Mathematics

Research article

Effect of immigration in a predator-prey system: Stability, bifurcation and chaos

Figen Kangalgil ${ }^{1, *}$ and Seval Işık ${ }^{2, *}$

${ }^{1}$ Bergama Vocational School, Dokuz Eylul University, Izmir 35700, Turkey
${ }^{2}$ Department of Mathematics and Science Education, Faculty of Education, Sivas Cumhuriyet University, Sivas 58140, Turkey

* Correspondence: Email: figen.kangalgil@deu.edu.tr, skaracan@cumhuriyet.edu.tr.

Abstract

In the present manuscript, a discrete-time predator-prey system with prey immigration is considered. The existence of the possible fixed points of the system and topological classification of coexistence fixed point are analyzed. Moreover, the existence and the direction for both NeimarkSacker bifurcation and flip bifurcation are investigated by applying bifurcation theory. In order to control chaos due to the emergence of the Neimark-Sacker bifurcation, an OGY feedback control strategy is implemented. Furthermore, some numerical simulations, including bifurcation diagrams, phase portraits and maximum Lyapunov exponents of the system, are given to support the accuracy of the analytical finding. The computation of the maximum Lyapunov exponents confirms the presence of chaotic behavior in the system.

Keywords: predator-prey system; fixed point; stability; immigration; Neimark-Sacker bifurcation; flip bifurcation; chaotic behavior; OGY feedback control method
Mathematics Subject Classification: 39A33, 37G35, 39A30

1. Introduction

Predator-prey interaction is one of the most important subjects in the bio-mathematical literature. Therefore, many ecologists, mathematicians and biologists have investigated the dynamical behavior of the predator-prey system describing the interaction between prey and predator. The Lotka-Volterra predator-prey system, which is a fundamental population model, was introduced by Lotka [1] and Voltera [2]. The Lotka-Volterra model assumes that "the prey consumption rate by a predator is directly proportional to the prey abundance. This means that predator feeding is limited only by the amount of prey in the environment. While this may be realistic at low prey densities, it is certainly an unrealistic assumption at high prey densities where predators are limited, for example, by time and
digestive constraints [3]." Since this model has neglected many real situations and complexities, it has been modified over the years by numerous researchers to ensure an accurate explanation and better understanding [3-23]. Additionally, many ecological concepts, such as diffusion, functional responses, time delays and the Allee effect, have been added to the predator-prey system to facilitate a more accurate description [7, 13-16, 20, 23-28]. It is known to all that one of the important modifications to the system is immigration. The concept of immigration, which affects the population growth rate, is an external factor expressed for an organism that establishes a particular habitat. Both immigration and migration happen when there is shortage of basic needs due to human activities. Especially, predator-prey interactions may be disrupted due to different reactions to climate change. Sometimes, regular and seasonal migration and immigration drive living organisms to adopt traveling and nomadic lives [29]. Additionally, the process of immigration is a significant phenomenon that helps the ecosystem to achieve a state of stability. Specially, discrete-time systems that take into account seasonal events, such as immigration are more realistic [$6,11,12,26,27,30-35]$. There have also been many studies on the role of immigration and its impact on population dynamics. Sugie et al. studied the existence and uniqueness of limit cycles in a predator-prey system with constant immigration in [26]. Zhu et al. investigated the local and global stability in a delayed predator-prey system with constant-rate immigration [27]. Also, they showed the existence of the global Hopf bifurcation. Tahara et al. analyzed the asymptotic stability of the predator-prey systems by adding an immigration factor to the prey and predator populations in a classical Lotka-Volterra system [36].

Rana [23] investigated the dynamics of a discrete-time predator-prey system of Holling I type. The author analyzed the existence and local stability of positive fixed points in the system and showed that the system undergoes flip and Neimark-Sacker bifurcations. Also, Rana observed that, when the prey is in a chaotic dynamic state, the predator can tend to extinction or to a stable equilibrium. It is important to consider the effects of the presence of some number of immigrants because most predatorprey systems in nature are not isolated. The immigration effect of the predator-prey system has been rarely studied in literature. Therefore, we will investigate a discrete-time predator-prey system with constant immigration of the prey population, as follows:

$$
\begin{align*}
X_{t+1} & =r X_{t}\left(1-X_{t}\right)-a X_{t} Y_{t}+s \tag{1.1}\\
Y_{t+1} & =b X_{t} Y_{t}-d Y_{t}
\end{align*}
$$

where X_{t} and Y_{t} represent the population densities of the prey and predator at time t, respectively. r is the intrinsic growth rate of the prey, a is the per capita searching efficiency of the predator, b is the conversion rate of the predator, d is the death rate of the predator and s is the prey immigration rate. All parameters, r, a, b, d and s, are positive constants. The predator-prey system given by (1.1) assumes that the prey grows logistically with an intrinsic growth rate r and a carrying capacity of one in the absence of predation.

The contributions of this study are given as follows:
(1) The intended system consists of two interacting species, where one species is the food source for the other. In this paper, we have analyzed the immigration effect on the prey population in the system.
(2) The stability of the considered system is analyzed for possible fixed points.
(3) It has been shown that the proposed system undergoes both flip and Neimark-Sacker bifurcations.
(4) The OGY method has been applied to the system to control the chaos due to the emergence of the Neimark-Sacker bifurcation.
(5) Some numerical examples have been presented for our discrete-time predator-prey system with immigration in order to support the accuracy of our theoretical results.

Our task is to discuss the dynamics of a modified discrete-time predator-prey system with immigration of the prey population. The rest of the paper is organized as follows. In Section 2, the existence conditions and stability of the fixed points of the system are investigated. In Section 3, Neimark-Sacker and flip bifurcation analysis is explored by choosing r as a bifurcation parameter. Next, the directions of both Neimark-Sacker and flip bifurcations are obtained by using normal form theory [21,37]. In Section 4, an OGY feedback control strategy is implemented to control the chaos due to the emergence of Neimark-Sacker bifurcation. In Section 5, some numerical simulations are demonstrated out to support the accuracy of our theoretical finding. In the end, a brief conclusion is given.

2. Existence and stability of the fixed points

In this section, we will examine the existence and stability of the fixed points of a discrete system with immigration of the prey in the close first quadrant R_{+}^{2}. To find the fixed points of the system given by (1.1), we can rewrite system (1.1) in the following form:

$$
\begin{align*}
X^{*} & =r X^{*}\left(1-X^{*}\right)-a X^{*} Y^{*}+s \tag{2.1}\\
Y^{*} & =b X^{*} Y^{*}-d Y^{*} .
\end{align*}
$$

Solving the algebraic equation, we get that system (1.1) has the following fixed points:

$$
\begin{aligned}
& E_{1}=\left(\frac{(r-1)+\sqrt{(r-1)^{2}+4 r s}}{2 r}, 0\right): \text { Survival of Population } X \text { only, and } \\
& E_{2}=\left(\frac{d+1}{b}, \frac{(d+1) b(r-1)-r(d+1)^{2}+s b^{2}}{a b(d+1)}\right): \text { Coexistence of all populations. }
\end{aligned}
$$

We have obtained the following lemma regarding the existence of the fixed points of system (1.1).

Lemma 2.1. For system (1.1), the following statements hold true:

i) System (1.1) always has an axial positive fixed point $E_{1}=\left(\frac{(r-1)+\sqrt{(r-1)^{2}+4 r s}}{2 r}, 0\right)$.
ii) System (1.1) has a unique positive fixed point $E_{2}=\left(\frac{d+1}{b}, \frac{(d+1) b(r-1)-r(d+1)^{2}+s b^{2}}{a b(d+1)}\right)$ if $(d+1) b(r-1)+s b^{2}>$ $r(d+1)^{2}$.

Now, we investigate the stability of the coexistence fixed point E_{2} of system (1.1) only. The Jacobian matrix of system (1.1) evaluated at the unique positive fixed point $E_{2}=\left(\frac{d+1}{b}, \frac{(d+1) b(r-1)-r(d+1)^{2}+s b^{2}}{a b(d+1)}\right)$ is given by

$$
J\left(E_{2}\right)=\left(\begin{array}{cc}
\frac{(d+1)(b-r(d+1))-s b^{2}}{b(1+d)} & -\frac{a(d+1)}{b} \\
\frac{(d+1) b(r-1)-r(d+1)^{2}+s b^{2}}{a(d+1)} & 1
\end{array}\right) .
$$

Then, the characteristic polynomial of $J\left(E_{2}\right)$ is given by

$$
\begin{align*}
F(\lambda)= & \lambda^{2}+\left(\frac{(d+1)^{2} r-2 b(d+1)+s b^{2}}{(d+1) b}\right) \lambda \tag{2.2}\\
& \left.+\left((d+1)-\frac{d\left(d^{2}+4 d+5\right)-2}{(d+1) b}\right)\right) r+\frac{s b d}{(d+1)}-d .
\end{align*}
$$

In order to analyze the dynamics of the unique positive fixed point $E_{2}=\left(\frac{d+1}{b}, \frac{(d+1) b(r-1)-r(d+1)^{2}+s b^{2}}{a b(d+1)}\right)$ of system (1.1), we present Lemma 2.2 [8,18, 19]:

Lemma 2.2. Let $F(\lambda)=\lambda^{2}+B \lambda+C$, where B and C are two real constants, and let $F(1)>0$. Suppose λ_{1} and λ_{2} are two roots of $F(\lambda)=0$. Then, the following statements hold true:
i) $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|<1$ if and only if $F(-1)>0$ and $C<1$,
ii) $\left|\lambda_{1}\right|>1$ and $\left|\lambda_{2}\right|>1$ if and only if $F(-1)>0$ and $C>1$,
iii) $\left(\left|\lambda_{1}\right|<1\right.$ and $\left.\left|\lambda_{2}\right|>1\right)$ or $\left(\left|\lambda_{1}\right|>1\right.$ and $\left.\left|\lambda_{2}\right|<1\right)$ if and only if $F(-1)<0$,
iv) λ_{1} and λ_{2} are a pair of conjugate complex roots, and $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$ if and only if $B^{2}-4 C<0$ and $C=1$,
v) $\lambda_{1}=-1$ and $\left|\lambda_{2}\right| \neq 1$ if and only if $F(-1)=0$ and $C \neq \pm 1$.

Assume that λ_{1} and λ_{2} are the roots of the characteristic polynomial at the positive fixed point (x, y). Then, the point (x, y) is called a sink if $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|<1$ and it is locally asymptotically stable. (x, y) is known as a source or repeller if $\left|\lambda_{1}\right|>1$ and $\left|\lambda_{2}\right|>1$; thus, a source is always unstable. The point (x, y) is called a saddle point if $\left(\left|\lambda_{1}\right|<1\right.$ and $\left.\left|\lambda_{2}\right|>1\right)$ or ($\left|\lambda_{1}\right|>1$ and $\left.\left|\lambda_{2}\right|<1\right)$. And, (x, y) is called non-hyperbolic if either $\left|\lambda_{1}\right|=1$ or $\left|\lambda_{2}\right|=1$.

Now, we will discuss the topological classification of the unique positive fixed point $\left(\frac{d+1}{b}, \frac{(d+1) b(r-1)-r(d+1)^{2}+s b^{2}}{a b(d+1)}\right)$ of system (1.1), and we will apply Lemma 2.2 to prove the following lemma. From Eq (2.2), we can obtain $F(1)=\frac{(d+1) b(r-1)-r(d+1)^{2}+s b^{2}}{b}>0$ if $(d+1) b(r-1)+s b^{2}>r(d+1)^{2}$.
Lemma 2.3. Assume that $(d+1) b(r-1)+s b^{2}>r(d+1)^{2}$; then, for a unique positive fixed point E_{2} of system (1.1), the following holds true.
i) E_{2} is a sink-type fixed point if the following conditions hold:

$$
(1+d)(-b d+(-2+b-d)(1+d) r)+b^{2} d s>0
$$

and

$$
(1+d)(-b d+(-2+b-d)(1+d) r)+b^{2} d s<b(1+d) .
$$

ii) E_{2} is a source (repeller)-type fixed point if the following conditions hold:

$$
(1+d)(-b d+(-2+b-d)(1+d) r)+b^{2} d s>0
$$

and

$$
(1+d)(-b d+(-2+b-d)(1+d) r)+b^{2} d s>b(1+d)
$$

iii) E_{2} is a saddle-type fixed point if the following condition holds:

$$
(1+d)(-b d+(-2+b-d)(1+d) r)+b^{2} d s<0 .
$$

iv) Assume that λ_{1} and λ_{2} are the roots of $E q(2.2)$; then $\lambda_{1}=-1$ and $\left|\lambda_{2}\right| \neq 1$ if and only if $r=r_{1}$ and $r \neq r_{2}, r_{2}+\frac{2 b}{d^{2}-b d+3 d-b+2}$.
v) The roots of $E q$ (2.2) are complex with modules of one if and only if

$$
r=r_{2} \text { and } \frac{-s b^{2}}{(d+1)^{2}}<r_{2}<\frac{(4(d+1)-s b) b}{(d+1)^{2}},
$$

where $r_{1}=-\frac{\left(2 d+3-d^{2}-s b(1-d)\right) b}{(d+1)^{2}(b-d-3)}$ and $r_{2}=\frac{\left((d+1)^{2}-s b d\right) b}{(d+1)^{2}(b-(d+2))}$.
Example 2.1. For the parameter values $a=3.5, b=4.5, d=0.25, s=0.75, r=0.5$ and the initial condition $\left(x_{0}, y_{0}\right)=(0.25,0.6)$, the positive unique fixed point of system (1.1) is obtained as $\left(x^{*}, y^{*}\right)=(0.27777778,0.58888889)$. Figure 1 shows that the fixed point $\left(x^{*}, y^{*}\right)$ of system (1.1) is locally asymptotically stable, with $x(t)$ and $y(t)$ being the prey and predator populations at time t, respectively.

Figure 1. Stable fixed points for system (1.1) for $a=3.5, b=4.5, d=0.25, s=0.75, r=0.5$ and the initial condition $\left(x_{0}, y_{0}\right)=(0.25,0.6)$.

3. Bifurcation analysis

In this section, we will investigate flip and Neimark-Sacker bifurcations of the coexistence fixed point E_{2} by using the bifurcation theory in the sense of [15].

3.1. Neimark-Sacker bifurcation at the point E_{2}

In this subsection, we investigate the existence conditions for the Neimark-Sacker bifurcation around coexistence fixed point by choosing the parameter r as a bifurcation parameter. Furthermore, the direction of the Neimark-Sacker bifurcation is given by applying bifurcation theory.

When the term (v) of Lemma 2.3 holds, we say that two eigenvalues of $J\left(E_{2}\right)$ are a pair of complex conjugates with a modulus of one. Therefore, we can write the following set:
$N S B_{E_{2}}=$

$$
\begin{equation*}
\left\{(r, a, b, d, s) \in \mathbb{R}_{+}^{5}:(d+1) b(r-1)+s b^{2}>r(d+1)^{2}, r_{N S}=r_{2}, \frac{-s b^{2}}{(d+1)^{2}}<r_{2}<\frac{(4(d+1)-s b) b}{(d+1)^{2}}\right\}, \tag{3.1}
\end{equation*}
$$

where $r_{2}=\frac{\left((d+1)^{2}-\text { sbd } d b\right.}{(d+1)^{2}(b-(d+2))}$.
The Neimark-Sacker bifurcation appears when the parameter r varies in a small neigborhood of $N S B_{E_{2}}$. The eigenvalues of system (1.1) under these conditions are obtained by

$$
\begin{equation*}
\lambda, \bar{\lambda}=\frac{(-M-T+b K) \pm i \sqrt{Q}}{2 b K} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
M & =s b^{2}-b d-b, T=r d^{2}+2 r d+r, K=d+1 \\
Q & =-(M+T)^{2}+2 b K(M+T)+b^{2} K^{2}(4 K r-1)+4 b K^{2}(M-T)
\end{aligned}
$$

It is easy to see that

$$
\begin{equation*}
|\lambda|=|\bar{\lambda}|=1 . \tag{3.3}
\end{equation*}
$$

From the transversality condition, we get

$$
\begin{equation*}
\left.\frac{d\left|\lambda_{i}(r)\right|}{d r}\right|_{r=r_{N S}}=K-\frac{d^{2}(d+4)(5 d-2)}{K b} \neq 0, i=1,2 . \tag{3.4}
\end{equation*}
$$

If the nonresonance condition $B=-\operatorname{tr} J_{E_{2}}\left(r_{N S}\right) \neq 0,-1$, then

$$
\begin{equation*}
r_{2} \neq b \alpha, b\left(\alpha+\frac{1}{K}\right), \tag{3.5}
\end{equation*}
$$

which obviously satisfies

$$
\begin{equation*}
\lambda^{k}\left(r_{N S}\right) \neq 1 \text { for } k=1,2,3,4, \tag{3.6}
\end{equation*}
$$

where $\alpha=\frac{2 K-s b}{K^{2}}$. Assume that $q, p \in \mathbb{C}^{2}$ are two eigenvectors of $J\left(N S B_{E_{2}}\right)$ and the transposed matrix $J^{T}\left(N S B_{E_{2}}\right)$ corresponding to λ and $\bar{\lambda}$, respectively. We have

$$
\begin{equation*}
q \sim\left(1,-\frac{1}{2 K^{2} a}(M+T+b K+i \sqrt{Q})\right)^{T} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
p \sim\left(\frac{1}{2 K^{2} a}(M+T+b K+i \sqrt{Q}), 1\right)^{T} . \tag{3.8}
\end{equation*}
$$

To achieve the normalization $\langle p, q\rangle=1$, where $<.,$.$\rangle means the standard scalar product in C^{2}$, we can set the normalized vectors as

$$
\begin{align*}
& q=\left(1,-\frac{1}{2 K^{2} a}(M+T+b K+i \sqrt{Q})\right)^{T} \\
& p=\left(\frac{1}{2}-\frac{i(M+T+b K)}{2 \sqrt{Q}}, \frac{-i K^{2} a}{\sqrt{Q}}\right)^{T} . \tag{3.9}
\end{align*}
$$

From Taylor expansion, substituting $x_{t}+x^{*}$ into X_{t}, and $y_{t}+y^{*}$ into Y_{t}, the fixed point E_{2} of system (1.1) results in the origin $(0,0)$, and system (1.1) converts to

$$
\begin{equation*}
\binom{x_{t}}{y_{t}} \rightarrow J\left(E_{*}\right)\binom{x_{t}}{y_{t}}+\binom{F_{1}\left(x_{t}, y_{t}\right)}{F_{2}\left(x_{t}, y_{t}\right)}, \tag{3.10}
\end{equation*}
$$

where $J\left(E_{*}\right)=J\left(x^{*}, y^{*}\right)$, and

$$
\begin{aligned}
& F_{1}\left(x_{t}, y_{t}\right)=-r x_{t}^{2}-a y_{t} x_{t}+O\left(X_{t}^{4}\right) \\
& F_{2}\left(x_{t}, y_{t}\right)=b x_{t} y_{t}+O\left(X_{t}^{4}\right)
\end{aligned}
$$

where $X_{t}=\left(x_{t}, y_{t}\right)^{T}$. System (3.10) can be expressed as

$$
\begin{equation*}
\binom{x_{t+1}}{y_{t+1}}=J\left(E_{*}\right)\binom{x_{t}}{y_{t}}+\frac{1}{2} B\left(x_{t}, x_{t}\right)+\frac{1}{6} C\left(x_{t}, x_{t}, x_{t}\right)+O\left(x_{t}^{4}\right), \tag{3.11}
\end{equation*}
$$

where $B(x, y)=\binom{B_{1}(x, y)}{B_{2}(x, y)}$ and $C(x, y, u)=\binom{C_{1}(x, y, u)}{C_{2}(x, y, u)}$ are symmetric multi-linear vector functions of $x, y, u \in R^{2}$. We define the functions $B(x, y)$ and $C(x, y, u)$ by the following formulas:

$$
\begin{align*}
& B_{1}(x, y)=\left.\sum_{j, k=1}^{2} \frac{\partial^{2} F_{1}}{\partial \xi_{j} \partial \xi_{k}}\right|_{\xi=0} x_{j} y_{k} \\
& =-2 r x_{1} y_{1}-a x_{1} y_{2}-a x_{2} y_{1}, \\
& B_{2}(x, y)=\left.\sum_{j, k=1}^{2} \frac{\partial^{2} F_{2}}{\partial \xi_{j} \partial_{k}}\right|_{\xi=0} x_{j} y_{k}=b x_{1} y_{2}+b x_{2} y_{1}, \tag{3.12}\\
& \left.C_{1}(x, y, u) \quad \underset{j, k, l=1}{=} \sum_{i}^{2} \frac{\partial^{3} F_{1}}{\partial \xi_{j} \xi_{k} \partial \xi_{l}}\right|_{\xi=0} x_{j} y_{k} u_{l}=0, \\
& C_{2}(x, y, u)=\left.\sum_{j, k, l=1}^{2} \frac{\partial^{3} F_{2}}{\partial \xi_{j} \xi_{k} \partial \xi_{l}}\right|_{\xi=0} x_{j} y_{k} u_{l}=0 .
\end{align*}
$$

For r near to $r_{N S}$ and $z \in \mathbb{C}$, we use the transformation $X=z q+\overline{z q}$; then, system (3.11) becomes

$$
\begin{equation*}
z \rightarrow \lambda(r) z+g(z, \bar{z}, r), \tag{3.13}
\end{equation*}
$$

where $\lambda(r)=(1+\varphi(r)) e^{i \arctan (r)}$, with $\varphi\left(r_{N S}\right)=0$, and $g(z, \bar{z}, r)$ is a smooth complex-valued function. After Taylor expression of g with respect to (z, \bar{z}), we obtain

$$
\begin{equation*}
g(z, \bar{z}, r)=\sum_{k+l \geq 2} \frac{1}{k!l!} g_{k l}(r) z^{k} \bar{z}^{l} \text {, with } g_{k l} \in k, l=0,1, \ldots . \tag{3.14}
\end{equation*}
$$

Given the symmetric multi-linear vector functions, the Taylor coefficients $g_{k l}$ can be expressed by the following formulas:

$$
\begin{align*}
& \left.g_{20}\left(r_{N S}\right)=<p, B(q, q)\right\rangle, \\
& \left.g_{11}\left(r_{N S}\right)=<p, B(q, \bar{q})\right\rangle, \tag{3.15}\\
& \left.g_{02}\left(r_{N S}\right)=<p, B(\bar{q}, \bar{q})\right\rangle, \\
& g_{21}\left(r_{N S}\right)=\langle p, C(q, q, \bar{q})\rangle .
\end{align*}
$$

The coefficient $\beta_{2}\left(r_{N S}\right)$, which determines the direction of the appearance of the invariant curve in a generic system exhibiting the Neimark-Sacker bifurcation, can be calculated as follows:

$$
\begin{align*}
\beta_{2}\left(r_{N S}\right)= & \operatorname{Re}\left(\frac{e^{-i \arctan \left(r_{N S}\right)}}{2} g_{21}\right) \tag{3.16}\\
& -\operatorname{Re}\left(\frac{\left(1-2 e^{i \arctan \left(r_{N S}\right)}\right) e^{-2 i \arctan \left(r_{N S}\right)}}{2\left(1-e^{i \arctan \left(r_{N S}\right)}\right)} g_{20} g_{11}\right) \\
& -\frac{1}{2}\left|g_{11}\right|^{2}-\frac{1}{4}\left|g_{02}\right|^{2},
\end{align*}
$$

where $e^{i \arctan \left(r_{N S}\right)}=\lambda\left(r_{N S}\right)$.
From the above analysis, we have the following theorem:
Theorem 3.1.1. Suppose that E_{2} is a positive unique fixed point of system (1.1). If Eq (3.5) holds, $\beta_{2}\left(r_{N S}\right) \neq 0$ and the parameter r changes its value in a small vicinity of $N S B_{E_{2}}$; then, system (1.1) passes through a Neimark-Sacker bifurcation at the fixed point E_{2}. Moreover, if $\beta_{2}\left(r_{N S}\right)<0$ $\left(\beta_{2}\left(r_{N S}\right)>0\right)$, then the Neimark-Sacker bifurcation of System (1.1) at $r=r_{N S}$ is supercritical (subcritical) and there exists a unique closed invariant curve bifurcation from E_{2} for $r=r_{N S}$, which is attracting (repelling).

3.2. Flip bifurcation at the point E_{2}

In this subsection, we will discuss the existence conditions for and direction of the flip bifurcation at a unique positive fixed point E_{2} of system (1.1) by choosing r as a bifurcation parameter.

If Lemma $2.3(i v)$ holds, we see that one of the eigenvalues of $J\left(E_{2}\right)$ is -1 and the other eigenvalue is neither 1 nor -1 . Therefore, there can be a flip bifurcation of the fixed point E_{2} if the parameter r varies in the small neighborhood of $F B_{E_{2}}$, where

$$
\begin{equation*}
F B_{E_{2}}=\left\{(r, a, b, d, s) \in R_{+}^{5}:(d+1) b(r-1)+s b^{2}>r(d+1)^{2}, r=r_{F}=r_{1}, r \neq r_{2}, r_{2}+\frac{2 b}{d^{2}-b d+3 d-b+2}\right\} . \tag{3.17}
\end{equation*}
$$

The eigenvalues of system (1.1) under these conditions are given by

$$
\begin{equation*}
\lambda_{1}\left(r_{1}\right)=-1, \lambda_{2}\left(r_{1}\right)=-\frac{b^{2} s+4 d^{2}-2 b s-3 b-2 b d s+10 d+6-3 b d}{-d^{2}-4 d+b d+b-3} \tag{3.18}
\end{equation*}
$$

In order to be $\lambda_{2}\left(r_{1}\right) \neq \pm 1$, we have

$$
\begin{align*}
b s(b-2(1+d)) & \neq-3 d^{2}+2 b-6 d+2 b d-3 \tag{3.19}\\
& \neq-5 d^{2}+4 b-14 d+4 b d-9 .
\end{align*}
$$

Suppose that $q, p \in R^{2}$ are two eigenvectors of $J\left(F B_{E_{2}}\right)$ and the transposed matrix $J^{T}\left(F B_{E_{2}}\right)$, respectively, for $\lambda_{1}\left(r_{1}\right)=-1$. Then, we have

$$
J\left(F B_{E_{2}}\right) q=-q \text { and } J^{T}\left(F B_{E_{2}}\right)=-p .
$$

By direct calculation, we obtain

$$
\begin{equation*}
q \sim\left(1,-\frac{\left(3 d^{2}+6 d-2 b d-2 b d s+3+b^{2}-2 b s-2 b\right) b}{a\left(-7 d-5 d^{2}+b-d^{3}+2 b d+b d^{2}-3\right)}\right)^{T} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
p \sim\left(1, \frac{a(1+d)}{2 b}\right)^{T} . \tag{3.21}
\end{equation*}
$$

To achieve the normalization $<p, q\rangle=1$, where $<,>$ means the standard scalar product in R^{2}, we can write the normalized vectors p and q as

$$
\begin{align*}
& q=\left(1,-\frac{\left(3 d^{2}+6 d-2 b d-2 b d s+3+b^{2}-2 b s-2 b\right) b}{a\left(-d-5-5 d^{2}+b-b-b^{3}+2 b d+b d^{2}-2\right)}\right)^{T}, \tag{3.22}\\
& p=\left(\frac{2\left(-d^{2}+d+b\right)}{5 d^{2}+14 d-4 b d-2 d b d s+b^{2} s-4 b-2 b s+9},-\frac{a(1+d)\left(-d^{2}-4 d+b d+b-3\right)}{b\left(5 d^{2}+14 d-4 b d-2 b d s+b^{2} s-4 b-2 b s+9\right)}\right)^{T} .
\end{align*}
$$

Assume that $x_{t}=X_{t}-x^{*}, y_{t}=Y_{t}-y^{*}$ and $J\left(E_{*}\right)=J\left(x^{*}, y^{*}\right)$. We transform the fixed point E_{2} of system (1.1) into the origin (0,0) . By Taylor expansion, system (1.1) can be taken as

$$
\begin{equation*}
\binom{x_{t}}{y_{t}} \rightarrow J\left(E_{*}\right)\binom{x_{t}}{y_{t}}+\binom{F_{1}\left(x_{t}, y_{t}\right)}{F_{2}\left(x_{t}, y_{t}\right)}, \tag{3.23}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}\left(x_{t}, y_{t}\right)=-r_{F} x_{t}^{2}-a y_{t} x_{t}+O\left(X_{t}^{4}\right) \\
& F_{2}\left(x_{t}, y_{t}\right)=b x_{t} y_{t}+O\left(X_{t}^{4}\right)
\end{aligned}
$$

where $X_{t}=\left(x_{t}, y_{t}\right)^{T}$. System (3.23) can be expressed as

$$
\begin{equation*}
\binom{x_{t+1}}{y_{t+1}}=J\left(E_{*}\right)\binom{x_{t}}{y_{t}}+\frac{1}{2} B\left(x_{t}, x_{t}\right)+\frac{1}{6} C\left(x_{t}, x_{t}, x_{t}\right)+O\left(x_{t}^{4}\right), \tag{3.24}
\end{equation*}
$$

where $B(x, y)=\binom{B_{1}(x, y)}{B_{2}(x, y)}$ and $C(x, y, u)=\binom{C_{1}(x, y, u)}{C_{2}(x, y, u)}$ are symmetric multi-linear vector functions of $x, y, u \in R^{2}$ that are defined as follows:

$$
\begin{align*}
& B_{1}(x, y)=\left.\sum_{j, k=1}^{2} \frac{\partial^{2} F_{1}}{\partial \xi_{j} \partial \xi_{k}}\right|_{\xi=0} x_{j} y_{k} \\
& =-2 r_{F} x_{1} y_{1}-a x_{1} y_{2}-a x_{2} y_{1}, \\
& B_{2}(x, y)=\left.\sum_{j, k=1}^{2} \frac{\partial^{2} F_{2}}{\partial \xi_{j} \partial_{k}}\right|_{\xi=0} x_{j} y_{k}=b x_{1} y_{2}+b x_{2} y_{1}, \tag{3.25}\\
& \left.C_{1}(x, y, u) \quad \underset{j, k, l=1}{=} \sum_{2}^{2} \frac{\partial^{3} F_{1}}{\partial \xi_{j} \xi_{k} \partial \xi_{l}}\right|_{\xi=0} x_{j} y_{k} u_{l}=0, \\
& C_{2}(x, y, u)=\left.\sum_{j, k, l=1}^{2} \frac{\partial^{3} F_{2}}{\partial \xi_{j} \xi_{k} \partial \xi_{l}}\right|_{\xi=0} x_{j} y_{k} u_{l}=0 .
\end{align*}
$$

The sign of the coefficient $\beta_{2}\left(r_{F B}\right)$ determines the direction of the flip bifurcation, and it can be calculated as follows:

$$
\begin{equation*}
\beta_{2}\left(r_{F}\right)=\frac{1}{6}\langle p, C(q, q, q)\rangle-\frac{1}{2}\left\langle p, B\left(q,(J-I)^{-1} B(q, q)\right)\right\rangle . \tag{3.26}
\end{equation*}
$$

From the above analysis, we have the following theorem:
Theorem 3.2.1. Suppose that E_{2} is a positive unique fixed point of system (1.1). If the condition given by (3.19) holds, $\beta_{2}\left(r_{F}\right) \neq 0$ and the parameter r changes its value in a small vicinity of $F B_{E_{2}}$; then, system (1.1) experiences a fip bifurcation at the fixed point E_{2}. Moreover, if $\beta_{2}\left(r_{F}\right)>0\left(\beta_{2}\left(r_{F}\right)<0\right)$), then there exists stable (unstable) period-2 orbits that bifurcate from E_{2}.

4. Chaos control

In dynamical systems, it is desirable to optimize the system according to some performance criteria and avoid chaos. In order to stabilize the chaos in the case of unstable trajectories of the systems, different control techniques are applied. Therefore, chaos control is one of the attractive topics of current studies [8-10].

Chaos control can be obtained by applying various methods to the discrete-time systems. To control the chaos in system (1.1), we chose to explore a feedback control strategy and apply the OGY method to system (1.1) in the sense of [22]. In order to apply OGY techniques to system (1.1), we rewrite it as follows:

$$
\begin{align*}
& X_{t+1}=r X_{t}\left(1-X_{t}\right)-a X_{t} Y_{t}+s=f\left(X_{t}, Y_{t}, r\right), \tag{4.1}\\
& Y_{t+1}=b X_{t} Y_{t}-d Y_{t}=g\left(X_{t}, Y_{t}, r\right),
\end{align*}
$$

where r is a controlling parameter. Furthermore, r is restricted to lie in some small interval $\left|r-r_{0}\right|<\mu$, where $\mu>0$ and r_{0} denotes the nominal value belonging to the chaotic region. We apply a stabilizing feedback control strategy in order to move the trajectory toward the desired orbit. Suppose that (X^{*}, Y^{*}) is an unstable fixed point of system (1.1) in the chaotic region produced by the emergence of NeimarkSacker bifurcation; then, system (4.1) can be approximated in the neighborhood of the unstable fixed point $\left(X^{*}, Y^{*}\right)$ by the following linear map:

$$
\left[\begin{array}{c}
X_{t+1}-X^{*} \tag{4.2}\\
Y_{t+1}-Y^{*}
\end{array}\right] \approx A\left[\begin{array}{c}
X_{t}-X^{*} \\
Y_{t}-Y^{*}
\end{array}\right]+B\left[r-r_{0}\right],
$$

where

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
\frac{\partial f\left(X^{*} Y^{*}, r_{0}\right)}{\partial g} & \frac{\partial f\left(X^{*}, Y^{*}, r_{0}\right)}{\partial \lambda^{*}} \\
\frac{\partial\left(X^{*}, Y^{*}, r_{0}\right)}{\partial X} & \frac{\partial g\left(X^{\partial}, Y^{*}, r_{0}\right)}{\partial Y}
\end{array}\right] \\
& =\left[\begin{array}{ll}
-\frac{r_{0} d^{2}+2 r_{0} d+r+s b^{2}-b d-b}{b(d+1)} & \frac{-a(d+1)}{b} \\
\frac{r_{0} b d+r_{0} b-r d^{2}-2 r_{0} d-r_{0}+s b^{2}-b d-b}{a(d+1)} & 1
\end{array}\right]
\end{aligned}
$$

and

$$
B=\left[\begin{array}{c}
\frac{\partial f\left(X^{*}, Y^{*}, r_{0}\right)}{\partial g\left(Y^{*}\right)} \\
\frac{\left.\partial g Y^{*}, r_{0}\right)}{\partial r}
\end{array}\right]=\left[\begin{array}{c}
\frac{d+1}{b}-\frac{(d+1)^{2}}{b^{2}} \\
0
\end{array}\right] .
$$

On the other hand, system (4.1) can be controlled provided that the following matrix exists:

$$
C=[B: A B]=\left[\begin{array}{cc}
\frac{d+1}{b}-\frac{(d+1)^{2}}{b^{2}} & -\frac{(b-d-1)\left(r_{0} d^{2}+2 r_{0} d+r+s b^{2}-b d-b\right)}{b^{3}} \\
0 & \frac{(b-d-1)\left(r_{0} b d+r_{0} b-r_{0} d^{2}-2 r_{0} d-r_{0}+s b^{2}-b d-b\right)}{b^{2} a}
\end{array}\right],
$$

which has a rank of 2 . We suppose that $\left[r-r_{0}\right]=-K\left[\begin{array}{c}X_{t}-X^{*} \\ Y_{t}-Y^{*}\end{array}\right]$; where $K=\left[\rho_{1} \rho_{2}\right]$, then, system (4.2) can be written as follows:

$$
\left[\begin{array}{c}
X_{t+1}-X^{*} \tag{4.3}\\
Y_{t+1}-Y^{*}
\end{array}\right] \approx[A-B K]\left[\begin{array}{c}
X_{t}-X^{*} \\
Y_{t}-Y^{*}
\end{array}\right] .
$$

The corresponding controlled system given by (1.1) can be written as

$$
\begin{align*}
X_{t+1} & =\left(r_{0}-\rho_{1}\left(X_{t}-X^{*}\right)-\rho_{2}\left(Y_{t}-Y^{*}\right)\right) X_{t}\left(1-X_{t}\right)-a X_{t} Y_{t}+s, \tag{4.4}\\
Y_{t+1} & =b X_{t} Y_{t}-d Y_{t},
\end{align*}
$$

where $-\rho_{1}\left(X_{t}-X^{*}\right)-\rho_{2}\left(Y_{t}-Y^{*}\right)$ is the control force; ρ_{1} and ρ_{2} are defined as the feedback gains. Furthermore, the fixed point $\left(X^{*}, Y^{*}\right)$ of system (4.4) is locally asymptotically stable if and only if both eigenvalues of the matrix $A-B K$ lie in an open unit disk. The Jacobian matrix $A-B K$ of the controlled system given by (4.4) can be written as follows:

$$
A-B K=\left[\begin{array}{cc}
-\frac{r_{0} d^{2}+2 r_{0} d+r+s b^{2}-b d-b}{b d d+}-\left(\frac{d+1}{b}-\frac{(d+1)^{2}}{b^{2}}\right) \rho_{1} & -\frac{(d+1)\left(a b+\rho_{2}(b-d-1)\right)}{b^{2}} \\
\frac{r_{0} b d+r_{0} b-r d^{2}-2 r_{d} d-r_{0}+s b^{2}-b d-b}{a(d+1)} & 1
\end{array}\right] .
$$

The characteristic equation of the Jacobian matrix $A-B K$ is given by

$$
\begin{equation*}
P(\lambda)=\lambda^{2}-(\operatorname{tr}(A-B K)) \lambda+\operatorname{det}(A-B K)=0 . \tag{4.5}
\end{equation*}
$$

Let λ_{1} and λ_{2} be roots of the characteristic equation given by (4.5); then,

$$
\begin{align*}
\lambda_{1}+\lambda_{2} & =\left(\frac{d+1}{b}-\frac{(d+1)^{2}}{b^{2}}\right) \rho_{1}-\frac{r_{0} d^{2}+2 r_{0} d++s b^{2}-b d-b}{b(d+1)}+1, \\
\lambda_{1} \lambda_{2} & =\left(\frac{d^{2}-b d+2 d-b+1}{b_{2}}\right) \rho_{1}+\frac{-4 r_{0} d^{2}-5 r_{0} d-2 r_{0}-b d+r_{0} b d^{2}+2 r_{0} b d+r b-r_{0} d^{3}+s b^{2} d-b d^{2}}{b(d+1} \tag{4.6}\\
& +\left(\frac{r_{0}-2 r_{0} b d^{2}+b d^{2}+3 r_{0} d^{2}-s b^{2} d+d b^{2} r_{0}+2 b d+3 r_{0} d-b^{2} d-4 b r_{0}-s b^{2}+s b^{3}+b+b^{2} r_{0}+r-b^{2}-2 r_{0} b}{a b^{2}}\right) \rho_{2}
\end{align*}
$$

are valid. In order to obtain the lines of marginal stability, we must solve the equations $\lambda_{1}= \pm 1$ and $\lambda_{1} \lambda_{2}=1$. These constraints ensure that the absolute value of λ_{1} and λ_{2} is less than 1 . Assume that $\lambda_{1} \lambda_{2}=1$; then, the second part of Eq (4.6) implies that

$$
\begin{aligned}
L_{1}:= & \left(\frac{\left(a d^{3}+(a(3-b)) d^{2}+(-2 a b+3 a) d-a b+a\right)}{b^{2} a(d+1)}\right) \rho_{1}+\left(\frac{\left(d^{4} r_{0}+\left(-2 r_{0} b+b+4 r\right) d^{3}+\left(-s b^{2}+b^{2} r_{0}+3 b+6 r_{0}-b^{2}-6 r_{0} b\right) d^{2}\right.}{b^{2} a(d+1)}\right. \\
& \left.+\frac{\left.\left(4 r_{0}-6 r_{0} b+3 b-2 s b^{2}+2 b^{2} r_{0}+s b^{3}-2 b^{2}\right) d-s b^{2}+s b^{3}+b+\left(b^{2}+1\right) r_{0}-b\left(b+2 r_{0}\right)\right)}{b^{2} a(d+1)}\right) \rho_{2} \\
& +\frac{\left(-a b^{2}+a b^{2} r_{0}-4 a b r_{0}\right) d^{2}+\left(-5 a b r_{0}+2 a b^{2} r_{0}-2 a b^{2}+a b^{3} s\right) d-a b^{2}-2 a b r_{0}+a b^{2} r_{0}}{b^{2} a(d+1)}=0 .
\end{aligned}
$$

Moreover, we suppose that $\lambda_{1}=1$; then, using Eq (4.6), we get

$$
\begin{aligned}
L_{2}:= & \left(\frac{r_{0} d^{3}+\left(-2 r_{0} b+b+3 r_{0}\right) d^{2}+\left(-s b^{2}+b^{2} r+2 b+3 r_{0}-b^{2}-4 r_{0} b\right) d-a b r_{0}+a b^{2} r_{0}+a b^{3} s-a b^{2}}{a b^{2}}\right) \rho_{2} \\
& -\frac{\rho_{2} d^{2}}{b}+\frac{\left(-a b^{2}-2 a b r_{0}+a b^{2} r_{0}\right) d}{a b^{2}}+\frac{-a b r_{0}+a b^{2} r_{0}+a b^{3} s-a b^{2}}{a b^{2}}=0 .
\end{aligned}
$$

Finally, taking $\lambda_{1}=-1$ and using Eq (4.6), we get

$$
\begin{aligned}
L_{3}:= & \left(-\frac{2\left(b d+b-d^{2}-2 d-1\right)}{b^{2}}\right) \rho_{1}+\left(\frac{s b}{a}+\frac{d\left(r_{0}-s-1\right)-s-1}{a}+\frac{-2 r_{0} d(d+2)+(d+1)^{2}-2 r_{0}}{a b}+\frac{r d\left(d^{2}+3 d+3\right)+r_{0}}{a b^{2}}\right) \rho_{2} \\
& +\frac{\left(-d^{3}+(-5+b) d^{2}+(2 b-7) d+b-3\right) r_{0}}{b(d+1)}+\frac{-b d^{2}+\left(s b^{2}+2 b\right) d-s b^{2}+3 b}{b(d+1)}=0 .
\end{aligned}
$$

Then, stable eigenvalues lie within the triangular region in the $\rho_{1} \rho_{2}$ plane bounded by the straight lines L_{1}, L_{2} and L_{3} for particular parametric values.

5. Numerical analysis

In this section, we will give three examples to illustrate the results obtained in the above sections. Computer algebra systems such as Mathematica, Maple and Matlab were used for the calculations and graphic drawings.
Example 5.1. With this example, our aim is to present numerical simulations to validate the above theoretical results by choosing r as the bifurcation parameter for system (1.1) around the fixed point E_{2}. The parameter values were taken from [23]. The Neimark-Sacker bifurcation point $r_{N S}$ was obtained as $r_{N S}=0.70339999998$. By taking the parameter values $\left(r_{N S}, a, b, d, s\right)=(0.70339999998,3.5,4.5,0.25,0.9)$, the positive fixed point of system (1.1) has been evaluated as $E_{2}=(0.2777777778,0.7852698412)$. Using these parameter values, we get the following Jacobian matrix:

$$
J_{E_{2}}\left(r_{N S}\right)=\left[\begin{array}{cc}
-2.435555555 & -0.9722222223 \\
3.533714285 & 1
\end{array}\right] .
$$

The eigenvalues were calculated to be:

$$
\lambda_{1,2}=-07177777775 \pm 0.6962722616 i .
$$

Let $q, p \in C^{2}$ be complex eigenvectors corresponding to $\lambda_{1,2}$, respectively:

$$
q \sim(-0.1970369430-0.4861111113 i, i)^{T},
$$

and

$$
p \sim(0.7161657538-1.766857144 i,-i)^{T} .
$$

To obtain the normalization $\langle p, q\rangle=1$, we can take the normalized vectors to be

$$
q=(-0.1970369430-0.4861111113 i, i)^{T}
$$

and

$$
p=\left(-2.537595197-2.31342584810^{-9} i,-1.233553221+0.4999999989 i\right)^{T} .
$$

To compute the coefficients of normal form, we can transform the fixed point E_{2} to the point $(0,0)$ by changing the following variables:

$$
\begin{aligned}
X & =x-0.2777777778, \\
Y & =y-0.7852698412 .
\end{aligned}
$$

Hence, we can compute the coefficients of the normal form of the system by using the formulas given by Eq (3.15), as follows:

$$
\begin{aligned}
g_{20}\left(r_{N S}\right) & =1.645826320-2.815555559 i, \\
g_{11}\left(r_{N S}\right) & =-2.255064549+2.187500003 i \\
g_{02}\left(r_{N S}\right) & =3.419158808-1.559444448 i, \\
g_{21}\left(r_{N S}\right) & =0 .
\end{aligned}
$$

From Eq (3.16), the critical part is then obtained as $\beta_{2}\left(r_{N S}\right)=-17.302665<0$. Therefore, the Neimark-Sacker bifurcation is supercritical and it shows the correctness of Theorem 3.1.1. The bifurcation diagram, maximum Lyapunov exponents and this phase portraits of system (1.1) are shown in Figures 2 and 3.

Figure 2. Bifurcation diagram and Maximum Lyapunov exponents for system (1.1) with values of $a=3.5, b=4.5, d=0.25$ and $s=0.9$, as well as $r \in[0.6,0.74]$ and the initial value $\left(x_{0}, y_{0}\right)=(0.26,0.8)$. (a) Bifurcation diagram for X_{t}; (b) bifurcation diagram for Y_{t}; (c) maximum Lyapunov exponents.

Figure 3. Bifurcation diagram and MLE for system (1.1) with values of $a=3.5$, $b=4.5, d=0.25$ and $r=0.7039999998$, as well as $s \in[0.8,0.94]$ and the initial value $\left(x_{0}, y_{0}\right)=(0.26,0.8)$. (a) Bifurcation diagram for X_{t}; (b) bifurcation diagram for Y_{t}; (c) maximum Lyapunov exponents.

The bifurcation diagrams in Figure 2(a) and (b) show that the stability of E_{2} happens for $r<$ 0.7039999998 , but there is a loss of stability at $r=0.7039999998$, and an attractive invariant curve appears if $r>0.7039999998$. We computed the maximum Lyapunov exponents to detect the presence of chaos in the system. The existence of chaotic regions in the parameter space is clearly visible in Figure 2(c).

Now, we present the Neimark-Sacker bifurcation diagrams and maximum Lyapunov exponents for system (1.1) by choosing the immigration parameter s instead of r as a bifurcation parameter.

The phase portraits for different values of r are displayed in Figure 4, which clearly depicts the process of how a smooth invariant circle bifurcates from the stable fixed point $E_{2}=(0.27777778,0.7852698412)$. When r exceeds 0.7039999998 , there appears a circular curve enclosing the fixed point E_{2}, and its radius becomes larger with respect to the growth of r.

Figure 4. Phase portraits of system (1.1) for different values of r.

Example 5.2. Let $\left(r_{F}, a, b, d, s\right)=(0.1953418483,2.1,2,0.1,1.7)$. The positive fixed point of system (1.1) has been evaluated as $E_{2}=(0.55,1.037529963)$. Also, the flip bifurcation point r_{F} was obtained as $r_{F}=0.1953418483$. Using these parameter values, we can obtain the following Jacobian matrix:

$$
J_{E_{2}}\left(r_{F}\right)=\left[\begin{array}{cc}
-2.198347107 & -1.155 \\
2.075059926 & 1.000000000
\end{array}\right] .
$$

The eigenvalues were calculated to be

$$
\lambda_{1}=-1, \lambda_{2}=-0.1983471077 .
$$

Let $q, p \in R^{2}$ be eigenvectors of J and the transposed matrix J^{T}, respectively, for $\lambda_{1}=-1$. Then, we have

$$
J\left(r_{F B}\right) q=-q \text { and } J^{T}\left(r_{F B}\right)=-p .
$$

Direct computation gives

$$
q \sim(-0.6939646278,0.7200090940)^{T},
$$

and

$$
p \sim(-0.86596925300,-0.5000972431)^{T} .
$$

To obtain the normalization $\langle p, q\rangle=1$, we can take the normalized vectors to be

$$
q=(-0.6939646278,0.7200090940)^{T}
$$

and

$$
p=(-3.595061266,-2.076147879)^{T} .
$$

Then, the symmetric multi-linear vector functions can be obtained as follows:

$$
\begin{gathered}
B_{1}(x, y)=-2 r_{F} x_{1} y_{1}-2.1\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
B_{2}(x, y)=2\left(x_{1} y_{2}+x_{2} y_{1}\right), \\
C_{1}(x, y, u)=0, \\
C_{2}(x, y, u)=0 .
\end{gathered}
$$

From Eq (3.26), the critical part is obtained as $\beta_{2}\left(r_{F}\right)=0.6745625580>0$. Therefore, unique and stable period-2 orbits bifurcate from E_{2}, and it shows the correctness of Theorem 3.2.1. The bifurcation diagram, maximum Lyapunov exponents and this phase portraits of system (1.1) are shown in Figures 5 and 6.

From Figure 5(a) and (b), we see that the fixed point $E_{2}=(0.55,1.037529963)$ is stable for $r<$ 0.1953418483 , and loses its stability at the flip bifurcation parameter value $r=0.1953418483$. We also observe that, if $r>0.1953418483$, the flip bifurcation giving a 2-periodic orbit occurs. Moreover, the maximum Lyapunov exponents were computed, and the existence of chaotic regions in the parameter space is clearly visible in Figure 5(c).

We present the flip bifurcation diagrams and maximum Lyapunov exponents for system (1.1), which were obtained by choosing the immigration parameter s instead of r as a bifurcation parameter.

Figure 5. Bifurcation diagram and MLE for system (1.1) with values of $a=2.1, b=2, d=0.1$ and $s=1.7$, as well as the initial value $\left(x_{0}, y_{0}\right)=(0.91,0.61)$. (a) Bifurcation diagram for X_{t}; (b) bifurcation diagram for Y_{t}; (c) maximum Lyapunov exponents.

Figure 6. Bifurcation diagram and MLE for system (1.1) with values of $a=2.1, b=2, d=0.1$ and $r=0.1953418483$, and as well as the initial value $\left(x_{0}, y_{0}\right)=(0.54,1.02)$. (a) Bifurcation diagram for X_{t}; (b) bifurcation diagram for Y_{t}; (c) maximum Lyapunov exponents.

In Figure 7, we present the phase portraits of system (1.1) for different values of r.

Figure 7. Phase portraits of system (1.1) for different values of r.

Example 5.3. In order to discuss the OGY feedback control method for system (1.1), we take $r_{0}=$ 0.73 and $(a, b, d, s)=(3.5,4.5,0.25,0.9)$. In this case, system (1.1) has unique positive fixed point $\left(X^{*}, Y^{*}\right)=(0.2777777778,0.7906349207)$, which is unstable. Then, the corresponding controlled system is given by

$$
\begin{align*}
& X_{n+1}=\left(0.73-\rho_{1}\left(X_{n}-0.2777777778\right)-\rho_{2}\left(Y_{n}-0.7906349207\right)\right) X_{n}\left(1-X_{n}\right)-a X_{n} Y_{n}+s, \tag{5.1}\\
& Y_{n+1}=b X_{n} Y_{n}-d Y_{n},
\end{align*}
$$

where $K=\left[\begin{array}{ll}\rho_{1} & \rho_{2}\end{array}\right]$ is a matrix and $\left(X^{*}, Y^{*}\right)=(0.2777777778,0.7906349207)$ is an unstable fixed point of system (1.1). We have

$$
\begin{gathered}
A=\left[\begin{array}{ll}
-2.442777778 & -0.9722222222 \\
3.557857143 & 1
\end{array}\right] \\
B=\left[\begin{array}{l}
0.2006172840 \\
0
\end{array}\right]
\end{gathered}
$$

and

$$
\begin{aligned}
C & =[B: A B] \\
& =\left[\begin{array}{ll}
0.2006172840 & -0.4900634432 \\
0 & 0.7137676369
\end{array}\right] .
\end{aligned}
$$

Then, it is easy to check that the rank of Matrix C is 2 . Therefore, system (5.1) is controllable. Then, the Jacobian matrix $A-B K$ of the controlled system given by (5.1) is

$$
A-B K=\left[\begin{array}{ll}
-2.442777778-0.2006172840 \rho_{1} & 0.9722222222-0.2006172840 \rho_{2} \tag{5.2}\\
3.557857153 & 1
\end{array}\right] .
$$

Moreover, the lines L_{1}, L_{2} and L_{3} of marginal stability are given by

$$
\begin{aligned}
& L_{1}=0.01625-0.2006172840 \rho_{1}+0.7137676369 \rho 2=0 \\
& L_{2}=3.459027778+0.7137676369 \rho_{2}=0 \\
& L_{3}=0.573472222-0.4012345680 \rho_{1}+0.7137676369 \rho_{2}=0
\end{aligned}
$$

Then, the stable triangular region bounded by the marginal lines L_{1}, L_{2} and L_{3} for the controlled system given by (5.1) is shown in Figure 8.

Figure 8. Triangular stability region bounded by $L_{1}, \quad L_{2}$ and L_{3} for the controlled system given by (5.1).

6. Conclusions

Since most predator-prey systems in the wild are not isolated, it is important to consider the effects of the presence of some number of immigrants. The immigration effect of the predator-prey system has rarely been studied in the literature. Therefore, we considered a discrete-time predator-prey system with a constant-rate immigration of the prey and investigated the dynamics of modified system (1.1) around coexistence fixed point in this paper.

In the case of $s=0$, we obtained the trivial fixed point, non-predatory fixed point for $r>1$ and coexistence fixed point for $r>\frac{b}{b-d-1}$. In the case of $s \neq 0$, the origin is not a fixed point. System (1.1) has two fixed points, namely, E_{1} and E_{2}. Moreover, simple calculations showed that, if $(d+1) b(r-1)+s b^{2}>r(d+1)^{2}$, then system (1.1) has a unique positive fixed point E_{2}. As r is varied, the system exhibits several complicated dynamical behaviors, including the emergence of Neimark-Sacker and flip bifurcations, an invariant circle, a period-2 orbit and chaotic sets. We presented some figures to explain the theoretical analysis in Section 4. In Figure 2 and Figure 5, the bifurcation, maximum Lyapunov exponents and phase portraits are given for some parameter values. Figure 2 and Figure 5 show that, when the bifurcation parameter r passes a critical bifurcation value, the stability of the coexistence fixed point of the system changes from stable to unstable. In Figure 2(c) and Figure 5(c), the computation of the maximum Lyapunov exponents confirm the presence of chaotic behavior in the system. In Figure 4 and Figure 7, the phase portraits of the system for different values of the r parameter are plotted. Moreover, the Neimark-Sacker bifurcation has been successfully controlled with an OGY control strategy. From our numerical investigation, it is clear that an OGY method based on a feedback control strategy can restore the stability. This control method is effective in order to advance or completely eliminate the chaos due to the emergence of Neimark-Sacker bifurcation. In
this study, because of consistency with the biological facts, we used the same parameter values that were used in [23]. As a final point, we can say that the parameter r has a strong effect on the stability of system (1.1) for the control of two populations.

On the other hand, the biological meaning of the term s being included in the system is that a small number of immigrants is added persistently to the prey population in each generation. A very small immigration into the system occurs as a stabilizing factor for the system. A positive immigration factor is enough to change the quality of the dynamics of the system. Specially, adding the term s contributes to asymptotic stability. This means that adding a small immigration s may imply that cyclic population can be stabilized.

When the immigration effect is applied to a small number of species, the level of the species increases significantly. In the same way, when the harvesting effect is applied to a large number of species, the level of the species is significantly reduced [38]. Thanks to these two external factors, all species in the ecosystem can be preserved to stabilize the unstable system. In a future study, we plan to explore the effects of these factors on the population model.

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. A. J. Lotka, Elements of mathematical biology, Williams \& Wilkins, Baltimore, 1925.
2. V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Memoire della R. Accad. Nazionale dei Lincei, 1926.
3. V. Krivan, Prey-predator models, In: S. E. Jørgensen, B. D. Fath, Encyclopedia of ecology, 4 (2008), 2929-2940.
4. U. Ufuktepe, S. Kapçak, O. Akman, Stability analysis of the Beddington model with Allee effect, Appl. Math. Inf. Sci., 9 (2015), 603-608.
5. U. Ufuktepe, S. Kapcak, Generalized Beddington model with the host subject to the Allee effect, Open Phys., 13 (2015), 428-434. https://doi.org/10.1515/phys-2015-0055
6. H. I. McCallum, Effects of immigration on chaotic population dynamics, J. Theor. Biol., 154 (1992), 277-284. https://doi.org/10.1016/S0022-5193(05)80170-5
7. S. Işık, A study of stability and bifurcation analysis in discrete-time predatorprey system involving the Allee effect, Int. J. Biomath., 12 (2019), 1950011. https://doi.org/10.1142/S1793524519500116
8. Q. Din, Neimark-Sacker bifurcation and chaos control in Hassel-Varley model, J. Differ. Equ. Appl., 23 (2016), 741-762. https://doi.org/10.1080/10236198.2016.1277213
9. Q. Din, Complexity and choas control in a discrete-time prey-predator model, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 113-134. https://doi.org/10.1016/j.cnsns.2017.01.025
10. Q. Din, Controlling chaos in a discrete-time prey-predator model with Allee effects, Int. J. Dyn. Control, 6 (2018), 858-872. https://doi.org/10.1007/s40435-017-0347-1
11. O. A. Gumus, F. Kangalgil, Dynamics of a host-parasite model connected with immigration, New Trends Math. Sci., 5 (2017), 332-339.
12. R. D. Holt, Immigration and the dynamics of peripheral populations, Advances in Herpetology and Evolutionary Biology, Harvard University, Cambridge, 1983.
13. S. Kartal, Mathematical modeling and analysis of tumor-immune system interastion by using Lotka-Volterra predator-prey like model with piecewise constant arguments, Period. Eng. Nat. Sci., 2 (2014), 7-12. http://dx.doi.org/10.21533/pen.v2i1.36
14. S. Kartal, Dynamics of a plant-herbivore model with differential-difference equations, Cogent Math., 3 (2016), 1136198. https://doi.org/10.1080/23311835.2015.1136198
15. S. Kartal, Flip and Neimark-Sacker bifurcation in a differential equation with piecewise constant arguments model, J. Differ. Equ. Appl., 23 (2017), 763-778. https://doi.org/10.1080/10236198.2016.1277214
16. S. Kartal, F. Gurcan, Global behaviour of a predator-prey like model with piecewise constant arguments, J. Biol. Dyn., 9 (2015), 159-171. https://doi.org/10.1080/17513758.2015.1049225
17. R. Yang, J. Dan, W. Wenlog, A diffusive predator-prey model with generalist predator and time delay, AIMS Math., 7 (2022), 4574-4591. https://doi.org/10.3934/math. 2022255
18. A. Q. Khan, Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model, SpringerPlus, 5 (2016), 126. https://doi.org/10.1186/s40064-015-1618-y
19. A. Q. Khan, Stability and Neimark-Sacker bifurcation of a ratio-dependence predator-prey model, Math. Methods Appl. Sci., 40 (2017), 4109-4117. https://doi.org/10.1002/mma. 4290
20. R. K. Ghaziani, W. Govaerts, C. Sonck, Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response, Nonlinear Anal.: Real World Appl., 13 (2012), 14511465. https://doi.org/10.1016/j.nonrwa.2011.11.009
21. Y. A. Kuznetsov, Elements of applied bifurcation theory, New York: Springer-Verlag, 1998.
22. E. Ott, C. Grebogi, J. A. Yorke, Controlling choas, Phys. Rev. Lett., 64 (1990), 1196-1199. https://doi.org/10.1103/PhysRevLett.64.1196
23. S. M. S. Rana, Bifurcation and complex dynamics of a discrete-time predator-prey system, Comput. Ecol. Software, 5 (2015), 187-200.
24. S. M. S. Rana, U. Kulsum, Bifurcation analysis and chaos control in a discrete-time predator-prey system of Leslie type with simplified Holling type IV functional response, Discrete Dyn. Nature Soc., 2017 (2017), 9705985. https://doi.org/10.1155/2017/9705985
25. S. M. S. Rana, Bifurcation and complex dynamics of a discrete-time predator-prey system involving roup defense, Comput. Ecol. Software, 5 (2015), 222-238.
26. J. Sugie, Y. Saito, Uniqueness of limit cycles in a Rosenzweig-Macarthur model with prey immigration, SIAM J. Appl. Math., 72 (2012), 299-316. https://doi.org/10.1137/11084008X
27. G. Zhu, J. Wei, Global stability and bifurcation analysis of a delayed predator-prey system with prey immigration, Electron. J. Qual. Theory Differ. Equ., 13 (2016), 1-20.
28. I. Seval, F. Kangalgil, On the analysis of stability, bifurcation, and chaos control of discrete-time predator-prey model with Allee effect on predator, Hacettepe J. Math. Stat., 51 (2022), 404-420.
29. M. A. Stephano, I. H. Jung, Effects of refuge prey on stability of the prey-predator model subject to immigrants: A mathematical modelling approach, Tanzania J. Sci., 47 (2021), 1376-1391.
30. P. Rohani, O. Miramontes, Immigration and the persistence of chaos in population models, J. Theor. Biol., 175 (1995), 203-206. https://doi.org/10.1006/jtbi.1995.0133
31. G. D. Ruxton, Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles, Proc. Royal Soc. London B, 256 (1994), 189-193. https://doi.org/10.1098/rspb.1994.0069
32. L. Stone, D. Hart, Effects of immigration on dynamics of simple population models, Theor. Popul. Biol., 55 (1999), 227-234. https://doi.org/10.1006/tpbi.1998.1393
33. F. Kangalgil, N. Topsakal, Stability analysis and flip bifurcation of a discrete-time prey-predator model with predator immigration, Asian J. Math. Comput. Res., 27 (2020), 1-10.
34. F. Kangalgil, F. Gümüşboğa, Period-doubling bifurcation and stability in a two dimensional discrete prey-predator model with Allee effect and immigration parameter on prey, Cumhuriyet Sci. J., 43 (2022), 88-97. https://doi.org/10.17776/csj. 1026330
35. L. Stone, Period-doubling reversals and chaos in simple ecological model, Nature, 365 (1993), 617-620. https://doi.org/10.1038/365617a0
36. T. Tahara, M. K. A. Gavina, T. Kawano, J. M. Tubay, J. F. Rabajante, H. Ito, et al., Asymptotic stability of a modified Lotka-Volterra model with small immigrations, Sci. Rep., 8 (2018), 7029. https://doi.org/10.1038/s41598-018-25436-2
37. S. Wiggins, Introduction to applied nonlinear dynamical system and chaos, New York: SpringerVerlag, 2003.
38. G. P. Neverova, O. L. Zhnadova, B. Ghosh, E. Y Frisman, Dynamics of a discrete-time stagestructured predator-prey system with Holling type II response function, Nonlinear Dyn., 98 (2019), 427-446. https://doi.org/10.1007/s11071-019-05202-3
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
