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Spectral Problems for Sturm–Liouville Operator with Eigenparameter
Boundary Conditions on Time Scales

İbrahim Adalara

aZara Veysel Dursun Colleges of Applied Sciences, Sivas Cumhuriyet University Zara/Sivas, Turkey

Abstract. In this paper, we consider the inverse problem for Sturm-Liouville operators with eigenparam-
eter dependent boundary conditions on time scales. We give new uniqueness theorems and investigate its
some special cases.

1. Introduction

Inverse spectral problems consist in recovering the coefficients of an operator from their spectral charac-
teristics. Inverse Sturm-Liouville problems which appear in mathematical physics, mechanics, electronics,
geophysics and other branches of natural sciences (see [7, 17, 21]). The first results on inverse theory of
classical Sturm-Liouville operator were given by Ambarzumyan and Borg [4, 15].

The half inverse Sturm–Liouville problem which is one of the important subjects of the inverse spectral
theory has been studied firstly by Hochstadt and Lieberman [25]. Since then, this result has been generalized
to various versions. Some new uniqueness results in inverse spectral analysis with partial information on
the potential for some classes of differential equations have been given (see [16, 22, 26, 35]). On the other
hand, the inverse problem for interior spectral data of the differential operator consists in reconstruction
of this operator from the given eigenvalues and some information on eigenfunctions at an internal point.
This kind of problems for the Sturm Liouville operator were studied firstly by Mochizuki and Trooshin
[29]. Similar results to Mochizuki and Trooshin have been studied in various papers until today [22, 38, 39].
In classical analysis, Sturm-Liouville problems with boundary conditions which depend on the parameter
were studied extensively (see [9, 10, 33, 36, 37]). These kinds of problems appear in physics, mechanics
and engineering. For Sturm-Liouville problem with eigenparameter-dependent-boundary conditions on
arbitrary time scale we refer to the study [3, 30, 34] and the references therein.

Although the literature for inverse Sturm–Liouville problems on a continuous interval is vast, there is
only a few studies about this subject on time scales [1, 14, 28, 31, 32]. Such problems is useful in many
applied problems, for example in string theory, in dynamics of population, in spatial networks problems
etc.

In the present paper, Sturm–Liouville dynamic equation with boundary conditions depending on the
spectral parameter on a time scale is studied. We define an operator which is appropriate to this boundary
value problem. We consider a half inverse Sturm–Liouville problem on a time scale and gave a Hochstadt
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and Lieberman-type theorem. We also investigate some special cases of our results and give a Mochizuki
and Trooshin-type theorem.

Time scale theory was introduced by Hilger in order to unify continuous and discrete analysis [24]. From
then on this approach has received a lot of attention and has applied quickly to various area in mathematics.
Sturm-Liouville theory on time scales was studied first by Erbe and Hilger [20] in 1993. Some important
results on the properties of eigenvalues and eigenfunctions of a Sturm-Liouville problem on time scales
were given in various publications (see e.g. [2, 5, 19, 23, 27] and the references therein).

Before presenting our first result, we recall the some important concepts of the time scale theory.
If T is a closed subset of R it called as a time scale. The jump operators σ, ρ and graininess operator on

T are defined as follows:

σ : T→ T, σ (t) = inf {s ∈ T : s > t} if t , supT,
ρ : T→ T, ρ (t) = sup {s ∈ T : s < t} if t , infT,
σ
(
supT

)
= supT, ρ (infT) = infT,

µ : T→ [0,∞) µ (t) = σ (t) − t.

A point of T is called as left-dense, left-scattered, right-dense, right-scattered and isolated if ρ(t) = t,
ρ(t) < t, σ(t) = t, σ(t) > t and ρ(t) < t < σ(t), respectively.

A function f : T → R is called rd-continuous on T if it is continuous at all right-dense points and has
left-sided limits at all left-dense points in T. The set of rd-continuous functions on T is denoted by Crd(T)
or Crd. If f is continuous on T it is also rd-continuous.

Put Tκ :=
{
T − {supT}, supT is left-scattered

T, the other cases , Tκ
2

:= (Tκ)κ .

Let t ∈ Tκ. Suppose that for given any ε > 0, there exists a neighborhood U = (t − δ, t + δ) ∩ T such that

∣∣∣[ f (σ (t)) − f (s)
]
− f∆ (t) [σ (t) − s]

∣∣∣ ≤ ε |σ (t) − s|

for all s ∈ U, then f is called delta-differentiable at t ∈ Tκ. We call f∆ (t) the delta derivative of f at t. The set

Cn
rd(T) :=

{
f : f rd-continuously n-order delta-differentiable on T

}
.

A function F : T → R defined as F∆(t) = f (t) for all t ∈ Tκ is called an antiderivative of f on T. In this
case the ∆-integral of f is defined by

b∫
a

f (t)△t = F (b) − F (a) for a, b ∈ T.

Put Tκ :=
{
T − {infT}, infT is right-scattered
T, the other cases , Tκ2 := (Tκ)κ .

Let t ∈ Tκ. Suppose that for given any ε > 0, there exists a neighborhood U = (t − δ, t + δ) ∩ T such that

∣∣∣[ f
(
ρ (t)

)
− f (s)

]
− f∇(t)

[
ρ (t) − s

]∣∣∣ ≤ ε ∣∣∣ρ (t) − s
∣∣∣

for all s ∈ U, then f is called nabla-differentiable at t ∈ Tκ . We call f∇ (t) the nabla derivative of f at t [6].
Similarly, for F∇(t) = f (t), the ∇-integral of f is defined [11] by

b∫
a

f (t)∇t = F (b) − F (a) for a, b ∈ T.
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For basic concepts of the time scale theory we refer to the textbooks [11–13].
We collect some necessary relations in the following lemma. Their proofs can be found in [11, Chapter1.].

Lemma 1.1. Let f : T→ R, 1 : T→ R be two functions and t ∈ Tk.

i) lf f∆ (t) exists, then f is continuous at t;

ii) if t is right-scattered and f is continuous at t, then f is ∆-differentiable at t and f∆ (t) =
f σ (t) − f (t)
σ (t) − t

, where

f σ (t) = f (σ (t)) ;

iii) if f∆ (t) exists, then f σ (t) = f (t) + µ(t) f∆ (t) ; if f∆ ≡ 0, then f is constant.

iv) if f∆ (t) and 1∆ (t) exist, then ( f ± 1)∆(t) = f∆(t) ± 1∆(t), ( f1)∆(t) =
(

f∆1 + f σ1∆
)

(t) and if
(
11σ

)
(t) , 0, then(

f
1

)∆
(t) =

(
f∆1 − f1∆

11σ

)
(t);

v) if f ∈ Crd(T), then it has an antiderivative on T.

Now, let us recall the notations of the spaces Lp and H1. For detailed knowledge related to Lebesque
measure, Lebesque integration and generalized derivation on the time scale we refer to [19].

Lp(T) ={ f :
∣∣∣ f ∣∣∣p is integrable onT in Lebesque sense} is a Banach space with the norm

∥∥∥ f
∥∥∥

Lp
=

 b∫
a

∣∣∣ f (t)
∣∣∣p △t


1
p

.

Moreover the set C1
rd(T) = { f : f ∆-differentiable on T and f∆ ∈ Crd(Tk)} is a normed space with the norm∥∥∥ f

∥∥∥
1

:=
∥∥∥ f

∥∥∥
L2
+

∥∥∥ f∆
∥∥∥

L2
. Finally, the sobolev space H1 is defined to be the completion of C1

rd(T) with respect
to the norm ∥.∥1. It is proven in [19] that if f ∈ H1, then there exist the generalized derivative f∆1 of f in
L2(T) and the following properties.
i) If f ∈ H1, then the function f∆1 is unique in Lebesque sense.

ii) If f ∈ C1
rd(T), then f∆1 = f∆.

iii) (ii)-(iv) in Lemma 1.1 are valid with f∆1 instead of f∆.

iv)
b∫

a
f∆1 (t)△t = f (b) − f (a) for a, b ∈ T.

2. Half-Inverse Problem

We consider following boundary value problem L on T = [0,m1] ∪ T1

ℓy := −y∆∆(t) + q(t)yσ(t) = λyσ(t), t ∈ Tκ
2

(1)
U(y) := (a1λ + b1) y(0) − (c1λ + d1) y∆(0) = 0 (2)
V(y) := (a2λ + b2) y(l) − (c2λ + d2) y∆(l) = 0 (3)

where y∆∆ =
(
y∆

)∆1
, q(t) is real valued continuous function on T, ai, bi, ci, di ∈ R, i = 1, 2, T1 is a bounded

time scale with m2 := infT1 ≥ m1 and l := ρ(supT1); and λ is the spectral parameter. Additionally we
assume that c1c2 , 0, δ1 := b1c1 − a1d1 > 0 and δ2 := a2d2 − b2c2 > 0.

Together with L, we consider a boundary value problem

L̃ = L(̃q(t), ã1, b̃1, c̃1, d̃1, a2, b2, c2, d2)
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of the same form but with different coefficients q̃(t), ã1, b̃1, c̃1 and d̃1. We assume that if a certain symbol s
denotes an object related to L , then s̃ will denote an analogous object related to L̃.

A function y, defined on T, is called a solution of equation (1) if y ∈ C2
rd(T) and y satisfies (1) for all

t ∈ T. The values of the λ parameteŗ for which (1)-( 3) has nonzero solutions are called eigenvalues, and the
corresponding nontrivial solutions are called eigenfunctions [2]. It is proven in [30] that the problem (1)-( 3)
has countable many eigenvalues which are real, algebraiclly simple and two eigenfunctions corresponding
to the different eigenvalues are orthogonal.

We state the first result of this article.
Let Λ := {λn}n≥1 and Λ̃ :=

{
λ̃n

}
n≥1

be the eigenvalues sets of L and L̃, respectively. Consider domain

Bn := {λ : |λ − λn| < ϵ } for each fixed n and sufficiently small ϵ > 0. Put B := C −
∞

∪
n=1

Bn. The function ∆(λ) is

the characteristic function of L.

Theorem 2.1. Assume that for given any ϵ > 0, there exist some Cϵ > 0 such that

|∆(λ)| ≥ Cδ |λ|α exp |τ| 2m1, λ ∈ B, |λ| > µ (4)

where α >
{

3, if m1 < m2
2, if m1 = m2

, µ is a sufficiently large number and τ = Im
√
λ.

If Λ = Λ̃, q(t) = q̃(t) on T1 then a1λ+b1
c1λ+d1

= ã1λ+b̃1

c̃1λ+d̃1
and q(t) = q̃(t) on T.

Prior to calculations,we need some preliminaries.
Let φ(t, λ) be the solution of (1) under the initial conditions

φ(0, λ) = c1λ + d1, φ∆(0, λ) = a1λ + b1. (5)

The zeros of the function ∆(λ) = (a2λ + b2)φ(l, λ) − (c2λ + d2)φ∆(l, λ) coincide with the eigenvalues of the
problem (1)-(3). It is proven in [30] that the functions φ(t, λ), φ∆(t, λ) and so ∆(λ) are entire on λ.

It is clear that φ(t, λ) satisfies the following integral equation on (0,m1)

φ(t, λ) = (c1λ + d1) cos
√

λt +

t∫
0

A(t, x) cos
√

λxdx (6)

+ (a1λ + b1)
1
√
λ

sin
√

λt +

t∫
0

B(t, x) sin
√

λxdx


where the kernels A(t, x) and B(t, x) satisfy

∂K(t, x)
∂t2 − q(t)K(t, x) =

∂K(t, x)
∂x2 ,

q(t) = 2
d
dt

A(t, t) = 2
d
dt

B(t, t),
∂A(t, x)
∂x

∣∣∣∣∣
x=0
= B(t, 0) = 0.

On the other hands, φ∆(t, λ) is continuous at m1, and so the relation.

mφ′(m1 − 0) = φ(m2) − φ(m1) (7)

holds, where m := m2 −m1. Therefore we obtain the next lemma.
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Lemma 2.2. If m > 0, then the following asymptotic formula holds for |λ| → ∞;

φ(m2, λ) = −mc1λ
3/2 sin

√

λm1 +O
(
|λ| exp |τ|m1

)
,

where τ := Im
√
λ.

Now we are ready to prove our first result.

Proof. [Proof of the Theorem 2.1.] We give proof in the case m > 0. The other case is similar and easier.
From the equation (1) for φ and φ̃, we have[
φ(t, λ)φ̃∆(t, λ) − φ∆(t, λ)φ̃(t, λ)

]∆
=

[
q(t) − q̃(t)

]
φσ(t, λ)φ̃σ(t, λ). (8)

By integrating (in the sense of ∆-integral) both sides of this equality on [0, l] ∩ T, we obtain

[
φ(t, λ)φ̃∆(t, λ) − φ∆(t, λ)φ̃(t, λ)

]l

0
=

l∫
0

[
q(t) − q̃(t)

]
φσ(t, λ)φ̃σ(t, λ)∆t

=

m1∫
0

[
q(t) − q̃(t)

]
φ(t, λ)φ̃(t, λ)dt

+

m2∫
m1

[
q(t) − q̃(t)

]
φσ(t, λ)φ̃σ(t, λ)∆t

+

l∫
m2

[
q(t) − q̃(t)

]
φ(t, λ)φ̃(t, λ)∆t

=

m1∫
0

[
q(t) − q̃(t)

]
φ(t, λ)φ̃(t, λ)dt

+
[
q(m1) − q̃(m1)

]
φσ(m1, λ)φ̃σ(m1, λ) (m2 −m1) ,

by using the assumption q = q̃ on T1.
Thus,

φ∆(l, λ)φ̃(l, λ) − φ(l, λ)φ̃∆(l, λ) =

m1∫
0

[
q(t) − q̃(t)

]
φ(t, λ)φ̃(t, λ)dt+

(a1λ + b1)
(
c̃1λ + d̃1

)
−

(
ã1λ + b̃1

)
(c1λ + d1)

+m
[
q(m1) − q̃(m1)

]
φ(m2)φ̃(m2).

Let

H(λ) :=

m1∫
0

[
q(t) − q̃(t)

]
φ(t, λ)φ̃(t, λ)dt+ (9)

+
(
a1c̃1 − ã1c1

)
λ2 +

(
a1d̃1 + b1c̃1 − ã1d1 − b̃1c1

)
λ +

(
b1d̃1 − b̃1d1

)
+m

[
q(m1) − q̃(m1)

]
φ(m2)φ̃(m2).
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Since φ(l, λn)φ̃∆(l, λn) − φ∆(l, λn)φ̃(l, λn) = 0, H(λn) = 0 for all λn ∈ Λ and so χ(λ) :=
H(λ)
∆(λ)

is entire on λ. On

the other hand, from (6) and Lemma 2.2, H(λ) = O(λ3 exp 2 |τ|m1) for sufficiently large |λ| . Thus

|χ(λ)| ≤ C |λ|3−α .

From Liouville’s Theorem χ(λ) = 0 for all λ. Hence, H(λ) ≡ 0.
It follows from Lemma 2.2 that the equalities

φ(m2, λ) = −mc1λ
3/2 sin

√

λm1 +O (1) ,

φ̃(m2, λ) = −mc̃1λ
3/2 sin

√

λm1 +O (1)

are valid for sufficiently large λ on the real axis. From (9), the following equality can be written:(
a1c̃1 − ã1c1

)
λ2 +

(
a1d̃1 + b1c̃1 − ã1d1 − b̃1c1

)
λ +

(
b1d̃1 − b̃1d1

)
(10)

+

m1∫
0

[
q(t) − q̃(t)

]
φ(t, λ)φ̃(t, λ)dt+

m
[
q(m1) − q̃(m1)

] [
m2λ3 sin2

√

λm1 +O(λ5/2)
]
= 0, λ→∞, λ ∈ R.

From (6) and Riemann-Lebesque lemma, we obtain

1
λ2

m1∫
0

[
q(t) − q̃(t)

]
φ(t, λ)φ̃(t, λ)dt =

c1c̃1

2

m1∫
0

[
q(t) − q̃(t)

]
dt + o(1),

for λ→∞, λ ∈ R. Then, we have

m
[
q(m1) − q̃(m1)

]
m2 sin2

√

λm1 = o(1), λ→∞, λ ∈ R.

Hence, it can be concluded that q(m1) = q̃(m1) and divided by λ2 in (10) so

(
a1c̃1 − ã1c1

)
+

c1c̃1

2

a1∫
0

[
q(t) − q̃(t)

]
dt = 0.

From 10, the equality(
a1c̃1 − ã1c1

)
λ2 +

(
a1d̃1 + b1c̃1 − ã1d1 − b̃1c1

)
λ +

(
b1d̃1 − b̃1d1

)
(11)

+

m1∫
0

[
q(t) − q̃(t)

]
φ(t, λ)φ̃(t, λ)dt = 0

is valid on the whole λ-plane.
From (11), by integrating again both sides of the equality (8) on (0,m1), we get

φ′(m1, λ)φ̃(m1, λ) = φ(m1, λ)φ̃′(m1, λ) (12)

Put ψ(t, λ) := φ(m1 − t, λ). It is clear that ψ(t, λ) is the solution of the following problem

−y′′ + q(m1 − t)y = λy, t ∈ (0,m1)
y(m1) = c1λ + d1, y′(m1) = − (a1λ + b1)

It follows from (12) that

ψ′(0, λ)ψ̃(0, λ) = ψ(0, λ)ψ̃′(0, λ).
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Taking into account uniqueness theorem by Weyl function in [18], it is concluded that q(t) = q̃(t) on [0,m1]

and a1λ+b1
c1λ+d1

= ã1λ+b̃1

c̃1λ+d̃1
. This completes the proof.

Remark 2.3. Let T is a union of finite closed intervals such as T = ∪k
j=0

[
m2 j,m2 j+1

]
, ai , a j for i , j, m0 = 0 and

k∑
j=1

(
m2 j+1 −m2 j

)
= m1. In this case, one can prove by using similar methods that

∆(λ) = (−1)k c1c2λ
(2k+5)/2 sin

√

λm1

k∏
j=1

(
m2 j −m2 j−1

)2
cos
√

λ(m2 j+1 −m2 j) (13)

+O(λk+2 exp 2 |τ| a1).

The condition (4) is valid. Hence Theorem 2.1 can be given as follows.

Theorem 2.4. If Λ = Λ̃ and q(t) = q̃(t) on ∪k
j=1

[
m2 j,m2 j+1

]
then a1λ+b1

c1λ+d1
= ã1λ+b̃1

c̃1λ+d̃1
and q(t) = q̃(t) on the whole T.

Example 2.5. Consider the problems

L0 :


−y∆∆(t) + q0(t)yσ(t) = λyσ(t), t ∈ T = {[0, 1] ∪ [2, 3]}

y(0) − (λ + 2) y∆(0) = 0
(2λ + 1) y(3) − (4λ + 5) y∆(3) = 0

and

L1 :


−y∆∆(t) + q1(t)yσ(t) = λyσ(t), t ∈ [0, 1] ∪ [2, 3]

y(0) − (c1λ + d1) y∆(0) = 0
(2λ + 1) y(3) − (4λ + 5) y∆(3) = 0.

Let Λ0 and Λ1 be the eigenvalues sets of L0 and L1, respectively. From (13), since ∆0(λ) = −2λ7/2 sin 2
√
λ +

O(λ3 exp 2 |τ|) the condition (4) is valid. According to Theorem 2.1, if Λ1 = Λ0 and q0(t) = q1(t) on [2, 3], then
c1 = 1, d1 = 2 and q0(t) = q̃1(t) on T.

3. The Case a1 = c1 = 0

In the case c2 , 0, a1 = c1 = 0, (2) replaced by

U(y) := cosαy(0) + sinαy∆(0) = 0, α ∈ [0, π) (14)

We denote the Sturm-Liouville problem (1), (14), (3) by L0(q(t), α, a2, b2, c2, d2) on T = [0,m1] ∪ T1.

Let ω(t, λ) be the solution of (1) under the initial conditions

ω(0, λ) = sinα, ω∆(0, λ) = − cosα.

It is shown [21] that ω(t, λ) satisfies the following asymptotic relations on (0,m1) ,

ω(t, λ) = sinα cos(
√

λt) +O(
1
√
λ

exp |τ| t), sinα , 0,

ω(t, λ) = −
sin(
√
λt)

√
λ

+O(
1
λ

exp |τ| t), sinα = 0
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where τ := Im
√
λ. Similar to Lemma 2.2, if m > 0, then the following asymptotic formula holds for |λ| → ∞;

ω(m2, λ) = −m sinα
√

λ sin
√

λm1 +O
(
exp |τ|m1

)
, sinα , 0,

ω(m2, λ) = −m cos
√

λm1 +O
(

1
√
λ

exp |τ|m1

)
, sinα = 0.

∆0(λ) is the characteristic function of L0. Consider a second operator L̃0 = L(̃q(t), α̃, a2, b2, c2, d2). Hence
Theorem 2.1 can be given as follows.

Theorem 3.1. Assume that for given any ϵ > 0, there exist some Cϵ > 0 such that

|∆0(λ)| ≥ Cδ |λ|α exp |τ| 2m1, λ ∈ B, |λ| > µ

where α >


1, if m1 < m2 and sinα , 0
0, if m1 = m2 and sinα , 0
0, if m1 < m2 and sinα = 0
−1, if m1 = m2 and sinα = 0

, µ is a sufficiently large number and τ = Imλ.

If Λ = Λ̃, q(t) = q̃(t) on T1 then α = α̃ and q(t) = q̃(t) on T.

4. Interior-Inverse Problem

In this section, we consider an interior inverse Sturm–Liouville problem on a time scale and give a
Mochizuki and Trooshin-type theorem. The techniques we use in proof of the following theorem are valid
if only the time scale is union of two closed intervals with same lenghts. In case m1 + m2 , l, it may be
needed the knowledge of the second spectrum, as in [29]. Thus, we introduce our uniqueness theorem
under the condition m1 + m2 = l. In addition, in case a1 = a2 = c1 = c2 = 0, m1 = m2 and so T = [0, l], the
following theorem coincides with Mochizuki-Trooshin theorem in [29].

Let Λ := {λn}n≥1 and Λ̃ :=
{
λ̃n

}
n≥1

be the eigenvalues sets of L and L̃, yn(t) and ỹn(t) are eigenfunctions
related to this eigenvalues, respectively.

Theorem 4.1. If Λ = Λ̃, m1 +m2 = l and for any n ∈N,

y∆n (m1)
yn(m1)

=
ỹ∆n (m1)
ỹn(m1)

(15)

then a1λ+b1
c1λ+d1

= ã1λ+b̃1

c̃1λ+d̃1
and q(t) = q̃(t) on T.

Proof. Let us consider the problem (1)-(3) on the time scale T = [0,m1] ∪ [m2, l] , where m1 < m2 and
l −m2 = m1. Since φ(t, λ) satisfies the equation (1) for t = m1, it follows that

(m2λ + k)φ(m2) + aφ′(m2 + 0) + φ(m1) = 0, (16)

where k := −m2q(m1)− 1. It can be calculated from (5) and (16) that the following asymptotic formula holds
for |λ| → ∞:

φ(t, λ) =

 c1λ cos
√
λt +O

(√
λ exp |τ| t

)
, t ∈ [0,m1],

c1m2λ2 sin
√
λm1 sin

√
λ(t −m2) +O

(
λ3/2 exp |τ| (t −m2 +m1

)
), t ∈ [m2, l],

(17)

φ∆(t, λ) =

 −c1λ3/2 sin
√
λt + +O

(
λ exp |τ| t

)
, t ∈ [0,m1),

c1m2λ5/2 sin
√
λm1 cos

√
λ(t −m2) +O

(
λ2 exp |τ| (t −m2 +m1

)
), t ∈ [m2, l],

(18)
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It follows from (17) and (18) that the asymptotic relation

∆(λ) = −c1c2m2λ7/2 sin
√

λm1 cos
√

λ(l −m2) +O
(
λ3 exp |τ| (l −m2 +m1

)
) (19)

is valid for |λ| → ∞.
Similar to the proof of Theorem 2.1, we have

a1λ + b1

c1λ + d1
=

ã1λ + b̃1

c̃1λ + d̃1

and q(t) = q̃(t) on [0,m1]. (20)

To prove that q(t) = q̃(t) on [m2, l], we will consider the supplementary problem L1 :

−y∇∇ + q1(t)yρ = λyρ, t ∈ T,
(a2λ + b2) y(0) + (c2λ + d2) y∇(0) = 0,
(a1λ + b1) y(l) + (c1λ + d1) y∇(l) = 0,

where q1(t) = q(l− t). By using chain rule for nabla deriative in [8], we have that φ1(t, λ) = φ(l− t, λ) satisfies
the equation

−φ∇∇1 + q1(t)φρ1 = λφ
ρ
1

and the conditions

φ1(l, λ) = c1λ + d1, φ
∇

1 (l, λ) = − (a1λ + b1) .

Since y∆n (m1) = −y∇n (m2), the condition (15) can be replaced by

φ∇1 (m2, λn)

φ1(m2, λn)
=
φ̃∇1 (m2, λn)

φ̃1(m2, λn)
.

Furthermore, the assumption (15) holds. We replace equation (8) by[
φ1(t, λ)φ̃1

∇(t, λ) − φ∇1 (t, λ)φ̃1(t, λ)
]∇
=

[
q1(t) − q̃1(t)

]
φ
ρ
1(t, λ)φ̃ρ1(t, λ).

We obtain

[
φ1(t, λ)φ̃∇1 (t, λ) − φ∇1 (t, λ)φ̃1(t, λ)

]m2

0
=

m2∫
0

[
q1(t) − q̃1(t)

]
φ
ρ
1(t, λ)φ̃ρ1(t, λ)∇t

=

m1∫
0

[
q1(t) − q̃1(t)

]
φ1(t, λ)φ̃1(t, λ)dt

+

m2∫
m1

[
q1(t) − q̃1(t)

]
φ
ρ
1(t, λ)φ̃ρ1(t, λ)∇t

=

m1∫
0

[
q1(t) − q̃1(t)

]
φ1(t, λ)φ̃1(t, λ)dt

+
[
q(m2) − q̃(m2)

]
φρ(m2, λ)φ̃ρ(m2, λ) (m2 −m1) .
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Since q(m1) = q̃(m1), then q1(m2) = q̃1(m2) and

m2∫
m1

[
q(t) − q̃(t)

]
φρ(t, λ)φ̃ρ(t, λ)∇t = 0.

Therefore, we have

φ∇1 (m2, λ)φ̃1(m2, λ) − φ1(m2, λ)φ̃∇1 (m2, λ) =

m1∫
0

[
q1(t) − q̃1(t)

]
φ1(t, λ)φ̃1(t, λ)dt. (21)

If we repeat the arguments in the proof of Theorem 2.1 then it is concluded that q1(t) = q̃1(t) on [0,m1] ,
that is q(t) = q̃(t) on [m2, l] . This completes the proof.

Example 4.2. Consider the following problems on T = [0, 2] ∪ [3, 5]:

L0 :


−y∆∆(t) = λyσ(t), t ∈ [0, 2] ∪ [3, 5]

y(0) − (λ + 2) y∆(0) = 0
(2λ + 1) y(5) − (4λ + 5) y∆(5) = 0

and

L̃0 :


−y∆∆(t) + q(t)yσ(t) = λyσ(t), t ∈ [0, 2] ∪ [3, 5]

y(0) − (c1λ + d1) y∆(0) = 0
(2λ + 1) y(5) − (4λ + 5) y∆(5) = 0

Let Λ0 := {λn}n≥1 and Λ̃0 :=
{
λ̃n

}
n≥1

be the eigenvalues sets of L and L̃0, yn(t) and ỹn(t) are eigenfunctions related to

this eigenvalues, respectively. According to Theorem 4.1, if Λ0 = Λ̃0 and for any n ∈N,

y∆n (2)
yn(2)

=
ỹ∆n (2)
ỹn(2)

then c1 = 1, d1 = 2 and q(t) ≡ 0.
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