the closest integer-order transfer functions with the cost of

sacri¯cing the modeling accuracy. To calculate fractional-order derivative with

better approximation of complete system behavior, an additional parameter is used

as an interpolation between neighboring integer derivatives. Hence, nonlinear sys-

tems can be modeled with higher ¯delity and accuracy. To this end, a great deal of

e®ort has been put by researchers to introduce a variety of methods, e.g., Grünwald–
Letnikov's (GL), Riemann–Liouville (RL) and the Charef approximation, to better

approximate fractional-order operators to the integer-order transfer functions.55

The calculation of fractional-order can be de¯ned as (1). Herein, complex deriv-

ative or integral order is de¯ned with �.

aD
�
x ¼

d�

dt�
; Reð�Þ > 0 ;

1; Reð�Þ ¼ 0 ;Z t

a

ðd�Þ��; Reð�Þ < 0 :

8>>>>><
>>>>>:

ð1Þ

Among the de¯nition of fractional-order systems, the Charef approximation

method is preferred in this study, and its brief explanation is given in the following

subsection.

The Charef Approximation Method

In the ¯eld of fractional analysis, the Charef approximation approach is known as

the widely used de¯nition.56 Based on the Charef approximation approach de¯nition,

the mathematical expression of fractional-order integral equation (2) is given as

I �ðsÞ ¼
1

s�
; ð2Þ

where s ¼ j! and � stand for complex frequency and order of positive fractional

integrator.

I �ðsÞ ¼
1

s�
� 1

1þ s

pT

� �
� ; 0 < � < 1 ; ð3Þ
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where pT refers to corner frequency. To this end, the fractional-order transfer func-

tion can be described as

I �ðsÞ ¼
1

s�
� 1

1þ s

pT

� �
� lim

N!1

QN�1

i¼0

1þ s

zi

� �
QN
i¼0

1þ s

pi

� � : ð4Þ

The transfer function given in (4) helps to calculate the poles and zeros of a given

dynamic system in (5).

p0 ¼ pT10
½y=20��; z0 ¼ p010

½y=10ð1��Þ� ;

p1 ¼ z010
½y=10��; z1 ¼ p110

½y=10ð1��Þ� :
ð5Þ

In these equations, corner frequency, ¯rst pole value and error rate in dB are

de¯ned with pT , p0 and y in the calculation of the approximated transfer function,

respectively. 1=pT stands for the time constant of relaxation.

Equation (6) describes the N � 1 zero and N pole ratio.

zN�1 ¼ pN�110
½y=10ð1��Þ�; pN ¼ zN�110

½y=10�� : ð6Þ
N helps determining the last pole value, pN . Equation (7) provides the values of a; b

and ab that express the N � 1 pole and N zero ratio.

a ¼ 10 ½y=10ð1��Þ�; b ¼ 10 ½y=10��; ab ¼ 10 ½y=10�ð1��Þ� : ð7Þ
These explanations help us derive the equation for the transfer function as

I �ðsÞ ¼
1

s�
� 1

1þ s

pT

� �
� �

QN�1

i¼0

1þ s

zi

� �
QN
i¼0

1þ s

pi

� � ¼
QN�1

i¼0

1þ s

ðabÞ iap0

� �
QN
i¼0

1þ s

ðabÞ ip0

� � : ð8Þ

Moreover, the dimension of the transfer function, N, can be found as

N ¼ int

log
!max

p0

� �
logðabÞ

0
BB@

1
CCAþ 1 : ð9Þ

In the conclusion of Eqs. (8) and (9), s� value, within the interval of speci¯c

frequency and error rate, can be approximately obtained in the frequency domain

with the Charef approximation method. The Charef approximation implies the in-

tegral calculation for the given function where the fractional-order derivative is

acquired with fractional-order integral and integer-order derivatives.

As it is discussed before, at least the third-order dynamic representation is needed

to express chaotic systems in the case that conventional calculation methods are
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preferred. On the other hand, to model a chaotic system with fractional-order system

approximation, the fractional-order derivative is utilized. In this study, the Charef

approximation approach is chosen in the frequency domain expression of fractional-

order for MATLAB Simulink and analog-based FPAA.57 The Charef approximation

is the most suitable method as it allows to obtain a continuous approximation of

fractional-order system in s-domain55 among frequency domain modeling de¯nition.

With the help of this method, approximated integer-order transfer function of

fractional-order integral can be achieved within the speci¯c interval of frequency and

error rate.58 Furthermore, to realize the proposed method in FPAA hardware, the

requirement of FPAA structures to be designed in frequency domain led to the use of

the Charef approximation method. The transfer function obtained with the Charef

approximation method can be easily integrated into numerical simulations and

FPAA implementations. Sprott type-H chaotic system' fractional-order transfer

function in frequency domain is acquired to, respectively, implement in Simulink and

FPAA. Using the selected, minimum fraction-order, the dynamic system's eigenva-

lues are calculated to determine transfer function. Equation (10) shows how to de-

termine fraction-order for every eigenvalue. The fraction-order of the system is

identi¯ed with the selection of the greatest value among the obtained fraction-

order.59 Jacobian matrices obtained for each dimension of the given dynamic system

are used to identify eigenvalues, (�1; �2; . . . ; �n). Then, the fraction order, �, can be

calculated with the help of obtained eigenvalues as shown in (10), where q refers to

the determined fraction order.

jargð�iÞj > ��=2; � ¼ maxðq1; q2; . . . ; qnÞ; 8ði ¼ 1; 2; . . . ;nÞ : ð10Þ
The stability of a system implies that fractional-order system lies at a stable point.

In the case that the given system implies unstability, the chaos exhibition can appear

in the fractional-order system. The fractional-order systems' stability theorem is

summarized in Fig. 1.

Fig. 1. Stability region of the fractional-order system.
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�1 ¼ �1, �2 ¼ 0:25þ i0:968246 and �3 ¼ 0:25� i0:968246 are the eigenvalues of

Sprott type-H chaotic system's Jacobian matrix for the given initial conditions

and parameters. Using the corresponding eigenvalues, the fraction-orders need

to be determined are obtained as follows: argð�1Þ ¼ �, argð�2Þ ¼ 1:31812 and

argð�3Þ ¼ �1:31812. Upon determining the fraction-orders with the help of the ex-

pression maxðq1; q2; q3Þ, it can be found as follows: � ¼ q2 ¼ q3 ¼ 0:9377. Herein, if

qi � 0:9377 for every i ¼ 1; 2; 3, then all the equilibrium of Eq. (10) lies at the region

of unstability that may lead the dynamic system to exhibit possibly chaos. Lyapunov

exponents of the proposed system are given as L1 ¼ 0:0855, L2 ¼ 0:0743 and

L3 ¼ �0:6298.60 Hyperchaos is ¯rst de¯ned as a system with more than one positive

Lyapunov exponent in the classical example of hyperchaotic systems paper, written

by Rossler in 1979.13 Hyperchaotic system has many positive Lyapunov exponents,

which means that the motion of the system extends in many directions, so the

hyperchaotic system has stronger randomness and unpredictability than the general

chaotic system.61–64

HðsÞ ¼ numðsÞ
denðsÞ ¼ 1:377sþ 3:793

s2 þ 4:494sþ 0:0057
: ð11Þ

The transfer function obtained in Eq. (11) represents the fraction order, � ¼ 0:94,

in frequency domain and is used to design Simulink and FPAA CAM (Con¯gurable

Analog Module).

This section was devoted to explain the chaotic system's remodeling with frac-

tion-order method, which o®ers a closer approximation to the real system's behavior.

In the following section, CNN-based design of dynamic equations that include the

second-order nonlinear terms will be clari¯ed. Switched SC-CNN design by trans-

forming variables will be articulated for realizing the CNN model of dynamic

equations that include the second-order nonlinear terms. With this method, CNN-

based design of dynamic systems paves the way for faster calculation and integrated

structure that has higher processing capacity.

3. Switched SC-CNN-Based Chaotic Systems

As we emphasized earlier in the paper, switched-SC-CNN approach can be de¯ned

with nonlinear state equations that are dimensionless given as follows40:

_xj ¼ �xj þ ajyj þGo þGs þGn þ ij ;

yj ¼
1

2
½jxj þ 1j � jxj � 1j� : ð12Þ

In Eq. (12), while state variables are represented by xj, outputs are given by yj. ij
and aj, respectively, are referred to as thresholds and feedback from the outputs of

neighbor cells in SC-CNN. Gs and Go denote the linear combinations of the outputs

and state variables, respectively. Gn represents the bipolar voltage controlled
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switching parameters that surrogate the state variables' possible quadratic varia-

tions. For three connected cells, Eq. (13) gives the generalized Switched SC-CNN as

_x1 ¼ �x1 þ
X3
k¼1

a1kyk þ
X3
k¼1

s1kxk þ
X3
k¼1

n1kxk þ i1 ;

_x2 ¼ �x2 þ
X3
k¼1

a2kyk þ
X3
k¼1

s2kxk þ
X3
k¼1

n2kxk þ i2 ;

_x3 ¼ �x3 þ
X3
k¼1

a3kyk þ
X3
k¼1

s3kxk þ
X3
k¼1

n3kxk þ i3 : ð13Þ

In Eq. (13), state variables are denoted by xi for every i ¼ 1; 2; 3, and the outputs

can be represented with yk. The feedback from the outputs and the states of the

neighbor cells are given with ak and sk, respectively. The thresholds of the cells are

described with ii for every i ¼ 1; 2; 3. The switching parameters that are changing

with cells' output conditions, i.e., yk in Eq. (14), are given with nk.

The PWL output function of CNN, SC-CNN and Switched SC-CNN is depicted

in Fig. 2.

nk ¼
1 ; ðyk � ikÞ � 0 ;

�1 ; ðyk � ikÞ < 0 ;

�

yk ¼
1

2
½jxk þ 1j � jxk � 1j� : ð14Þ

The Sprott Case H system's state variables are denoted as follows65:

_x ¼ �yþ z2 ;

_y ¼ xþ ay ;

_z ¼ x� z:

ð15Þ

For initial values (0.1, 0.1, 0), the Lyapunov exponents based on the original

equation structure of the Sprott H system are given as L1 ¼ 0:081548, L2 ¼
�0:005678 and L3 ¼ �0:575870 and are shown in Fig. 5. The state variables

Fig. 2. PWL output function of CNN, SC-CNN and Switched SC-CNN.
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given in (15) can be transformed using (13) to a switched SC-CNN structure given

as follows:

_x1� ¼ �x1 þ s11x1 þ s12x2 þ n13ðy3 þ i3Þ þ i23 ;

_x2 ¼ �x2 þ s21x1 þ s22x2 ;

_x3 ¼ �x3 þ s31x1 ;

y3 ¼
1

2
½jx3 þ 1j � jx3 � 1j� ;

x ¼ x1; y ¼ x2; z ¼ x3; a ¼ s22; s12 ¼ �1; s11 ¼ s21 ¼ s31 ¼ i3 ¼ 1 ;

s13 ¼ s23 ¼ s32 ¼ s33 ¼ 0; i1 ¼ i2 ¼ 0 ;

n11 ¼ n12 ¼ n21 ¼ n22 ¼ n23 ¼ n31 ¼ n32 ¼ n33 ¼ 0 ;

a11 ¼ a12 ¼ a13 ¼ a21 ¼ a22 ¼ a23 ¼ a31 ¼ a32 ¼ a33 ¼ 0 ;

n13 ¼
þ1; ðy3 � i3Þ � 0 ;

�1; ðy3 � i3Þ < 0 :

�
ð16Þ

The nonlinearity in the Sprott Case H system is obtained by quadratic z2 function

as depicted in (15). The same nonlinearity in Switched SC-CNN system can

be acquired provided that z2 ¼ y2
3 ¼ ðy3 þ i3Þðy3 � i3Þ þ i23. Here, i3 equals to a

constant. n13ðy3 þ i3Þ is used instead of the product of (y3 þ i3)(y3 � i3), and n13

surrogates to sgn(y3 � i3).

Remark 1. For _x1, the parameter n13 acts like a switch at a zero threshold level and

creates two di®erent occasions:

. When (y3 � i3) is positive, n13 is equal to 1 (switch > 0),

. When (y3 � i3) is negative, n13 is equal to �1 (switch < 0).

With using the conditions and variables given in Remark 1, state equations

obtained with the switching of the dynamic system that include the second-order

nonlinear terms are given in Eq. (17). These two occasions can be mathematically

expressed as

_x1þ ¼ �x1 þ s11x1 þ s12x2 þ n13ðy3 þ i3Þ þ i23; ðy3 � i3Þ � 0 ;

_x1� ¼ �x1 þ s11x1 þ s12x2 � n13ðy3 þ i3Þ þ i23; ðy3 � i3Þ < 0 :
ð17Þ

4. Discussions for Stability and Numerical Results of Switched State

Controlled-CNN-Based Sprott Case H

Determining the chaos conditions of the Sprott H system has been carried out using

Switched SC-CNN and realizing numerical analysis for both switching states to

select accurate parameters under the given conditions. This section provides infor-

mation about how to select accurate parameters for generating a multi-scroll chaotic

attractor with Switched SC-CNN.

K. Altun
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The equilibrium points of Eq. (16) are represented in two subspaces whereDþ and

D�, respectively, refer to subspaces when x3 is positive and negative and can be given

as follows:

Dþ ¼ fðx1;x2;x3Þjx3 � 0g : P þ ¼ ð�k1;�k2;�k3Þ
D� ¼ fðx1;x2;x3Þjx3 < 0g : P � ¼ ðk1; k2; k3Þ :

ð18Þ

for n13 ¼ �1, where

k1 ¼
�ði3 � i3s22Þ

ðs11 þ s22 þ s31 � s11s22 þ s12s21 � s22s31 � 1Þ ;

k2 ¼
ð�i3s21Þ

ðs11 þ s22 þ s31 � s11s22 þ s12s21 � s22s31 � 1Þ ;

k3 ¼
ði3s31ðs22 � 1ÞÞ

ðs11 þ s22 þ s31 � s11s22 þ s12s21 � s22s31 � 1Þ :

In regionsDþ andD�, Eq. (18) is linear where its equilibrium points, P þ and P �,
are derived using the system's Jacobian matrices:

J� ¼
ðs11 � 1Þ; s12; 1

s21; ðs22 � 1Þ; 0

s31; 0; �1

������
������: ð19Þ

After getting equilibrium points, P þ and P �, we can ¯nd the characteristic

equation of the given system as

Sð�Þ ¼ �3 þ ð3� s11 � s22Þ�2 þ ð3� 2s11 � 2s22 þ s11s22 � s12s21Þ�þ s11s22

� s12s21 þ 1 :

To ¯nd system's equilibrium points with eigenvalues, the parameter values,

s11 ¼ s21 ¼ s31 ¼ 1; s12 ¼ �1; s22 ¼ 1:3; i3 ¼ 0:1, and the initial conditions (0.1, 0.1, 0)

are substituted in the system's Jacobian matrices as shown in Eq. (19). Accordingly,

the calculated eigenvalues and equilibrium points of the system are given in Table 2.

Remark 2. Proposed Switched SC-CNN system refers to an unstable operation,

where the equilibrium S settles at saddle-focus.

. When n13 = 1, �1, and �2 with �3, respectively, refer to negative real number, and

complex conjugate eigenvalues with positive real parts.

Table 2.

n13 x1 x2 x3 �1 �2 �3

1 0.0769 �0.0231 �0.0231 �1.4884 0.3942+0.8474i 0.3942 � 0.8474i
�1 0.1428 �0.0428 �0.0428 �0.4414 �0.1293+1.2572i �0.1293 �1.2572i
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Remark 3. Proposed Switched SC-CNN system refers to a stable operation, where

the equilibrium S settles at focus node.

. When n13 = �1, �1, and �2 with �3, respectively, refer to negative real number,

and complex conjugate eigenvalues with positive real parts.

In Figs. 3(a)–3(h), the coexistence of di®erent attractors at each step from period-2

limit cycle to chaos are presented.

In the positive switching condition given in Remark 2, time-series and phase-space

demonstrations, including 2T and 4T periodic windows, for the two di®erent values

of constant parameter, i3 ¼ 1:68 and i3 ¼ 1:72, are depicted in Figs. 3(a)–3(d). In the

negative switching condition given in Remark 3, time-series and phase-space

demonstrations, including 2T and 4T periodic windows, for the two di®erent values

of constant parameter, i3 ¼ �1:68 and i3 ¼ �1:72, are given in Figs. 3(e)–3(h). In
addition to these, time-series and phase-space illustration of the system's chaotic

behavior obtained for i3 ¼ 0:3 is given in Figs. 3(i) and 3(j).

(a) (b)

(c) (d)

Fig. 3. (a) Time series of x1ðtÞ dynamic for i3 ¼ 1:68, (b) 4T-periodic solution for i3 ¼ 1:68, (c) time series

of x1ðtÞ dynamic for i3 ¼ 1:72, (d) 2T-periodic solution for i3 ¼ 1:72, (e) time series of x1ðtÞ dynamic

for i3 ¼ �1:72, (f) 2T-periodic solution for i3 ¼ �1:72, (g) time series of x1ðtÞ dynamic for i3 ¼ �1:68,
(h) 4T-periodic solution for i3 ¼ �1:68, (i) time series of x1ðtÞ dynamic for i3 ¼ 0:3 and (j) chaotic solution

for i3 ¼ 0:3.
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Herein, we carry out two di®erent bifurcation observations: the values, i3 ¼ 0:3

and s22 ¼ 1:3, where the system exhibits chaotic behavior, are distinctly kept ¯xed to

obtain parameter's bifurcation diagrams. (i) the system parameters are set to

s11 ¼ s21 ¼ s31 ¼ 1; s12 ¼ �1; i3 ¼ 0:3, while s22 is varying, (ii) the system para-

meters are set to s11 ¼ s21 ¼ s31 ¼ 1; s12 ¼ �1; s22 ¼ 1:3, while i3 is varying. These

bifurcation diagrams' time-series and phase-space demonstrations are given in Figs. 3(a)

and 3(j). In (i), the system's numerical calculation with s22" [0.3,0.4] for an increment

(e) (f)

(g) (h)

(i) (j)

Fig. 3. (Continued )
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of �s22 ¼ 0:001 is carried out. The bifurcation diagram is shown in Figs. 4(a)

and 4(b). Pitchfork bifurcations occur at s22" [0.307, 0.312] and s22" [0.382, 0.386].

In (ii), the system is simulated numerically with i3" [�2:5, 2.5] for an increment of

�i3 ¼ 0:001. Besides periodic windows, the bifurcation diagrams including chaotic

regions are shown in Figs. 4(c) and 4(d).

The systems' Lyapunov exponents variations are numerically computed in the

axis of i3 2 ½�2:5; 2:5� and s22 2 ½0; 0:45� with the increments of �s22 ¼ 0:01 and

�i3 ¼ 0:01. This computation takes 106 iterations using the Runge–Kutta algorithm

in the fourth order, and the graphics that are obtained from the calculations of

Lyapunov exponents variations are shown in Fig. 5.

When the Lyapunov analysis is carried out for i3, and s22 similar to the previous

analysis, it is observed that the same results are obtained for given intervals. The

Lyapunov exponents calculated for the varying values of i3 are shown in Fig. 5(a). It

can be observed here that the maximum Lyapunov exponent is acquired for the value

of i3 ¼ 0:3. For the varying values of s22, the Lyapunov exponents are depicted in

Fig. 5(b), where Lyapunov exponents reach to their maximum for s22 ¼ 0–0.45.

(a) (b)

(c) (d)

Fig. 4. (a) Bifurcation diagrams with x1 versus s22 2 ½0:3; 0:4� for an increment of �s22 ¼ 0:001,

(b) pitchfork bifurcation occur at s22 2 ½0:382; 0:386�, (c) bifurcation diagrams with x1 versus i3 2 ½�2:5; 2:5�
for an increment of �i3 ¼ 0:001 and (d) periodic and chaotic sequences for i3 2 ½1:8; 2�.
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The one-to-one correspondence of bifurcation diagram with the exponential

spectrum is illustrated in Fig. 6. In this ¯gure, the values of Lyapunov exponents for

the varying i3 and bifurcation diagram with chaotic–periodic windows can be ob-

served. The initiation of chaotic–periodic window starts when the value of switching

parameter becomes around i3 ¼ �2:3 for which one of the Lyapunov exponents is

turning to the positive value. The presence of chaotic window continues as long as at

least one of the Lyapunov exponents remains positive. For the values of the switching

parameter from �1:72 to �1:68, i.e., i3 ¼ ½�1:72;�1:68�, all the Lyapunov exponents

become negative, and all the chaotic windows are simultaneously disappeared.

Similar to the previous case, when the value of the switching parameter becomes

around i3 ¼ ½�1:68; 1:68�, chaotic windows appear again with one positive Lyapunov

exponent. Once again, for the values of switching parameter from 1.68 to 1.72, i.e.,

i3 ¼ ½1:68; 1:72�, all the Lyapunov exponents become negative, and all the chaotic

windows simultaneously disappear.

(a)

(b)

Fig. 5. Lyapunov exponents of the system for (a) varying i3 2 ½�2:5; 2:5� and (b) varying s22 2 ½0; 0:45�.
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Fig. 6. Bifurcation diagram of x1 and Lyapunov exponent spectrum with i3 increasing.

Fig. 7. Lyapunov exponents of the Sprott system case H when the fractional-order is 0.94, i.e., q ¼ 0:94.
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In the second section of this paper, the minimum fraction value of the proposed

fractional-order design is calculated as 0.94, i.e., q ¼ 0:94, Lyapunov exponents of the

Sprott system case H is also derived and two positive exponents are found as shown

in Fig. 7. As a well-known fact, the hyperchaos is de¯ned as a system with more than

one positive Lyapunov exponents.13 Lyapunov exponents of the proposed system are

given as L1 ¼ 0:0855, L2 ¼ 0:0743 and L3 ¼ �0:6298, and its plot is illustrated in

Fig. 7. These two positive exponents pose a system to exhibit hyperchaotic behavior.

For i1 ¼ 0:1 and s22 ¼ 1:5 in x1ðtÞ � x3ðtÞ domain, the proposed system's

Poincar�e mapping can be seen in Fig. 8. When we analyze the Poincar�e mapping,

which is attained for the variable values causing chaos condition obtained from the

phase-space demonstration, bifurcation diagram and Lyapunov exponent given

above, the selected plane, i1 ¼ 0:1 and s22 ¼ 1:5, is intersected with many points.

This situation once again veri¯es the existence of chaos for the proposed system.

Fig. 8. The proposed system's Poincar�e mapping for i1 = 0.1 and s22 = 1.5.

Fig. 9. 0/1 Test results of the proposed system for x1 state variable.
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Finally, we can once again con¯rm the appearance of the system's chaos condi-

tions when we examine the p–q phase-space demonstration for x1 state variable

determined in chaos moment in Fig. 9. Here, we have utilized 0/1 test for the pro-

posed system to observe whether the system exhibits chaotic behavior, and it is

visualized in Fig. 9. In fact, 0/1 test is a chaos analysis method that can calculate

nonlinear system behavior, in which it uses data output of a system without system

equations.66 With the help of this 0/1 test, we realize chaos analysis by evaluating

the outcomes of calculated p–q iteration variables' phase-space exhibition. With this

method, we can observe the generations of linear and nonlinear patterns in periodic

signals and chaos conditions, respectively. Figure 9 depicts a sample of nonlinear

patterns, where the system exhibits chaotic behavior.

5. Generation of Multi-Scroll Chaotic Attractors

In this section, ¯rst, the procedures of multi-scroll generation in fractional-order

Switched SC-CNN-Based Sprott Case H system via error function series for � ¼
q1 ¼ q2 ¼ q3 ¼ 0:94 are presented. By using one-error function and two-error func-

tion series, many multi-scroll generators can be obtained. A chaotic system that has

the fraction-order of q ¼ 0:94 and total order of 2.82 is used with di®erent output

functions yi, where ði ¼ 1; 2; 3Þ, using error function to attain multi-scroll attractor.

In case I, y3 output function is used for switching in x1 state variable to obtain multi-

scroll attractor. In the remaining part of this study, multi-scroll attractors are

attained for the given system dynamics with two-error function. In case II, y3 output

function is used for switching in x1 state variable, while y2 output function is used for

switching in x3 state variable to obtain multi-scroll attractor. In the subsections of

this part, we present numeric analysis, simulations and FPAA implementations of

these cases.

In the design of Switched SC-CNN, switching parameter n13 can be modeled with

the sgn function. However, the nondi®erentiability of the sgn function force designer

to replace it with its continuous and di®erentiable equivalent67 is as

sgnðxÞ ) erfðkxÞ :

Herein, the error function, which can approximate the nonlinear dynamic be-

havior with a quite high accuracy,68 is integrated into switched SC-CNN for the ¯rst

time in the literature. The error function shows better accuracy than other widely

used functions tanh that con¯rms in Fig. 10. Another considerable feature of error

function is its di®erentiability, e.g., nonlinear characteristics of the sgn function

prevent solving switching problems.67,69 To this end, this paper aims to create

a carrier signal that is highly unpredictable, in which multi-scroll attractors are

acquired with the help of increased equilibrium points as the conclusion of error

function usage in Sprott-H chaotic oscillators.
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Here, k is set such that error function is approximated to the sgn function. Hence,

system's calculated Lyapunov exponent turns out to be independent of k. In this

study, we ¯rst replace the sgn function with erf and set k to 100.

A. Using 1 — Error Function in Fractional-Order Switched

SC-CNN-Based Sprott Case H system

Case I: y3 output function is used for switching in x1 state variable to obtain

multi-scroll attractor.

Consider the following system:

Dq1
t x1� ¼ �x1 þ s11x1 þ s12x2 þ ½�erfðky3Þ � i3� ;

Dq2
t x2 ¼ �x2 þ s21x1 þ s22x2 ;

Dq3
t x3 ¼ �x3 þ s31x1 ;

Dq1
t x1þ ¼ �x1 þ s11x1 þ s12x2 þ ½�erfðky3Þ þ i3�; ðswitch > 0Þ ;

Dq1
t x1� ¼ �x1 þ s11x1 þ s12x2 þ ½�erfðky3Þ � i3�; ðswitch < 0Þ ;

x ¼ x1; y ¼ x2; z ¼ x3 ;

s11 ¼ s21 ¼ s31 ¼ 1; s12 ¼ �1; s22 ¼ 1:3; i3 ¼ 0:2; k ¼ 100 ;

s13 ¼ s23 ¼ s32 ¼ s33 ¼ 0; i1 ¼ i2 ¼ 0 ;

a11 ¼ a12 ¼ a13 ¼ a21 ¼ a22 ¼ a23 ¼ a31 ¼ a32 ¼ a33 ¼ 0 :

ð20Þ

The equilibrium points of Eq. (20) exist in two subspaces de¯ned as follows. Let

D1 be the subspace, where x3 is positive, and D2 be the subspace, where x3 is

negative:

D1 ¼ fðx1;x2;x3Þjx3 � 0g : P1 ¼ ð�a1;�a2;�a3Þ ;
D2 ¼ fðx1;x2;x3Þjx3 < 0g : P2 ¼ ða1; a2; a3Þ ;

ð21Þ

Fig. 10. Comparison of the tanh, erf and sgn functions.
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where a1, a2 and a3 are given as

a1 ¼
�ði3 � i3s22Þ

ðs11 þ s22 � ks31 � s11s22 þ s12s21 þ ks22s31 � 2Þ ;

a2 ¼
�ði3s21Þ

ðs11 þ s22 � ks31 � s11s22 þ s12s21 þ ks22s31 � 2Þ ;

a3 ¼
ði3s31ðs22 � 1ÞÞ

ðs11 þ s22 � ks31 � s11s22 þ s12s21 þ ks22s31 � 2Þ :

In regions D1 and D2, Eq. (21) is linear, where its equilibrium points, P 1 and P 2,

are derived using the system's Jacobian matrices:

J1;2 ¼
ðs11 � 1Þ; s12; 1

s21; ðs22 � 1Þ; 0

s31; 0; �1

������
������ : ð22Þ

The characteristic equation of the system is given by

S1ð�Þ ¼ �3 þ ð3� s11 � s22Þ�2 þ ð3� 2s11 � 2s22 þ s11s22 � s12s21Þ�
� s11 � s22 þ s31 þ s11s22 � s12s21 � s22s31 þ 1 ;

where the parameter values are

s11 ¼ s21 ¼ s31 ¼ 1; s12 ¼ �1; s22 ¼ 1:3; i3 ¼ 0:2; k ¼ 100 ;

s13 ¼ s23 ¼ s32 ¼ s33 ¼ 0; i1 ¼ i2 ¼ 0 ;

a11 ¼ a12 ¼ a13 ¼ a21 ¼ a22 ¼ a23 ¼ a31 ¼ a32 ¼ a33 ¼ 0 :

Remark 4. System presented in Eq. (23) can generate multi-scroll chaotic

attractors by utilizing the circumstances given as follows:

. Adding erf function in x1 via y3 nonlinearity;

. Parameters s11, s12, s21, s22, s31 satisfy conditions given in Eq. (20).

�1 þ �2 þ �3 ¼ ðs11 þ s22 � 3Þ < 0

�1�2�3 ¼ ðs11 þ s22 � s31 � s11s22 þ s12s21 þ s22s31 � 1Þ < 0

�
for D1;D2 : ð23Þ

Jacobian matrix equation, J1;2, given in Eq. (22) lets us derive the eigenvalues

as �1 ¼ �0:4414, �2;3 ¼ �0:1293� 1:2527i based on the equilibrium point

ð�0:0857; 0:2857;�0:0857Þ 2 D1;2. When we consider the same initial conditions for

Eq. (21), its outcome will have three roots, which are one negative and two complex

conjugates lying in the subspaces with negative real parts, respectively. These roots

imply that SC-CNN system is stable and its equilibrium points, P1;2, lying on to focus

node. When x1ðtÞ is the variable for the multi-scroll attractor, the x1 � x2 phase
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space becomes as shown in Fig. 12(a). In this part of the proposed study, switching

parameter in addition to x1 state variable has been realized with an error function.

Hence, the multi-scroll attractors have been obtained by completing the switched

SC-CNN design of the system. In addition, hyperchaos behavior exhibition has been

provided with the use of fractional-order design.

The block scheme for the FPAA implementation circuit of AnadigmDesigner 2 is

depicted in Fig. 11(a). The analog-based FPAA implementation of the proposed

system is realized, as shown in Fig. 11(b). For the numerical simulations, the

(a)

(b)

Fig. 11. Numerical and implementation results of case i: (a) FPAA implementation circuit of Anadigm

Designer2 and (b) FPAA hardware implementation.
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parameters given in Remark 4 are used. Numerical simulation settings are to gen-

erate phase-space data, ¯xed-step Runge–Kutta integrator in MATLAB 2019 with

ODE4 solver is preferred. The simulation time is set to 2500 s, in which time-step is

adjusted to 0.1 s.

Figure 12 demonstrates the outcome of multi-scroll attractors with hyperchaotic

behavior using fractional-order systems through simulation and implementation

results for case I. The phase-space exhibition of multi-scroll in x1 � x2 plane is shown

in Fig. 12(a), while its x2 � x3 plane representation is given in Fig. 12(b). Among the

time series of state variables, x1(t) state variable is selected to illustrate in Fig. 12(c)

due to the reason y3 output function is used for switching in x1. The phase-space

(a)

(b)

Fig. 12. Numerical and implementation results of case i: (a) multi-scroll in x1–x2 plane, (b) multi-scroll in

x2–x3 plane, (c) time series of x1ðtÞ dynamic for multi-scroll and (d) FPAA implementation result in
x1ðtÞ–x2ðtÞ plane.

K. Altun

2250085-22

 

Copyright of the works in this Journal is vested with World Scientific Publishing. 

The article is allowed for author’s personal use only. No further distribution is allowed. 

 



exhibition of multi-scroll in x1 � x2 plane for case I is also validated through FPAA

implementation in Fig. 12(d).

B. Using 2-Error Function in Fractional-Order Switched

SC-CNN-Based Sprott Case H system

Case II: y3 output function is used for switching in x1 state variable, while y2 output

function is used for switching in x3 state variable to obtain multi-scroll attractor.

Dq1
t x1� ¼ �x1 þ s11x1 þ s12x2 þ ½�erfðky3Þ � i3� ;
Dq2

t x2 ¼ �x2 þ s21x1 þ s22x2 ;

Dq3
t x3� ¼ �x3 þ s31x1 þ ½�erfðky2Þ � i2� ;

Dq1
t x1þ ¼ �x1 þ s11x1 þ s12x2 þ ½�erfðky3Þ þ i3�

Dq3
t x3þ ¼ �x3 þ s31x1 þ s33x3 þ ½�erfðky2Þ þ i2�

)
switch > 0 ;

(c)

(d)

Fig. 12. (Continued )
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Dq1
t x1� ¼ �x1 þ s11x1 þ s12x2 þ ½�erfðky3Þ þ i3�

Dq3
t x3� ¼ �x3 þ s31x1 þ s33x3 þ ½�erfðky2Þ þ i2�

)
switch < 0 ;

s11 ¼ s21 ¼ s31 ¼ 1; s12 ¼ �1; s22 ¼ 1:15; i2 ¼ 0:5; i3 ¼ 0:3; k ¼ 100 ;

s13 ¼ s23 ¼ s32 ¼ s33 ¼ 0; i1 ¼ 0 ;

a11 ¼ a12 ¼ a13 ¼ a21 ¼ a22 ¼ a23 ¼ a31 ¼ a32 ¼ a33 ¼ 0 :

ð24Þ
In Eq. (24), the equilibrium points lie in two subspaces described in the following.

Let D3 de¯ne the subspace, in which x2 and x3 are positive, and D4 de¯ne the

subspace, in which x2 and x3 are negative:

D3 ¼ fðx1;x2;x3Þjx2;x3 � 0g : P3 ¼ ð�a4;�a5;�a6Þ ;
D4 ¼ fðx1;x2;x3Þjx2;x3 < 0g : P4 ¼ ða4; a5; a6Þ :

ð25Þ

a4 ¼
�ði3 � i2k� i3s22 þ i2ks22Þ

ðs11 þ s22 � ks31 � s11s22 þ s12s21 þ k2s21 þ ks22s31 � 1Þ ;

a5 ¼
�½s21ði3 � i2kÞ�

ðs11 þ s22 � ks31 � s11s22 þ s12s21 þ k2s21 þ ks22s31 � 1Þ ;

a6 ¼
ði2s11 � i2 þ i2s22 þ i3ks21 � i3s31 � i2s11s22 þ i2s12s21 þ i3s22s31Þ

ðs11 þ s22 � ks31 � s11s22 þ s12s21 þ k2s21 þ ks22s31 � 1Þ :

In the regions D3 and D4, Eq. (24) is linear where its equilibrium points, P 3 and

P 4, are derived using the system's Jacobian matrices:

J3;4 ¼
ðs11 � 1Þ; s12; �k

s21; ðs22 � 1Þ; 0

s31; �k; �1

������
������ : ð26Þ

The characteristic equation of the system is given by

S2ð�Þ ¼ �3 þ ð3� s11 � s22Þ�2 þ ð3þ s31 � 2s22 � 2s11 þ s11s22 � s12s21Þ�
� s11 � s21 � s22 þ s31 þ s11s22 � s12s21 � s22s31 þ 1 ;

where the parameter values are as follows:

s11 ¼ s21 ¼ s31 ¼ 1; s12 ¼ �1; s22 ¼ 1:15; i2 ¼ 0:5; i3 ¼ 0:3; k ¼ 100 ;

s13 ¼ s23 ¼ s32 ¼ s33 ¼ i1 ¼ 0 ;

a11 ¼ a12 ¼ a13 ¼ a21 ¼ a22 ¼ a23 ¼ a31 ¼ a32 ¼ a33 ¼ 0 :

Remark 5. System presented in Eq. (24) can generate multi-scroll chaotic

attractors by utilizing the circumstances given as follows:

. Adding erf function in x1 via y3 nonlinearity;

. Adding erf function in x3 via y2 nonlinearity;
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(a)

(b)

(c)

Fig. 13. Numerical and implementation results of case ii: (a) multi-scroll in x1–x2 plane; (b) multi-scroll

in x2–x3 plane; (c) multi-scroll in x1–x3 plane; (d) time series of x1ðtÞ dynamic for multi-scroll; (e) time

series of x3ðtÞ dynamic for multi-scroll and (f) FPAA implementation result in x1ðtÞ–x2ðtÞ plane.
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. Parameters s11, s12, s21, s22 and s31 satisfy conditions given in Eq. (27).

�1 þ �2 þ �3 ¼ ðs11 þ s22 � 3Þ < 0

�1�2�3 ¼ ðs11 � s12 þ s22 � s11s22 þ s12s21 � s12s31 � 1Þ < 0

�
for D3;D4 : ð27Þ

(d)

(e)

(f)

Fig. 13. (Continued )
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Jacobian matrix equation, J3;4, given in Eq. (26) lets us derive the eigenvalues as

�1 ¼ 0:0780, �2;3 ¼ �0:4640� 1:3066i based on the equilibrium point ð�0:2; 1:33;

�1:03Þ 2 D3;4. When we consider the same initial conditions for Eq. (25), its outcome

will have three roots, which are one positive and two complex conjugates lying in the

subspaces with negative real parts, respectively. These roots imply that SC-CNN

system is unstable and its equilibrium points, P3;4, lying on to saddle points. When

x1ðtÞ is the variable for the multi-scroll attractor, the x1–x2 phase space becomes as

shown in Fig. 13. Herein, the switching parameters in addition to x1 and x3 state

variables have been realized with two error functions. Hence, the multi-scroll

attractors have been obtained by completing the switched SC-CNN design of the

system. In addition, hyperchaos behavior exhibition has been provided with the use

of fractional-order design. The analog-based FPAA implementation of the proposed

system is realized. Figure 13 demonstrates the outcome of multi-scroll attractors

with hyperchaotic behavior using fractional-order systems through simulation

and implementation results. It is observed that the implementation results verify

theoretical and simulation outcomes.

In the fourth section of this paper, error function is utilized to increase the number

of equilibrium points and to generate multi-scroll structure. In this section, the

outcomes of simulations and implementation results obtained using the proposed

error function are given in Fig. 12 for case I and Fig. 13 for case II. Herein, it can be

observed that the usage of the error function increased the number of scrolls.

Figure 13 demonstrates the outcome of the proposed method for case II, where an

increase in the number of scroll is expected. The phase-space exhibitions of multi-

scrolls in x1–x2, x2–x3 and x1–x3 planes are shown in Figs. 13(a)–13(c), respectively.
Herein, it should be observed that the number of scroll in case II is more than it was

in case I, as expected. Among the time series of state variables, x1ðtÞ and x3ðtÞ states
variable are selected to illustrate in Figs. 13(d) and 13(e), respectively, due to the

reasons y3 and y2 output functions are used for switching in x1 and x3. The phase-

space exhibition of multi-scroll in x1–x2 plane for case II is also validated through

FPAA implementation in Fig. 13(f).

5.1. Discussion

Multi-scroll chaotic attractor generation has always been one of the remarkable

topics among chaos studies. The main reason behind this is to enhance, improve and

increase complexity in selected chaotic structures while obstructing its predictability.

This increase in complexity and decrease in predictability are essential requirements

for providing reliable communication. Due to the reasons listed above, herein a

design approach is proposed to generate multi-scroll attractors with hyperchaotic

behavior using fractional-order systems, where an error function triggers the

switched SC-CNN. Error function for the ¯rst time in the literature, which is
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di®erentiable and exhibits close behavior to the sgn function, is utilized. In addition

to this structure, the complexity of the given system can be enhanced with the help of

adding fractional-order design that transforms the existing system to the hyperchaos.

Consequently, Sprott system case H becomes a carrier signal that is highly unpre-

dictable which gives rise to safer and reliable communication.

In hardware implementation, multi-scroll attractors with hyperchaotic behavior

using fractional-order systems circuit design can be categorized as reprogrammable

circuits FPGA (Field Programmable Gate Array), FPAA, chip for one special ap-

plication (Application Speci¯c Integrated Circuit — ASIC) and discrete circuit el-

ement implementation. Because of being °exible and recon¯gurable, FPAAs are

more popular in the implementation of nonlinear systems by utilizing analog func-

tions with the help of dynamic recon¯gurations.70 The presence of Op Amps into

FPAAs for realizing many blocks restricts the design °exibility due to the reasons:

corner frequency, gain, clock frequency, slew rate and saturation voltage.71,72 On the

other hand, analog-based, i.e., Op Amp, FPAA structures help better observing the

behaviors of dynamic systems rather than digital-based structures.72 This advantage

provides quite important contributions in the application stage, especially for the

application of secure communication, image processing and cryptology.73–75

AN231K04-QUAD4 type FPAA QuadApex design board that is the product of

Anadigm is used in this study. Realization of nonlinear functions with discrete circuit

elements has always created process issues. In this point of view, programmable

platforms like FPAAs are seen as an alternative solution to these kinds of problems.

As a future study, the author thinks of performing further analysis for grid scroll

generation in Multi-Switched SC-CNN-based systems.

6. Conclusion

In this paper, a design approach to generate multi-scroll attractors with hyperchaotic

behavior using fractional-order systems, where switched SC-CNN was triggered with

error function, has been investigated. Sprott Systems Case H is reconstructed with

fractional-order switched SC-CNN system. In the proposed method, multi-scroll

attractors with hyperchaotic behavior were generated using error function series.

Theoretical analysis of the proposed system's dynamical behaviors was scrutinized,

while numerical investigation was carried out with equilibrium, Lyapunov exponent,

bifurcation diagrams and 0/1 test methods. Numerical results were also veri¯ed on

an FPAA platform.
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