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Abstract: The first excited 2" energy states of nuclei give much substantial information related to the nuclear structure.
All excited states of nuclei are shown regularities in spin, parity, and energy, including these levels. In the even—even
nuclei, the first excited state is generally 27, and the energy values of them increase as the closed shells are approached.
The nuclei’s excited levels can be investigated using theoretical nuclear models, such as the nuclear shell model. In the
present study, we have used artificial neural networks to determine the energies of the first 2% states in the even—even
nuclei in the nuclidic chart as a function of Z and N numbers for the first time. According to the results, the method is
convenient for this goal. One can confidently use the method for predicting the first 27 state energy values whose

experimental values do not exist in the literature.
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1. Introduction

By using a central attractive force, it is found that the
ground state is 0 and the first excited state is generally 2+
of even—even nuclei [1]. The first excited state energy
value in nuclei regularly depends on the proton and neutron
numbers [2]. Some regularities are observed in the first
excited state’s energy values, and these regularities can be
explained in terms of mixtures of excitation states of dif-
ferent neutron and proton pairs [3]. The coupling model
and the liquid drop model of the nucleus can explain the
regularities in spins and parities of first and second excited
states of even—even nuclei [4]. In even—even nuclei, the
first excited state includes much information about the
nuclear structure, such as the deformation and shape of
nuclei, lifetime of nuclear state, and the transitions between
levels. Some information about the proton and neutron
interactions in partially filled shells might also be obtained
from the first excited state. The energy values of these
states increase as the closed-shell is approached. Namely,
closing a shell causes a sharp increase in the first excited
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state energy [5]. Therefore, first excited state energy and
spin values are sensitive to the shell structure [6].
According to the shell model (SM) of the nucleus, large
shell gaps are observed between the shells for stable nuclei.
These nuclei have magic proton and neutron numbers
whose values are 2, 8, 20, 28, 50, 82, and 126 [7]. Due to
these large gaps, large transition energy values are mea-
sured between the first 27 and ground states in nuclei.
Thus, the transition probability from the first excited state
to the ground state decreases monotonically. Related to
these levels, the second excited state has about twice as
much energy [8], and if we excite an odd A nucleus, we
would expect to find its first excited state at least as low as
that of its even—even core.

Theoretically, the predominance of spin 2 and even
parity first excited states of even—even nuclei has been
explained using nuclear SM. The first excited state of
nuclei is assumed due to the excitation of a single pair of
nucleons. If the proton (neutron) shell is closed in nuclei,
the first excited state is ascribed to neutron (proton) exci-
tations [6]. Considering the perfect fit with spin and parity
values in the experimental data, it is seen that this state-
ment is correct. Some methods, such as conversion coef-
ficient, pair creation, lifetime, E/M ratio, angular
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correlation, and nuclear reactions, can be identified by the
first excited state’s spin and parity. In this study, the
energies of the first 2% excited states of even—even nuclei
have been estimated by using the artificial neural network
(ANN) method [9]. The data have been obtained from the
Pritychenko et al. [10] in which adopted values cover the
Z = 2-104 region, including 636 first 2% energy states in
the nuclidic chart. The results show that the ANN method
is quite a useful method for this type of estimation.

Furthermore, the ANN estimated results are compared
with the results from nuclear SM [7] calculations for some
p, sd, sdpf, and pf-shell nuclei given in Table 4 in the
references [10]. According to this comparison, ANN pre-
dicts the first 2% energy state energy better than SM cal-
culations. In recent years, ANN has been using in many
fields in nuclear physics. It has been used successfully for
developing nuclear mass systematic [11, 12], obtaining
fission barrier heights [13], obtaining nuclear charge radii
[14, 15], estimation of beta decay energies [16], and alpha
half-lives calculations of super-heavy nuclei [17]. Since
this method is successful in understanding the nonlinear
relationship between input and output data, layered feed-
forward ANN can be used to estimate the first 2" excited
state energy values in even—even nuclei.

2. Artificial neural network (ANN)

The ANN method is a powerful tool that is used when
standard techniques fail [9]. The method mimics the brain
functionality of all creatures. Like in the real brain, ANN,
which is the base of artificial intelligence, can learn
everything through an appropriate algorithm to do what it
has learned. Additionally, artificial intelligence can store
lots of data in its memory and keep them in mind through
the long years. For this task, ANN is composed of mainly
three different layers. The data are taken from outside to
the input layer as input, and the output data are the desired
one, which is exported from output layers. The number of
input neurons depends on the problem, and inputs are
independent variables. The number of output neurons is the
number of output variables that are estimated. Between
these two layers, there is one (or more) additional layer in
which data are mainly processed in this layer, which is
called a hidden layer. In each layer, they have their neurons
that are processing units of ANN. Data flow in one direc-
tion from input to outputs neurons. Each neuron in the
layers is connected to all other neurons in the next layer.
Therefore, all neurons in hidden and output layers have at
least one own entry. As given in Eq. 1 that all these entries
(x;) are multiplied by the weight values of their connections
(w;) and then summed to get the net entries (n;) of the
neurons.

N
nj:Zwi X Xi (1)
i=1

After this step, the neurons are activated by a chosen
function, and the outputs of the neurons are transmitted to
the neurons in the next layer.

In the ANN calculations, all data belonging to the given
problem have randomly been divided into two separate
main sets. The first part of the data (about 80%) was used
for the training of ANN to get the relationship between
input (independent) and the output (dependent) variables.
To determine the method’s success, it must be tested over
another set of data, which is the rest (about 20%) of all
data. The training (learning) process’s main task is
assigning the values to each weighted connection between
neurons. In other words, in the training process, it is aimed
to find the best weight values, which give the best esti-
mation of y; starting from the input x;. Therefore, the
weight values are modified until the acceptable deviation
level is between the desired (d;) and neural network (y;)
outputs. Generally, the mean square error function (MSE)
has been used for comparison (Eq. 2). Some parameters are
tuned up to reach the best weight values, such as hidden
layer number, hidden neuron number, learning algorithm,
activation function, and/or neural network in the training
stage. In this study, to get the best values, the Levenberg—
Marquardt learning algorithm [18, 19], tangent hyperbolic
activation function (Eq. 3), and multi-layer feed-forward
neural network have been used (Fig. 1).

1 N
MSE = NZ(M‘ —d;)? (2)
i=1
el — e
G(m) = e (3)

After a successful training step, the constructed ANN is
tested over the training data set used in the learning
process. Using final weights values, the comparison has
been made between neural network outputs and the desired
values. However, this result is not sufficient to decide
whether the method is good or not. The final weights must
also be tested over an unseen data set. The test data set is
used for this purpose, and if the ANN outputs are also close
to the desired values on this data set, it is safely concluded
that the ANN is generalized to the data. Namely, one can
confidently use the constructed ANN with its final weights
to solve the problem of the same type of data.

In the current study, the inputs were proton (Z) and
neutron (N) numbers of the atomic nuclei, and the output
was the first 27 state energy values of the even—even
nuclei. Note that, the range of activation function is (— 1;
1) for the hidden layer’s hyperbolic tangent. Therefore, it
could be said that it can be difficult to train cases without
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Fig. 1 Used 2-12-1 ANN architecture to estimate the first 2+ excited
state energies of even—even nuclei

normalizing or softening the data. The data are normalized
or smoothed to speed up the learning process and increase
the learning rate. In the case of the data are always positive,
and their scales vary drastically, one simple way is to use
the data’s logarithm transformation. Thus, we have taken
the logarithm of the output values (first 27 state energies)
into consideration in the calculations.

3. Results and discussion

Two different ANN approaches have been developed to
estimate the first 27 state energies. In the first approach, a
model has been developed which covers all even—even
nuclei in the range of nuclei whose atomic numbers are
between 2 and 104. Since it was observed that the ANN
performance changes in regions where the atomic number
is less than 40 and greater than 40, as a second approach,
two separate ANN models also have been developed for
the regions with Z < 40 and Z > 40. The total number of
nuclei samples was 646 in the whole data set, as shown in
Fig. 2. Nevertheless, 15 extremum points exceeding the
energy value of 2500 keV were not included in the cal-
culations. These higher energy values are very few in all

data and are considered unusual points. Therefore, the total
number of samples for ANN calculations (indicated as data
points in the figures) is 631. The adopted literature data
(which the recommended values based on all the available
experimental data) have been taken from a previous com-
pilation [10]. Due to the different behavior of the regions
according to the atomic masses, the estimations have also
been performed upon two separated parts of the nuclidic
chart (Fig. 2). The first part includes the nuclei whose
atomic mass smaller than 40, and the second one includes
greater than or equal 40. As shown in Fig. 2, the first part
includes many more nuclei whose first 27 excited states are
higher in energy. The average value of this region is
1393 keV. The second part’s average value is just
479 keV, and only for two nuclei, the first 21 excited states
have energy values, which are greater than 2000 keV.
These nuclei are '*?Sn, and 2*®Pb which are doubly magic
nuclei, and the first 2% excited state energy values are
4041.20 keV and 4085.52 keV, respectively. Also, for the
heavy elements after atomic number, which is 90, the first
excited state energies are lower than the order of 40 keV.
In each calculation for different regions, the data in the
range has been portioned into two separate parts for
training and test of the ANN. To assess the estimation
performance of ANN, two error performance indexes were
used. Mean absolute error (MAE) is calculated by using;

1 n
MAE = ;;bﬁ' —djj (4)

Root mean square error (RMSE) is calculated by using;

1
1< :
RMSE = [— > lyi — di|2:| (5)
=

where d; is the actual desired value, y; is the predicted
value for n instants.

In the first approach, 126 of all data were used in the test
stage and 505 of them in the training stage which data
splitting was performed randomly. In Figs. 3 and 4, the
training results and the test stages are given, respectively.
The root minimum square error (RMSE) and correlation
coefficient (r) values of the predictions were obtained as
137.6 keV and 0.96 for the training data, respectively. The
RMSE and r values on the test data were obtained as
172.1 keV and 0.95, respectively. One hidden layer ANN
structure with varying numbers of neurons from 8 to 36 has
been tested, and the best result has been obtained with 30
hidden layer neurons. Training and test performances for
30 hidden neuron numbers have been shown in Figs. 3 and
4. After 30 neuron numbers, the test data set results have
started to get worse again, and the result before 12 neuron
numbers was unacceptably bad. For 30 neurons in hidden
layer architecture, the total number of weighted
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Fig. 3 Adopted [10] versus ANN estimated first 2" excited state
energies (log) for even—even nuclei in train data
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Fig. 4 Adopted [10] versus ANN estimated first 2* excited state
energies (log) for even—even nuclei in test data
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connections is 90 whose 60 of them are from the input to
the hidden layer, and the rest of them are from the hidden
layer to the output layer. For the ANN training, the RMSE
values are 263.7, 220.1, 218.6, 158.8, 145.8, 142.3 keV for
hidden neuron numbers 8, 12, 16, 20, 24, and 36, respec-
tively. The corresponding values for the test data are 292.1,
230.4, 219.2, 179.5, 175.8, and 183.7 keV for hidden
neuron numbers 8, 12, 16, 20, 24, and 36, respectively.
In the second approach, the first model has been con-
structed for the Z < 40 regions, which covers 175 samples.
The data are divided randomly as 142 samples for the ANN
training, which corresponds to 80% of the total data.
Similarly, one hidden layer ANN structure with a varying
number of neurons from 8 to 36 has been tested, and the
best result has been obtained with 12 hidden layer neurons.
Training and test performances for 12 hidden neuron
numbers are shown in Figs. 5 and 6. The total number of
weighted connections is 36, whose 24 of them are from the
input to the hidden layer, and the rest of them are from the
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Fig. 5 Adopted [10] versus ANN estimated first 2" excited state
energies (log) for Z < 40 even—even nuclei in train data
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hidden layer to the output layer. After applying the ANN
method, the results are converted to normal values from
their logarithms. The root minimum square error (RMSE)
and correlation coefficient () values have been obtained as
125.1 keV and 0.96, respectively. The correlation coeffi-
cient indicates that the method helps determine the first
excited 27 state energy values for the atomic nuclei. The
RMSE values for the other neuron number structures of
ANN are between 140 and 250 keV. In Fig. 5, we have
shown the adopted versus neural network predicted values
of even—even nuclei in the Z < 40 regions. It is clear in the
figure that the neural network estimation is in agreement
with the adopted values. The data in the figure are con-
centrated in the (adopted = neural network) line.

After the ANN training, the constructed ANN with final
weight values has been used to determine the method’s
generalization ability. In this test stage, the rest of all data
(33 data points) have been used for this purpose. The
RMSE and r values have been obtained as 140.1 keV and
0.94, respectively. The correlation coefficient again indi-
cates that the method is still useful for determining the first
excited states’ energies in the nuclei. The RMSE values for
the other neuron number structures of ANN are between
165 and 290 keV. In Fig. 6, the comparison between the
adopted value of the first 2* energies of even—even nuclei
in Z < 40 regions and the predicted value of it by using a
neural network have been given.

In the second approach, the second model is constructed
for the Z > 40 region, covering 456 samples. The data are
divided randomly as 364 samples for the training, and 92 of
them are for the test, which corresponds to 80% and 20% of
total data. Similarly, one hidden layer ANN structure with
varying numbers of neurons from 8 to 36 has been tested,
and the best result has been obtained with 12 hidden layer
neurons. The results are again presented as real energy
values after converting ANN results from logarithmic
values. The RMSE and r values have been obtained as

82.4 keV and 0.97, respectively. The r has taken almost its
maximum value, which indicates that the method is still
useful for determining the first excited 2% state energy
values for the atomic nuclei. The RMSE values for the
other neuron number structures of ANN are between 95
and 150 keV. In Fig. 7, we have given the adopted versus
neural network predicted energy values of even—even
nuclei in the Z > 40 region. The figure’s data are con-
centrated in the (adopted = neural network) line, indicating
the neural network estimations agree with the adopted
values in the literature.

After the nuclei’s training stage in the Z > 40 region,
the constructed ANN with final weight values has been
tested on the test data set. The rest of all data (92 data
points) have been taken into account for this purpose. The
RMSE and r values have been obtained as 91.4 keV and
0.94, respectively. The correlation coefficients for both
stages indicate that the method is quite useful for deter-
mining the atomic nuclei’s first excited states. The RMSE
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Fig. 7 Adopted [10] versus ANN estimated first 2" excited state
energies (log) for Z > 40 even—even nuclei in train data
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values for the other neuron number structures of ANN are
between 95 and 165 keV. The log values of adopted and
neural network predicted energies of even—even nuclei in
the Z > 40 region in comparison with each other have
been presented in Fig. 8. The fact that ANN results do not
have the same values as the adopted data indicates that
ANN performs well and does not memorize. All RMSE
and r values in the training and test data for both regions
also support this.

At the end of the study, both of the ANN estimations for
the first 27 excited state energies from the present study
and the nuclear shell model (SM) results have been com-
pared with some nuclei’s adopted values in Table 4 of the
reference [10]. SM is one of the most common and the best
theoretical models for the calculations of nuclear excited
states. However, due to some reasons, such as the limita-
tion of the model space used in the SM calculations and not
the exact values of two-body interaction matrix elements
and single-particle energies, the theoretical results cannot
be the same as the experimental ones. As it is seen in
Table 1 that the mean absolute error (MAE) values from
the adopted values are 139.6 keV and 178.2 keV for ANN
estimations and SM results, respectively. Since the data
have been split for the test and training phase was per-
formed as random, the comparison data belong to both the
test and train data set. An asterisk sign was used to indicate
the data samples involved in the test data set. For the
training data set, the MAE values are 124.2 keV and
158.7 keV for ANN estimations and SM results, respec-
tively. These values are 176.9 keV for ANN results and
227.3 keV for SM results on the test data set. For 28 of the
total 49 data points, the ANN gives closer results than the
SM calculations. Maximum and minimum deviations of
ANN estimations from adopted values are 869 keV and
2 keV, respectively, whereas for SM calculations, these
values are 1217 keV and 3 keV. According to the ANN
and SM results, the ANN predictions outperform SM for

57% of the test nuclei and lead to an overall reduction of
22% of the test error with 36 ANN structure parameters. Of
course, different results can be obtained by using SM cal-
culations using different effective interactions. However,
the used present effective interactions are usually those that
work the best for the respective nuclei. Therefore, the
values given in this reference are considered to be the
closest results to the adopted results.

4. Conclusions

In this work, the first 27 excited state energies of even—
even nuclei in the nuclidic chart have been predicted the
first time by using the ANN method. The inputs of the
ANN are atomic and neutron numbers of the nuclei. One
hidden layer with 12 neurons that gives better results for
the problem has been used after several trials. According to
the estimation performance obtained from correlation
coefficients, the method can be useful for predicting the
first excited 2% energy states of nuclei. The method has
been applied with two approaches. The first approach uses
an ANN model covering all even—even nuclei whose Z is
between 2 and 104, while the second approach uses two
different ANN models for Z < 40 and the Z > 40 region.
It has been observed that the second approach was more
successful for the current problem. The RMSE values of
ANN estimations in the second approach on the test data
set are 140.1 keV and 91.4 keV for Z < 40 and Z > 40,
respectively. The obtained correlation coefficients of
Z < 40 regions are 0.96 and 0.94 for the training and test
phases. For Z > 40 regions, correlation coefficients are
almost the same as 0.97 and 0.94 for the training and test
phase, respectively. Also, the ANN method results have
been compared with the results from nuclear SM calcula-
tions to determine the method’s success. The ANN results
give better results than the theoretical SM calculations.
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Table 1 Comparison of first 2* excited state energies from SM
calculations [10] and ANN estimations (ANN results with “*”
belongs to the test data set)

A Z N Energy (keV)

Adopted ANN SM ANN Dev. SM Dev.
6 2 1797 1801 1894 4 97
10 4 3368 3262 3704 106 336
12 4 8 2102 2338* 3319 236 1217
18 8 10 1982 2050 1999 68 17
20 8 12 1674 2541% 1746 867 72
22 8 14 3199 2767 3158 432 41
18 10 8 1887 1576% 1999 311 112
20 10 10 1634 1529 1747 105 113
22 10 12 1275 1636 1363 361 88
24 10 14 1982 1848 2111 134 129
26 10 16 2018 1879 2063 139 45
28 10 18 1304 1433* 1623 129 319
20 12 8 1598 1601 1746 3 148
22 12 10 1247 1276 1363 29 116
24 12 12 1369 1306* 1502 63 133
26 12 14 1809 1544 1897 265 88
28 12 16 1474 1681 1518 207 44
30 12 18 1483 1434 1591 49 108
24 14 10 1879 1794 2111 85 232
26 14 12 1796 1874 1897 78 101
28 14 14 1779 2159% 1932 380 153
30 14 16 2235 2331 2266 96 31
32 14 18 1941 2084 2053 143 112
36 14 22 1399 1168 1723 231 324
38 14 24 1084 1132% 1395 48 311
40 14 26 986 1095 1217 109 231
30 16 14 2211 2076 2266 135 55
32 16 16 2231 2368* 2160 137 71
34 16 18 2128 2251 2131 123 3
38 16 22 1292 1156 1459 136 167
40 16 24 904 1019 942 115 38
42 16 26 890 1077* 999 187 109
32 18 14 1867 1816 2053 51 186
34 18 16 2091 2312 2131 221 40
58 28 30 1454 1485* 1478 31 24
60 28 32 1333 1310 1474 23 141
62 28 34 1173 1193* 1149 20 24
66 28 38 1425 1647 1265 222 160
68 28 40 2034 1727 1963 307 71
70 28 42 1260 1401 1599 141 339
72 28 44 1096 1036 1505 60 409
76 28 48 992 994 1374 2 382
62 30 32 954 947% 1013 7 59
66 30 36 1039 1018 950 21 89
68 30 38 1077 1070 879 7 198

70 30 40 885 909* 1109 24 224

Table 1 continued

A Z N Energy (keV)
Adopted ANN SM ANN Dev. SM Dev.

72 30 42 653 690* 1007 37 354

76 30 46 599 601 976 2 377

78 30 48 730 718 1045 12 315
Overall MAE 139.6 178.2
MAE for training data 124.2 158.7
MAE for test data 176.9 227.3

More accurate nuclear structure properties might be
obtained by getting better information about the first 2%
state energy values. Therefore, to predict the nuclei’s
excited state energy values, the ANN method can be a good
alternative with many advantages, such as quick calcula-
tion, no need for any complex formulation, and easy
applicability.
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