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Abstract
Changes in land cover driven by urban sprawl increase the 
threat of urbanization of forests and agricultural lands. 
Therefore, monitoring urban sprawl by creating simulation 
models is frequently carried out to understand sustainable 
city management. Cellular automata-based models are 
mostly preferred to reduce the damage led by urban sprawl, 
and the SLEUTH model is the most well known. Several 
methods have been developed for the SLEUTH model cali-
bration step, such as optimum SLEUTH metrics and total 
exploratory factor analysis (T-EFA), to improve the model 
accuracy. This study aims to create a high-accuracy urban 
growth simulation model using low-resolution data, inves-
tigate the T-EFA method's success in the calibration step, 
and find the urban sprawl effects on land cover change. 
Istanbul was selected as our study area due to witnessing 
its tremendous urban sprawl since the 1950s. According to 
our results, the urban growth that occurred between 2000 
and 2018 could be defined more closely to reality using 
the T-EFA method, and Istanbul will continue to grow until 
2040, with approximately 428.7 km2 of agricultural lands, 
553.4 km2 of forests, and 0.1 km2 of wetlands being trans-
formed to urban. In addition, the geologically risky areas 
under threat of urbanization will increase by 60% between 
2018 and 2040.
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1  | INTRODUC TION

The world population increases by an average of 1.2% every year (Alkan, Ozulu, Ilci, Tombus, & Sahin, 2017). 
Half of this population lives in cities with a higher job, education, health opportunity, and welfare level, and the 
urban population is expected to reach 68% in the world in 2050 (WUP, 2019). In addition to population growth, 
rent-oriented land-use policies also cause the urban space to expand physically and are defined as urban growth. 
Urban growth is a complex socioeconomic process that transforms the built environment and rural areas into 
urban settlements with increasing population, while shifting the spatial distribution of the population from rural 
areas to urban areas (UN,  2019). Urban growth has three components: natural population growth, migration, 
and reclassification (Stecklov, 2018). In addition to these, urban growth depends on the demographic changes 
in a country (Dyson, 2011), the size of the settlement unit (Batty, 2008), spatial planning policies (Angel, Parent, 
Civco, & Blei, 2011), and physical and local conditions specific to the urban area. When cities grow, they merge 
their populations and neighboring settlements that have been previously classified as rural areas (Siri, Brown, 
& Spielauer, 2010). The population growth in rural areas may cause settlements to be reclassified from rural to 
urban, thus accelerating urbanization (UN, 2019).

Generally, environmental, social, and economic problems are faced if urban growth, which causes natural areas 
and open spaces on urban fringes to be transformed into built residential areas, industrial areas, and trade centers, 
is not taken under control (EEA, 2006, 2016).

Land use/land cover (LULC) changes lead to the main environmental problems. Climate change as a result of 
deforestation and the destruction of agricultural lands and wetlands due to LULC changes causes problems such 
as an increase in land surface temperatures, global warming, drought and floods, epidemics, air and water pollu-
tion, lack of nutrition, and food insecurity (Bart, 2010; EEA, 2016; Emadodin, Reinsch, & Taube, 2019; Khorrami, 
Gunduz, Patel, Ghouzlane, & Najjar, 2019; Kusak & Kucukali, 2018; Loh et al., 2015; Selim & Demir, 2019; Tu, Xia, 
Clarke, & Frei, 2007). Moreover, the transformation of lands with natural disaster risk into settlements due to 
uncontrollable urban growth (Mestav Sarica, Zhu, & Pan, 2020), and the dimensions of social and economic losses 
caused by a possible disaster, are very high. In addition to these, increasing costs, especially of energy and trans-
portation, cause the disruption of public services provided by local governments and an increase in poverty along 
with a change in demography and quality of life; these problems are addressed under the title of socioeconomic 
problems (Ayazli, Kilic, Lauf, Demir, & Kleinschmit, 2015; EEA, 2016).

Various models have been developed to minimize the damage of urban growth. The first-produced urban 
growth model theories are usually of radial form. After the 20th century, the approach in which cities consist 
of many dynamic subsystems has been accepted (Ayazli et al., 2015; Batty, 2007; Benenson & Torrens, 2004; 
Junfeng, 2003). In parallel with developments in computer technologies, it is possible to model cities' complex 
and dynamic structures nowadays. In line with this, simulation techniques are used to determine and model 
the behavior of a complex and dynamic system (Batty, 2007; Benenson & Torrens, 2004). In this context, cel-
lular automata (CA)-based simulation methods are frequently used to model urban growth and LULC changes 
(Chaudhuri & Clarke, 2013; Clarke & Gaydos, 1998; Clewlow, 1989; Dennunzio, Formenti, & Kurka, 2012; Di Lena 
& Margara, 2008; Wang et al., 2021).

CA consists of five essential components: grid network, state, neighborhood, transition rules, and time. The 
grid network, which can be one or two-dimensional, is used to describe the space; each cell contains an autom-
aton, and this cell contains the state of the automaton (Torrens, 2000). Transition rules determine the change 
in the states of automata over time according to the state of neighboring cells (Benenson & Torrens,  2004; 
Torrens,  2000). CA is the most straightforward representation of dynamic and spatial systems, and has high 
computational capability (White, Straatman, & Engelen, 2004). Therefore, it is frequently used to model LULC 
changes. In urban growth studies, its functionality should be increased by adding additional components to tra-
ditional CA (T-CA) (Torrens, 2000; White & Engelen, 1997; White et al., 2004). Cell states are divided into fixed 
or functional in this method, called modified CA (M-CA). Cells without urbanization potential are considered 
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fixed, while others are considered functional (Clarke, Hoppen, & Gaydos, 1997; Torrens, 2000; White et al., 2004). 
Neighborhood relationships are also expanded to include wider cells in M-CA (White & Engelen, 1997; White 
et al., 2004). Another difference between T-CA and M-CA is in the time component. Cell update in M-CA is asyn-
chronous (Torrens, 2000).

Although CA is a proper modeling technique in urban sprawl studies, predefined transition rules might de-
crease modeling achievement because of the re-use of CA (Ayazli, 2019). Moreover, some projects may ignore 
quantitative exploration, even though they investigate qualitative analyses. Therefore, the correct specification 
of the growth features, which is carried out by calibration, has an important impact on the prediction accuracy 
of the simulation (Pontius & Malanson, 2005). The purpose of calibration is to minimize the differences between 
modeled and actual LULC, and the mathematical background of the calibration is formed by the objective function 
(Feng & Tong, 2018). For this reason, the calibration step that directly affects the model accuracy and makes the 
produced model reliable is the most crucial stage, and various calibration techniques have been developed, such 
as statistical or machine learning algorithms (Feng & Tong, 2018; Huang & Zhang, 2014; Liu, Li, Shi, Huang, & Liu, 
2012). The other methods of determining the objective functions include simulated annealing, generalized pattern 
search, swarm intelligence, and evolutionary algorithms (Feng & Tong, 2018).

Many M-CA-based simulation models have been developed to monitor urban growth. The SLEUTH 
urban growth model, developed by Keith Clarke, is one of these models and is commonly used in academic 
studies since it is open-source and free software (Bihamta, Soffianian, Fakheran, & Gholamalifard,  2015; 
Dezhkam, Jabbarian Amiri, Darvishsefat, & Sakieh, 2013; Han, Hwang, Ha, & Byung Sik, 2015; Jantz, Goetz, 
& Shelley, 2004). After parameters are set in scenario files, simulation starts with the test in which the data 
used are first checked, continues with calibration (which is the most critical step affecting the model's ac-
curacy), and ends with prediction (Clarke, Hoppen, & Gaydos, 1996; Silva & Clarke, 2002). Using the brute 
force calibration (BFC) method, the calibration stage aims to calculate the best-fit values of dispersion, breed, 
spread, road gravity, and slope coefficients. These calculations are made using the BFC method by applying 
the growth rules of “Spontaneous, New Spreading Center, Edge Growth, and Road-Influenced Growth.” The 
primary purpose of the calibration stage is to calculate the best-fit value for each growth coefficient at the 
end of calibration by narrowing the five coefficient values between 0 and 100 in the coarse calibration step 
according to 13 spatial metrics. However, there is no consensus on which one of the 13 regression (R2) scores 
to use during model calibration.

First, statistical and visual tests were used to calibrate the model tested in the San Francisco Bay region (Clarke 
et al., 1997). In the visual comparison, the R2 values of “the urban area, the number of edge pixels, and the number 
of pixel clusters” criteria were calculated by control years, and the Lee–Sallee shape index, comparing the modeled 
and predicted growth, was used at the statistical stage (Clarke et al., 1996, 1997). Candau (2000) calibrated the 
model using the R2 values of six criteria (compare, population, edge, cluster, mean cluster size, and Lee–Sallee) 
while examining urban growth in Santa Barbara (Candau, 2000). In the following years, the ongoing studies in San 
Francisco and Washington/Baltimore calculated 12 criteria for the urban growth model calibration, and four dif-
ferent statistical tests were applied, including the modified Lee–Sallee shape index (Clarke & Gaydos, 1998). The 
model was calibrated with a new criterion using the regression value calculated to compare the pixels representing 
LULC in Columbia with seven states on the east coast of the USA (Candau & Clarke, 2000), and the number of 
parameters increased to 13.

The SLEUTH model was first tested in Porto and Lisbon in Europe, and the calibration stage was completed 
with 13 parameters (Silva & Clarke, 2002). Model calibrations used different combinations of these 13 parameters 
in studies conducted to date, and it is observed that the Lee–Sallee parameter is used as the primary criterion 
(Ayazli et al., 2015; Jantz et al., 2004; Sevik, 2006; Silva & Clarke, 2002; Yang & Lo, 2003). In 2007, Dietzel and 
Clarke developed the optimum SLEUTH metric (OSM) method, in which 7 of the 13 parameters of the SLEUTH 
model were used (“compare, population, edges, clusters, slope, x-mean, y-mean,” f-match if land use was modeled) 
and claimed that the model would yield the most robust results with this method (Dietzel & Clarke, 2007).
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New methods have been developed since the calibration process takes a long time in models created with 
BFC. Therefore, the self-adaptive genetic algorithm (GA) method was integrated with the model using machine 
learning algorithms. Although the SLEUTH GA method is five times faster than BFC, BFC is one step ahead in the 
model's goodness of fit (Saxena & Jat, 2020).

In 2019, Ayazli and Bilen aimed to reduce the number of parameters by grouping the intercorrelated ones 
among 13 calibration parameters by exploratory factor analysis (EFA). EFA is a dimension reduction technique 
in which the number of variables is reduced, thus calibrating the model using the regression scores representing 
the growth form in the study area in the best way (Ayazli & Bilen, 2019). The EFA method aims to calibrate the 
model using the grouping of intercorrelated parameters. Due to the low Lee–Sallee and OSM scores in the studies 
conducted in Istanbul, where the population growth is very high (Ayazli et al., 2015; Ayazli, Gul, Baslik, Yakup, & 
Kotay, 2019), attempts were made to increase the accuracy of the model by calibrating it, with high-resolution 
data, using the EFA method (Ayazli, 2019).

This study aims to create an urban growth simulation model, calibrating with the total exploratory factor 
analysis (T-EFA) method, because the OSM and Lee–Sallee scores were low in the previous studies using different 
resolution data (Ayazli et al., 2015, 2019). For this purpose, we used low-resolution (100 m) CORINE land cover 
data and found the urban growth impacts in the LULC change. In this context, all 12 spatial metrics representing 
urban growth were intended to be used with the T-EFA method of model calibration to improve the simulation 
model's accuracy. In line with this, we ask the following research questions:

•	 Can an optimum model calibration be performed using all spatial parameters symbolizing urban growth in the 
SLEUTH model, and what is the success of this calibration?

•	 Can the T-EFA method be an alternative calibration method for modeling with SLEUTH in rapidly growing 
cities?

Therefore, the land cover change impacts of urban sprawl were investigated by creating an urban growth 
simulation model (UGSM), whose calibration stages were completed using T-EFA from low-resolution data ob-
tained from open data sources at short periods in settlement areas with rapid population growth. However, while 
previous studies have used the highest variance among the number of factors calculated in the EFA method, the 
factor scores are weighted and summed according to the variance values in the T-EFA method so that a single vari-
able was calculated from 12 parameters (Compare, Pop, Edges, Clusters, Cluster Size, Leesalee, Slope, %Urban, 
Xmean, Ymean, Rad, and Fmatch). The calculations do not include the parameter Product due to multiplying the 
other 12 parameters. For our purposes, four-period CORINE land cover data and three-period transportation 
network data were used to determine the effects of urban growth on land cover change by minimizing the costs 
of urban growth monitoring studies. Two different urban growth models were produced using the T-EFA and OSM 
methods, and the results were compared with the actual land cover for 2018 by confusion matrices and calculated 
kappa statistics.

In line with the study purposes, Istanbul province, whose population increased by more than 50% (TSI, 2020) 
after the great Marmara earthquake on August 17, 1999, was selected as the project area. Although there are 
many studies in the literature conducted using the SLEUTH model specific to Istanbul (Ayazli et al., 2015, 2019; 
Mestav Sarica et al., 2020; Nigussie & Altunkaynak, 2017), a particular part of Istanbul or only one or a few of the 
12 spatial metrics used in the SLEUTH model calibration were used in these studies. Our study aims to eliminate 
these deficiencies as follows:

•	 Istanbul and its surroundings constitute the study area in order to fully determine the urban sprawl impact on 
all forest areas, wetlands, and agricultural lands within the city boundaries.

•	 Furthermore, we aim to use the 12 spatial metrics' R2 scores at the model calibration stage, based on the assump-
tion that the SLEUTH model calibration parameters contain all the systematic effects affecting the city's growth in 
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the historical process that might or might not be observed. Therefore, T-EFA, a new method for model calibration, 
was used in the SLEUTH model calibration, and the results obtained are compared with the results obtained from 
the OSM method, which is the most accepted method in the literature, to test the model's success.

•	 Previous modeling studies using the EFA method have utilized the input data generated from high-resolution 
data. To determine the success of the T-EFA method in models produced using low-resolution and shorter-time-
interval data, the transportation data and CORINE land cover data with a pixel size of 100 m obtained free of 
charge from open data sources were used.

In the calibration, a significant difference was obtained between the breed value calculated as “88” using the 
T-EFA method and the “1” value obtained from the OSM method. It was observed that the growth coefficients 
which best explained the growth form that occurred between 2000 and 2018 were obtained from the T-EFA 
method.

After the calibration, the prediction stage was initiated, and simulation models were created for 2040 accord-
ing to the growth coefficients calculated using the T-EFA and OSM methods. As a result, it is expected that the 
urbanization pressure on forests, agricultural lands, and water basins in Istanbul will continue to increase in the 
following years.

The remainder of this article is organized in three sections. Section 2 explains the theoretical background of 
the simulation models created. Section 3 presents the study results, and these are compared with similar projects 
in the literature in Section 4.

2  | METHODOLOGY AND DATA PROCESSING

2.1 | Project area: Istanbul

The study area includes Istanbul and its surroundings. In addition to connecting the Asian and European conti-
nents, Istanbul is bordered by the Black Sea in the north and the Marmara Sea in the south, causing the city to 
grow on the east–west axis (Figure 1). Rapid urbanization is occurring in Istanbul, whose population has increased 
from 10,018,735 to 15,067,724 and increased by more than 50% between 2000 and 2018 (TSI, 2020). In the city, 
whose population has increased continuously since the 1950s, while growth continued on the east–west axis, 
the bridges built on the Bosphorus brought speed to the north, causing land cover change (Ayazli et al., 2015; 
Geymen, 2013) and increased urbanization pressure on forest areas, agricultural lands, and wetlands in Istanbul 
(Ayazli et al., 2015; Kucukmehmetoglu & Geymen, 2009). Istanbul is the city where the effects of global climate 
change experienced due to deforestation are the most intense in Turkey. Because of the drought in 2020, the oc-
cupancy rate decreased to 20% (ISKI, 2021).

Furthermore, the North Anatolian Fault line, which can generate Mw 7 and above earthquakes, passes through 
the south of Istanbul under the Marmara Sea. Depending on the population increase, areas defined as geologically 
risky in the Istanbul Environmental Plan (IEP) have either been built on or faced with the threat of housing. For 
these reasons, Istanbul was selected as the study area to serve as an example for many other projects worldwide. 
Thus, the modeling capability of urban growth model calibration under many conditions can be tested using the 
T-EFA method.

2.2 | Creating an urban growth simulation model with SLEUTH

For the Unix-based SLEUTH program to be used in the Windows operating system, a UNIX emulator Cygwin, 
completely free and open-source, is required. The structure of SLEUTH consists of mode process flows formed 
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by the growth cycle, basic simulation, and test–calibration–prediction stages (Gigalopolis, 2020). In the growth 
cycle step, after assigning a unique value to each growth coefficient, the initial growth rules are applied, and the 
growth rate, which should be between the self-modifying parameters, is calculated (Clarke et al., 1997; Silva & 
Clarke, 2002). If the growth rate of the model, which is the sum of the four growth rules, does not take a value 
within “CRITICAL_HIGH” and “CRITICAL_LOW,” the second-order behavioral rules, self-modifying rules, are ap-
plied (Clarke et  al., 1997; Silva & Clarke, 2002). In an urban area with fast growth characteristics, the growth 
control parameters are multiplied by a number greater than one. Otherwise, if there is no or little growth, they are 
multiplied by a multiplier less than one (Clarke et al., 1997).

The primary simulation step is defined as the sequence of growth cycles that starts with the seed year of the 
first period settlement data used in the model and ends with the end time of the last period settlement data (Silva 
& Clarke, 2002). In other words, the growth cycle is generated by taking the difference between the value of the 
settlement data for the last year and the first year's value.

The first process flow mode is the test stage at which datasets are verified. In other words, it is the stage at 
which the compliance of the prepared input data and the arrangements made in the scenario file with the model 
standards are tested (Silva & Clarke,  2002). After the test is completed, the most crucial stage, calibration, is 
initiated.

Five growth coefficients are calculated according to four growth rules with Monte Carlo (MC) iteration at 
the calibration stage. According to the spontaneous growth rule, a function of the dispersion and slope coef-
ficients, the suitability of a randomly selected pixel for urbanization is checked (Jantz et al., 2004). The breed 
coefficient controls whether a growth cell produced according to the spontaneous growth rule will be a new 

F I G U R E  1 The project area
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spreading center and is a component of the new spreading center growth rule, together with the slope coefficient 
(Jantz et al., 2004; Silva & Clarke, 2002). In the edge growth rule controlled by the spread and slope coefficients, 
cells that have previously been a city or have newly become a city are multiplied (Jantz et  al.,  2004; Silva & 
Clarke, 2002). The road-influenced growth rule, consisting of the road gravity, dispersion, breed, and slope coeffi-
cients, replicates a newly formed urban cell along with the transportation network (Clarke & Gaydos, 1998; Jantz 
et al., 2004; Silva & Clarke, 2002).

Model calibration is applied to determine the growth parameters that best represent the future urban 
growth in the study area. The current situation and the model are compared by calculating the least-squares 
regression values of 13 metrics. Thus the model's accuracy is also measured. The OSM method is most com-
monly used to select R2 scores. In the method developed by Dietzel and Clarke, coefficient ranges are selected 
by ranking the scores obtained from the multiplication of the Compare, Pop, Edges, Clusters, Slope, X-Mean, 
and Y-Mean criteria as in Equation (1) (Dietzel & Clarke, 2007). A value of the OSM score close to 1 indicates 
that the selected coefficient sequence represents urban growth in the study area with high accuracy, while a 
value close to 0 indicates that the representation of urban growth by the calculated coefficient sequence is 
weak (Dietzel & Clarke, 2007):

2.3 | Coefficient selection using the T-EFA method

EFA emerges as a method frequently used in creating new theoretical structures in scientific research conducted 
using the inductive method. It is a parametric and multivariate statistical analysis method used to determine the 
underlying factor structure of a dataset. The EFA method, one of the factor analyses that have two different 
types, such as exploratory and confirmatory factor analysis, was preferred in this study. The variables used in EFA 
are expected to be measured on interval and ratio scales. In Equation (2), where X1 is the score of the first subject 
for observed variable 1, bq is the regression coefficient, Fq is the value of factor q of the subject, d1 is the regres-
sion weight of the unique factor related to regression, and U1 is the associated unique factor, EFA assumes that 
the observed variables are linear combinations of factors (Hatcher, 2007):

There are different approaches regarding the sample size required for applying factor analysis. The general ap-
proach is that the sample size should be five times the most minor observed variables (Tabachnick & Fidell, 2013). 
Although there are different views, such as there should be at least 5, 10, 20, or 50 observations, or not less 
than 100 observations per variable (Alpar, 2011), if there are strong, reliable relationships and a small number 
of factors, the sample size can be decided as at least 50 provided that it is higher than the number of variables 
(Tabachnick & Fidell, 2013). Therefore, the correlation matrices of the variables to be included in EFA should also 
be used for factor analysis.

The Kaiser–Meyer–Olkin (KMO) value and Bartlett's test of sphericity (p) are used to determine the suitability 
of the correlation matrix for factor analysis. The KMO measure is the ratio of the total correlation variables’ values 
to the sum of squares and the sum and partial correlation values to the sum of squares. It is stated that as this 
ratio approaches 1, the correlation pattern in the R-matrix is tight, and as it approaches 0, there is a spread in the 
pattern (Field, 2005). A tight correlation pattern between variables is desirable. Concerning this criterion, Kaiser 
(1974) indicated a ratio of 0.5 as an almost acceptable cut-off point while classifying KMO values 0.5–0.7 as me-
dium, 0.7–0.8 as good, 0.8–0.9 as very good, and above 0.9 as perfect (Kaiser, 1974). The results of “Bartlett's test 
of sphericity” are another method used to determine the suitability of the correlation matrix for factor analysis. 
This test checks whether the correlation matrix obtained from the variables is the unit matrix. As a result of this 

(1)OSM = Compare ∗ Pop ∗ Edges ∗ Clusters ∗ Slope ∗ X −mean ∗ Y −mean

(2)X1 = b1
(

F1
)

+ b2
(

F2
)

+ … + bq
(

Fq
)

+ d1
(

U1

)
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test, if the p value is less than 0.05, the usability of factor analysis is understood by saying that the correlation 
matrix is different from the unit matrix.

The R-matrix is a unit matrix that means the correlation coefficients between the variables are 0. Therefore, 
if there is no correlation between the variables, it will not be correct to talk about the existence of a typical 
cluster to explain the variables. However, “Bartlett's test of sphericity” is susceptible to sample size (Henson & 
Roberts, 2006; Zwick & Velicer, 1986). In this regard, it tends to yield significant results in large samples. Acceptable 
factor loadings by the number of observations were 0.30 for 350 and above units, 0.40 for 200, and 0.50 for 120 
(Hair, 2006). Generally, in the literature, if the KMO value is higher than 0.45 (Balanza et al., 2007; Li, Yang, & Li, 
2017) and the significance level of Bartlett's test of sphericity is less than 0.05 (Tabachnick & Fidell, 2013), it can 
be said that there is a fit between the sample and the EFA method.

To determine the test's reliability, common factor variance is calculated, and this value is expected to be high 
(Buyukozturk, 2020). While determining the number of factors, the cumulative percentage of explained variance 
(CTVE) should be at least 67%, and the eigenvalues should be higher than 1. Owing to this coefficient, how many 
factors explain the total variance cumulatively is also calculated. This is performed according to the principal com-
ponent analysis (PCA) algorithm.

As a result of EFA, it is observed that variables are usually not concentrated around certain factors. Therefore, 
rotation is carried out to ensure the concentration of variables around these factors. Thus, we aim to ensure that 
the factors are not correlated. There are two types of rotation method, orthogonal and oblique (non-orthogonal). 
The most common orthogonal rotation methods are Varimax and Quartimax, while Oblimin and Promax are 
oblique rotation methods. The Varimax method is usually used in practice, and ensures that the number of vari-
ables with high factor loading on each factor is the lowest.

The EFA method calculates factor scores by grouping the intercorrelated data under the factor name. As for 
the T-EFA method, we aim to reduce the number of factors n to one by weighing these scores with the factor 
variance values (σ2) calculated for each factor according to Equation (3):

Thus, 12 spatial parameters' regression scores are collected in a single group at the calibration stage, and the 
model contains all of the parameters' effects. These processes are calculated separately for each coarse, fine, and 
final calibration step.

2.4 | Preparation of input data

The first-level (urban, agricultural areas, wetlands, forests, and water bodies) CORINE land cover data with a 
pixel size of 100 m were used in the study. Four periods of LULC data for 2000, 2006, 2012, and 2018 were 
downloaded from the Copernicus Global Land Service (CGLS) website (CGLS, 2021). The slope data were pro-
duced using a digital elevation model (DEM) with a spatial resolution of 10 m, produced in 2006 by the General 
Directorate of Mapping (GDM) as compliance data. Geologically risky areas in the IEP, which entered into force 
in 2009 in order to identify possible settlement areas under earthquake risk in the future due to the expected 
great Istanbul earthquake, overlapped with the model produced for 2040. Finally, highways, link roads, the 
Bosphorus bridges, Marmaray, and Eurasia Tunnel routes were used as accessibility data. The current data 
were downloaded from the open data platform OpenStreetMap, and the transportation data for 2000 and 
2015 were produced with the help of Google Earth™ and the Istanbul Metropolitan Municipality Application 
of City Map (ACM) (ACM, 2021).

(3)T - EFA =

∑n

i=1
�
2
i
∗ Factor Scorei
∑n

i=1
�
2
i
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    |  1473AYAZLI et al.

The overall classification accuracy rate (OCAR) and kappa values were calculated to determine the accuracy of 
CORINE LULC data. The accuracy values of four periods were calculated by randomly generating 50 control points 
for each class in ArcGIS. These calculated values were appropriate for use in the study since they were above 80%.

The input data required by the SLEUTH model should have specific standards. Therefore, the input data were 
generated in the same resolution (numbers of rows and columns are equal), in the same datum and projection, in 
8-bit radiometric resolution, and in accordance with the appropriate naming format conditions with the help of 
ArcGIS in the “.gif” format. While 0 represents a non-existent or empty value in all images, those taking a value 
between 1 and 256 are values that we can define as living or existent (Gigalopolis, 2021). Three different datasets 
were prepared as input data: (1) a pixel size of 400 m for coarse calibration; (2) 200 m for fine calibration; and  
(3) 100 m for final and predict.

After the input data were prepared, the UGSM was produced, as shown in Figure 2. At the first test stage, the 
compliance of the input data with the model standards was checked. If a problem is encountered, the test process 
should be repeated by checking the compliance of the input data with the standards.

Calibration, which is the second stage, is the most crucial section in line with the purposes of this study. As a 
result of the calibration, completed in four steps, the growth coefficients used in the prediction are calculated. The 
calibration stage performed with T-EFA also starts with the coarse calibration step, and after its completion, the 
“control_stats.log” file produced is opened in the SPSS software, and a single weighted factor score is calculated 
from 12 spatial metrics using the T-EFA method, a dimension reduction process. Ranges are determined for the 
five growth coefficients corresponding to the three highest T-EFA scores, and the next calibration step is initiated. 

F I G U R E  2 Model calibration with the T-EFA method and UGSM production
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1474  |    AYAZLI et al.

These processes are repeated at each step. To use the T-EFA method, the KMO and p values, in which the sample's 
fit is tested, are calculated in all three calibration steps. If KMO is higher than 0.45 and p is less than 0.05, the  
T-EFA method can be used at the calibration stage. Otherwise, it will be more appropriate to use the OSM  
method for calibration.

After completing the calibration stage, the prediction is started, at which the UGSM will be produced. At the 
final stage, the effects of urban growth are determined by conducting a change detection analysis between the 
prediction model produced to determine the effects of urban growth and the land cover input data of the last 
period.

To measure the success of the T-EFA method, a second model using the OSM method at the calibration stage 
was produced, and the results obtained were compared.

3  | RESULTS

3.1 | Urban growth in Istanbul

This study aimed to determine the urban sprawl effects on land cover change by producing urban growth simula-
tion models with short-term low-resolution data obtained from open data sources. A CA-based simulation model 
for 2040 was created for Istanbul. As the LULC data required for the model, land cover data of settlement areas, 
agricultural lands, forests, wetlands, and water bodies with a pixel size of 100 m and a minimum mapping unit 
(MMU) of 25 ha were used. In this context, the CORINE land cover data provided free-of-charge for 2000, 2006, 
2012, and 2018 were downloaded online. An accuracy analysis was performed for each land cover class to decide 
whether to use the CORINE data in the study. The OCAR and kappa values were calculated by generating 50 ran-
dom points for each class (Table 1). Since more than 80% accuracy was calculated in all periods, it was appropriate 
to use CORINE data in the study.

Between 2000 and 2018, 14% of agricultural areas and 7% of forests were converted into settlements; in 
other words, urban growth will continue in Istanbul. Moreover, it was identified that 15% of settlement areas in 
2018 were in geologically risky areas. According to the difference map generated to show urban growth between 
2000 and 2018 (Figure 3), it is observed to be concentrated between the Istanbul Airport and the Third Bridge in 
the northwest of the European side, between Sazlıdere Dam Lake and Alibeykoy Dam Lake, around the link road 
of the Third Bridge in Basaksehir district and to the west of Buyukcekmece Lake in the south, on the coast of the 
Marmara Sea. On the Anatolian side, urban growth occurs in the north, in Riva and Sile under the effect of the 
Third Bridge, around the bridge link road passing through Sultanbeyli and the forest in the west of Omerli Dam, 
and the east of Sabiha Gokcen Airport in the south. This determined growth complies with the four growth rules 
of SLEUTH software.

The urban growth that has occurred in 18 years is in the form of “Spontaneous and New Spreading Center” in 
Istanbul Airport and especially forest lands, in the form of “Edge Growth” between Sazlıdere and Alibeykoy Dam 
Lakes and in Riva and Sile, and the form of “Road-Influenced Growth” along the Third Bridge route and in the 
south, along the coast.

TA B L E  1 Accuracy analysis results for CORINE LULC data

Year 2000 2006 2012 2018

OCAR (%) 93 93 92 87

Kappa (%) 91 91 89 82

 14679671, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tgis.12928 by C

um
huriyet U

niversity, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  1475AYAZLI et al.

3.2 | Model calibration with T-EFA and OSM

In line with the standards of the SLEUTH model, input data were created in the form of 8-bit.gif images, and  
CA-based modeling studies were initiated. After the test stage was completed successfully, two different calibra-
tion procedures were performed under the same conditions using the T-EFA and OSM methods. The first step of 
calibration, which is completed in three steps, starts with coarse calibration. In the coarse calibration performed 
using input data with a pixel size of 400 m, the initial value was set to 0, the end value to 100, the step value to 25 
in both methods, and 3125 growth cycles were generated. After the coarse calibration step, which was completed 
in 49 min 23 s, in the first method using the T-EFA method, KMO was calculated as 0.800, p as 0.000, and CTVE 
score as 83.300%, and 12 parameters were divided into three intercorrelated classes. Each class was weighted 
with its variance value, the T-EFA value was calculated, and thus a single parameter was obtained to determine 
the coefficient range. The coefficient ranges used in the fine calibration step were selected according to the three 
highest T-EFA scores, and the fine calibration step was initiated.

The fine calibration step, in which input data of a 200 m pixel size according to the selected coefficient range 
were used, was completed in 9 h 25 s by making 7776 calculations in eight iterations. As a result of the calculated 
KMO 0.780, p 0.000, and CTVE 82.000% values, it was decided that the sample was also suitable for the fine 
calibration step of the T-EFA method. The T-EFA value was determined by weighing each of the four factor scores 
obtained with its calculated variance values, and the coefficient ranges for final calibration were selected accord-
ing to the three highest T-EFA scores.

In the final calibration step, 4500 growth cycles were generated, and the number of iterations was set to 10. 
After the procedures were completed in 1 day 6 h 4 min 49 s, the KMO was calculated as 0.868, p 0.000, and 

F I G U R E  3 Land cover in 2018
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    |  1477AYAZLI et al.

CTVE 96.132%. Thus, it was decided to use the T-EFA method of the sample, and each of the two factor scores ob-
tained was weighted with its variance values calculated, and the growth coefficients to be used at the prediction 
stage were calculated according to the highest T-EFA score (Table 2). The breed, slope, and road gravity coeffi-
cients were 88, 13, and 50 in the T-EFA; 1, 75, and 15 in the OSM method. The dispersion and spread coefficients 
were calculated as 38 and 32 in the T-EFA method, and 25 in the OSM method.

The calibration stage was repeated with the OSM method to compare the T-EFA results, and the OSM was 
completed in approximately 1 h. The highest OSM values calculated for the coarse, fine, and final calibration steps 
were 0.11952540, 0.00019234, and 0.00594196, respectively.

3.3 | Model validation

Two confusion matrices were produced from actual and model data between 2000 and 2018 in order to interpret 
the calibration accuracy. The calculated total recognition values are 95% T-EFA and 96% OSM. In other words, 
it can be expressed that the success rate of both methods is at par. However, the T-EFA method is 3% more suc-
cessful in predicting urban growth, albeit slightly. On the other hand, the OSM method performed 2% better in 
identifying areas that will not be urbanized (Table 3).

As very close values were obtained from the confusion matrices, another cell-based comparison method—
kappa statistics—was used between actual land cover data 2018 and two sets of modeled data. Fifty random 
control points were generated for each urban and non-urban dataset. The kappa and OCAR scores were 78 and 
89% for the T-EFA, whereas they were 74 and 87% for the OSM method. Model validation results obtained from 
the kappa statistics are illustrated in Figure 4. T-EFA modeled the urbanized pixel finer than OSM according to the 
“New Spreading Center” and “Road-Influenced Growth” rules, due to higher breed and road growth coefficients 
(Figure 4a,b). However, neither method could detect the urban growth at Istanbul International Airport (Figure 4c) 
because the airport was constructed by a cabinet decision made in 2012 and was not located in the Istanbul 
Master Plan prepared in 2010.

3.4 | Creating urban growth models for 2040

According to the simulation model produced for 2040 after the prediction stage, it was determined that urban growth 
would continue between 2018 and 2040. According to the model created with the growth coefficients by the T-EFA 
method, 36.5% of agricultural lands (42,872 ha), 8.5% of wetlands (13 ha), and 20.6% of forests (55,339 ha) were con-
verted into settlement areas. In contrast, according to the OSM method, these rates were 8% (~9604 ha) in agricultural 
lands, 1% (~1 ha) in wetlands, and 3% (~7704 ha) in forests (Table 4 and Figure 5). Both simulation models observed a 
decrease in agricultural lands, wetlands, and forest areas, while urban areas increased.

TA B L E  3 Comparison of the calibration accuracy by confusion matrices

Calibration technique Land cover 2018 Model (ha) Model (ha) Total (ha)
Recognition 
(%)

T-EFA Actual 111,601 19,333 130,934 85

Actual 38,696 1,062,131 1,100,827 96

Total 150,297 1,081,465 1,231,761 95

OSM Actual 106,150 23,164 129,314 82

Actual 23,200 1,077,611 1,100,811 98

Total 129,350 1,100,775 1,230,125 96
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As shown in Table 3, it was determined that the model results created using the T-EFA method were close to 
the change rates between 2000 and 2018. According to the model created using T-EFA, urban growth between 
2018 and 2040 in Istanbul shows similarity with the growth trend between 2000 and 2018. While urban growth is 
concentrated around Istanbul Airport and the Third Bridge in the north, it continues along the coast in the south-
west and occurs in forest lands through which ring road connections pass in the middle section.

4  | DISCUSSION AND CONCLUSIONS

Two simulation models were created using open data sources to determine the urban sprawl effects on land 
cover change. In this context, first-level CORINE land cover data with a pixel size of 100  m required in the 
model were obtained free-of-charge from CGLS, and accessibility data were obtained free-of-charge from the 
OpenStreetMap, Google Earth™, and Istanbul City Guide websites. Slope data were generated from the DEM data 
produced by GDM in 2006 and obtained through an inter-institutional agreement within the scope of another 

TA B L E  4 Conversion to urban settlements 2000–2018 and 2018–2040

To urban settlements 2000–2018 2018–2040 (T-EFA) 2018–2040 (OSM)

From agricultural areas 14% 17,496 ha 37% 42,872 ha 8% 9604 ha

From forests 7% 19,066 ha 21% 55,339 ha 3% 7704 ha

From wetlands 0% 0 ha 9% 13 ha 1% 1 ha

F I G U R E  5 Land cover in 2040
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project in previous years. The UGSMs were generated using CA-based, open-source, and free SLEUTH software 
to minimize project costs. Due to the low resolution of the data obtained from open data sources, the accuracy 
of the simulation model created may be low. Therefore, the T-EFA method was used at the calibration stage of 
the UGSM in order to improve model accuracy, and the calibration results were compared with the model results 
calibrated using the OSM method.

At the beginning of the study, the OCAR and kappa values belonging to four periods of land cover were calcu-
lated to determine the accuracy of CORINE land cover data. Since the values calculated by randomly generating 
50 points for each class in each period were above 80%, it was deemed appropriate to use the CORINE land cover 
data as input data in the model.

Upon examining the land cover data for 2000 and 2018, it was observed that Istanbul continues to grow, de-
pending on the population increase. This growth occurred mainly around the existing settlement areas of Sile and 
Riva on the Anatolian side under the effect of the Third Bridge passing through the north of Istanbul, in Sultanbeyli 
district and the forests in the west of Omerli Dam, where the bridge link road passes. At the same time, it is con-
centrated around Istanbul Airport, within the boundaries of the Basaksehir district, around the bridge link road 
passing through the forest area between Sazlıdere and Alibeykoy Dams on the European side. This growth over-
laps with studies claiming that the bridges built in Istanbul caused the city to grow northward (Ayazli et al., 2015; 
Geymen, 2013). Furthermore, there is growth on the east–west axis along the coast in the south, though only a 
small amount.

The urban growth coefficients support these aforementioned urban sprawl characteristics. A considerable 
difference emerged in the breed and road gravity coefficients, even though the dispersion and spread values were 
calculated close to each other. While the coefficients obtained with T-EFA are 88 for the breed and 50 for the 
road gravity, the values were 1 and 15 in the OSM. The lower value of the slope coefficient is compatible with the 
previous studies implemented in Istanbul (Ayazli et al., 2015, 2019).

The calibration results showed that the OSM method remained insufficient in explaining the growth according 
to the “New Spreading Center” and “Road-Influenced Growth” rules. According to the confusion matrices and 
kappa analysis, the growth form in Istanbul between 2000 and 2018 was better explained with the T-EFA method. 
However, to use the T-EFA method, the condition of sample suitability must be fulfilled in each calibration step. 
Unfortunately, this situation emerges as a disadvantage of the T-EFA method. Thus, the KMO, p, and CTVE values, 
in which the fit of the model was checked, were calculated separately for each of the coarse, fine, and final steps, 
and since the KMO value for each calibration step was more significant than 0.45, p was less than 0.05, and CTVE 
was higher than 67%, the T-EFA method could be used in calibration. Another disadvantage of the T-EFA method 
is the processing time. While the calibration procedure with T-EFA took approximately 2 days, the OSM method 
was completed faster, in 54 min 14 s.

Two different calibration procedures were conducted using the T-EFA and OSM methods. In the calibration 
step, the success rates of both methods are very close to each other, and the T-EFA method can be considered a 
robust calibration method like the OSM method. Especially as an alternative method, T-EFA may be preferred in 
regions where fragile ecosystems are located, because its rate of detecting urban growth is higher than that of 
OSM.

After the prediction stage, two different urban growth simulation models were generated for 2040 according 
to the T-EFA and OSM methods. As a result of the temporal change analysis, the conversion rates were calculated 
from forests, agricultural lands, and wetlands to urban areas between 2018 and 2040 (Table 4). In contrast, the 
rates determined according to the model produced with T-EFA are approximately 4.5 times higher in agricultural 
lands and seven times in forest areas than OSM; this rate increases to 8.5 times in wetlands. While urban growth 
simulation models with higher accuracy can be produced from low-resolution data using the T-EFA method, mod-
els with lower accuracy can be obtained in a shorter time using OSM. The important thing here is to determine 
which calibration method to use, in which the growth coefficients that best represent urban growth are calcu-
lated. Then, urban growth should be monitored using the most appropriate calibration method for the study area, 
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    |  1481AYAZLI et al.

aiming to minimize possible damage. The T-EFA method can also be considered a good alternative for calibrating 
CA-based SLEUTH software in future studies.

There is also the North Anatolian Fault line, which passes about 20 km south of Istanbul and where very severe 
earthquakes have occurred throughout history. According to the report prepared jointly by Istanbul Metropolitan 
Municipality and Bosphorus University Kandilli Observatory and Earthquake Research Institute Department of 
Earthquake Engineering in 2020, an earthquake scenario of Mw 7.5 would damage 17% of the buildings in Istanbul 
at medium level and above. It has been calculated that approximately 12,400–14,150 people will lose their lives, 
and a financial loss of around $15 billion will occur (Cakti et al., 2020). While urbanization in geologically risky areas 
covered 20,494 ha in 2018, it will increase to 32,740 ha in 2040 by the T-EFA calibration technique. Unfortunately, 
this increment will increase the costs and loss of life and property.

Data production costs are an essential budget item in studies monitoring urban growth. Nowadays, the num-
ber of open data sources is increasing every day, and the accuracy of the data obtained from these sources has 
reached satisfactory levels. This study has proven that high-accuracy urban growth simulation models can be gen-
erated by minimizing data production costs. However, scientific studies alone are not sufficient in such projects. 
For the produced scientific results to show their effect, the support of the city administrators for these projects is 
vital in terms of the correct management of resources. In this context, to minimize the possible damage that may 
be experienced, it is necessary to determine the boundaries of urban growth, include them in plans, and prepare 
the necessary legal and administrative infrastructure to protect these boundaries.

Consequently, the rapid population increase in Istanbul and the urban growth brought about by it have caused 
land cover change. In line with this, especially considering the urban growth structure of Istanbul, it is thought that 
the unbuilt areas and their surroundings in Istanbul are under intense urbanization pressure. Decision-makers can use 
urban growth simulation models as a prediction tool while developing policies to control urban growth. Simulation 
models should be produced under alternative scenarios to evaluate the possible effects of infrastructure projects trig-
gering dynamic and complex land cover changes in the metropolis of Istanbul. Moreover, considering the earthquake 
risk, necessary policies should be developed urgently to slow down or prevent potential urbanization in risky regions.
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