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1. Introduction

Predator-prey interaction is one of the most important subjects in the bio-mathematical literature.
Therefore, many ecologists, mathematicians and biologists have investigated the dynamical behavior
of the predator-prey system describing the interaction between prey and predator. The Lotka-Volterra
predator-prey system, which is a fundamental population model, was introduced by Lotka [1] and
Voltera [2]. The Lotka-Volterra model assumes that “the prey consumption rate by a predator is
directly proportional to the prey abundance. This means that predator feeding is limited only by the
amount of prey in the environment. While this may be realistic at low prey densities, it is certainly an
unrealistic assumption at high prey densities where predators are limited, for example, by time and
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digestive constraints [3].” Since this model has neglected many real situations and complexities, it has
been modified over the years by numerous researchers to ensure an accurate explanation and better
understanding [3–23]. Additionally, many ecological concepts, such as diffusion, functional
responses, time delays and the Allee effect, have been added to the predator-prey system to facilitate a
more accurate description [7, 13–16, 20, 23–28]. It is known to all that one of the important
modifications to the system is immigration. The concept of immigration, which affects the population
growth rate, is an external factor expressed for an organism that establishes a particular habitat. Both
immigration and migration happen when there is shortage of basic needs due to human activities.
Especially, predator-prey interactions may be disrupted due to different reactions to climate change.
Sometimes, regular and seasonal migration and immigration drive living organisms to adopt traveling
and nomadic lives [29]. Additionally, the process of immigration is a significant phenomenon that
helps the ecosystem to achieve a state of stability. Specially, discrete-time systems that take into
account seasonal events, such as immigration are more realistic [6, 11, 12, 26, 27, 30–35]. There have
also been many studies on the role of immigration and its impact on population dynamics. Sugie
et al. studied the existence and uniqueness of limit cycles in a predator-prey system with constant
immigration in [26]. Zhu et al. investigated the local and global stability in a delayed predator-prey
system with constant-rate immigration [27]. Also, they showed the existence of the global Hopf
bifurcation. Tahara et al. analyzed the asymptotic stability of the predator-prey systems by adding an
immigration factor to the prey and predator populations in a classical Lotka-Volterra system [36].

Rana [23] investigated the dynamics of a discrete-time predator-prey system of Holling I type. The
author analyzed the existence and local stability of positive fixed points in the system and showed
that the system undergoes flip and Neimark-Sacker bifurcations. Also, Rana observed that, when the
prey is in a chaotic dynamic state, the predator can tend to extinction or to a stable equilibrium. It is
important to consider the effects of the presence of some number of immigrants because most predator-
prey systems in nature are not isolated. The immigration effect of the predator-prey system has been
rarely studied in literature. Therefore, we will investigate a discrete-time predator-prey system with
constant immigration of the prey population, as follows:

Xt+1 = rXt(1 − Xt) − aXtYt + s (1.1)
Yt+1 = bXtYt − dYt,

where Xt and Yt represent the population densities of the prey and predator at time t, respectively. r
is the intrinsic growth rate of the prey, a is the per capita searching efficiency of the predator, b is the
conversion rate of the predator, d is the death rate of the predator and s is the prey immigration rate. All
parameters, r, a, b, d and s, are positive constants. The predator-prey system given by (1.1) assumes
that the prey grows logistically with an intrinsic growth rate r and a carrying capacity of one in the
absence of predation.

The contributions of this study are given as follows:
(1) The intended system consists of two interacting species, where one species is the food source for

the other. In this paper, we have analyzed the immigration effect on the prey population in the system.
(2) The stability of the considered system is analyzed for possible fixed points.
(3) It has been shown that the proposed system undergoes both flip and Neimark-Sacker

bifurcations.
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(4) The OGY method has been applied to the system to control the chaos due to the emergence of
the Neimark-Sacker bifurcation.

(5) Some numerical examples have been presented for our discrete-time predator-prey system with
immigration in order to support the accuracy of our theoretical results.

Our task is to discuss the dynamics of a modified discrete-time predator-prey system with
immigration of the prey population. The rest of the paper is organized as follows. In Section 2, the
existence conditions and stability of the fixed points of the system are investigated. In Section 3,
Neimark-Sacker and flip bifurcation analysis is explored by choosing r as a bifurcation parameter.
Next, the directions of both Neimark-Sacker and flip bifurcations are obtained by using normal form
theory [21, 37]. In Section 4, an OGY feedback control strategy is implemented to control the chaos
due to the emergence of Neimark-Sacker bifurcation. In Section 5, some numerical simulations are
demonstrated out to support the accuracy of our theoretical finding. In the end, a brief conclusion is
given.

2. Existence and stability of the fixed points

In this section, we will examine the existence and stability of the fixed points of a discrete system
with immigration of the prey in the close first quadrant R2

+. To find the fixed points of the system given
by (1.1), we can rewrite system (1.1) in the following form:

X∗ = rX∗(1 − X∗) − aX∗Y∗ + s (2.1)
Y∗ = bX∗Y∗ − dY∗.

Solving the algebraic equation, we get that system (1.1) has the following fixed points:

E1
=

(
(r−1)+

√
(r−1)2+4rs
2r , 0

)
: Survival of Population X only, and

E2 =
(

d+1
b ,

(d+1)b(r−1)−r(d+1)2+sb2

ab(d+1)

)
: Coexistence of all populations.

We have obtained the following lemma regarding the existence of the fixed points of system (1.1).

Lemma 2.1. For system (1.1), the following statements hold true:

i) System (1.1) always has an axial positive fixed point E1 =

(
(r−1)+

√
(r−1)2+4rs
2r , 0

)
.

ii) System (1.1) has a unique positive fixed point E2 =
(

d+1
b ,

(d+1)b(r−1)−r(d+1)2+sb2

ab(d+1)

)
if (d+1)b(r−1)+ sb2 >

r(d + 1)2.

Now, we investigate the stability of the coexistence fixed point E2 of system (1.1) only. The Jacobian
matrix of system (1.1) evaluated at the unique positive fixed point E2 =

(
d+1

b ,
(d+1)b(r−1)−r(d+1)2+sb2

ab(d+1)

)
is

given by

J(E2) =

 (d+1)(b−r(d+1))−sb2

b(1+d) −
a(d+1)

b
(d+1)b(r−1)−r(d+1)2+sb2

a(d+1) 1

 .
Then, the characteristic polynomial of J(E2) is given by
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F(λ) = λ2 +

(
(d + 1)2r − 2b(d + 1) + sb2

(d + 1)b

)
λ (2.2)

+

(
(d + 1) −

d(d2 + 4d + 5) − 2
(d + 1)b

)
)

r +
sbd

(d + 1)
− d.

In order to analyze the dynamics of the unique positive fixed point E2 =
(

d+1
b ,

(d+1)b(r−1)−r(d+1)2+sb2

ab(d+1)

)
of

system (1.1), we present Lemma 2.2 [8, 18, 19]:

Lemma 2.2. Let F(λ) = λ2+Bλ+C, where B and C are two real constants, and let F(1) > 0. Suppose
λ1 and λ2 are two roots of F (λ) = 0. Then, the following statements hold true:
i) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1,
ii) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1,
iii) ( |λ1| < 1 and |λ2| > 1) or ( |λ1| > 1 and |λ2| < 1) if and only if F(−1) < 0,
iv) λ1 and λ2 are a pair of conjugate complex roots, and |λ1| = |λ2| = 1 if and only if B2 − 4C < 0 and
C = 1,
v) λ1 = −1 and |λ2| , 1 if and only if F(−1) = 0 and C , ±1.

Assume that λ1 and λ2 are the roots of the characteristic polynomial at the positive fixed point (x, y).
Then, the point (x, y) is called a sink if |λ1| < 1 and |λ2| < 1 and it is locally asymptotically stable. (x, y)
is known as a source or repeller if |λ1| > 1 and |λ2| > 1; thus, a source is always unstable. The point
(x, y) is called a saddle point if (|λ1| < 1 and |λ2| > 1) or ( |λ1| > 1 and |λ2| < 1). And, (x, y) is called
non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Now, we will discuss the topological classification of the unique positive fixed point(
d+1

b ,
(d+1)b(r−1)−r(d+1)2+sb2

ab(d+1)

)
of system (1.1), and we will apply Lemma 2.2 to prove the following lemma.

From Eq (2.2), we can obtain F(1) = (d+1)b(r−1)−r(d+1)2+sb2

b > 0 if (d + 1)b(r − 1) + sb2 > r(d + 1)2.

Lemma 2.3. Assume that (d + 1)b(r − 1) + sb2 > r(d + 1)2; then, for a unique positive fixed point E2

of system (1.1), the following holds true.
i) E2 is a sink-type fixed point if the following conditions hold:

(1 + d)(−bd + (−2 + b − d)(1 + d)r) + b2ds > 0

and
(1 + d)(−bd + (−2 + b − d)(1 + d)r) + b2ds < b(1 + d).

ii) E2 is a source (repeller)-type fixed point if the following conditions hold:

(1 + d)(−bd + (−2 + b − d)(1 + d)r) + b2ds > 0

and
(1 + d)(−bd + (−2 + b − d)(1 + d)r) + b2ds > b(1 + d).

iii) E2 is a saddle-type fixed point if the following condition holds:

(1 + d)(−bd + (−2 + b − d)(1 + d)r) + b2ds < 0.

iv) Assume that λ1 and λ2 are the roots of Eq (2.2); then λ1 = −1 and |λ2| , 1 if and only if r = r1 and

r , r2, r2 +
2b

d2−bd+3d−b+2 .
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v) The roots of Eq (2.2) are complex with modules of one if and only if

r = r2 and −sb2

(d+1)2 < r2 <
(4(d+1)−sb)b

(d+1)2 ,

where r1 = −
(2d+3−d2−sb(1−d))b

(d+1)2(b−d−3) and r2 =
((d+1)2−sbd)b

(d+1)2(b−(d+2)) .

Example 2.1. For the parameter values a=3.5, b=4.5, d=0.25, s=0.75, r=0.5 and the initial condition
(x0, y0) = (0.25, 0.6), the positive unique fixed point of system (1.1) is obtained as
(x∗, y∗) = (0.27777778, 0.58888889). Figure 1 shows that the fixed point (x∗, y∗) of system (1.1) is
locally asymptotically stable, with x(t) and y(t) being the prey and predator populations at time t,
respectively.

Figure 1. Stable fixed points for system (1.1) for a=3.5, b=4.5, d=0.25, s=0.75, r=0.5 and
the initial condition (x0, y0) = (0.25, 0.6).

3. Bifurcation analysis

In this section, we will investigate flip and Neimark-Sacker bifurcations of the coexistence fixed
point E2 by using the bifurcation theory in the sense of [15].

3.1. Neimark-Sacker bifurcation at the point E2

In this subsection, we investigate the existence conditions for the Neimark-Sacker bifurcation
around coexistence fixed point by choosing the parameter r as a bifurcation parameter. Furthermore,
the direction of the Neimark-Sacker bifurcation is given by applying bifurcation theory.

When the term (v) of Lemma 2.3 holds, we say that two eigenvalues of J (E2) are a pair of complex
conjugates with a modulus of one. Therefore, we can write the following set:
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NS BE2={
(r, a, b, d, s) ∈ R5

+ : (d + 1)b(r − 1) + sb2 > r(d + 1)2, rNS = r2,
−sb2

(d + 1)2 < r2 <
(4(d + 1) − sb)b

(d + 1)2

}
,

(3.1)
where r2 =

((d+1)2−sbd)b
(d+1)2(b−(d+2)) .

The Neimark-Sacker bifurcation appears when the parameter r varies in a small neigborhood of
NS BE2 . The eigenvalues of system (1.1) under these conditions are obtained by

λ, λ =
(−M − T + bK) ± i

√
Q

2bK
, (3.2)

where

M = sb2 − bd − b,T = rd2 + 2rd + r,K = d + 1,
Q = −(M + T )2 + 2bK(M + T ) + b2K2(4Kr − 1) + 4bK2(M − T ).

It is easy to see that
|λ| =

∣∣∣λ∣∣∣ = 1. (3.3)

From the transversality condition, we get

d |λi (r)|
dr

∣∣∣∣∣
r=rNS

= K −
d2(d + 4)(5d − 2)

Kb
, 0, i = 1, 2. (3.4)

If the nonresonance condition B = −trJE2 (rNS ) , 0,−1, then

r2 , bα, b(α +
1
K

), (3.5)

which obviously satisfies
λk (rNS ) , 1 for k = 1, 2, 3, 4, (3.6)

where α = 2K−sb
K2 . Assume that q, p ∈ C2 are two eigenvectors of J

(
NS BE2

)
and the transposed matrix

JT (
NS BE2

)
corresponding to λ and λ, respectively. We have

q ∼
(
1,−

1
2K2a

(M + T + bK + i
√

Q)
)T

(3.7)

and

p ∼
(

1
2K2a

(M + T + bK + i
√

Q), 1
)T

. (3.8)

To achieve the normalization < p, q >= 1, where < ., . > means the standard scalar product in C2, we
can set the normalized vectors as

q =
(
1,− 1

2K2a (M + T + bK + i
√

Q)
)T

p =
(

1
2 −

i(M+T+bK)
2
√

Q
, −iK2a
√

Q

)T
.

(3.9)
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From Taylor expansion, substituting xt + x∗ into Xt, and yt + y∗ into Yt, the fixed point E2 of
system (1.1) results in the origin (0, 0) , and system (1.1) converts to(

xt

yt

)
→ J (E∗)

(
xt

yt

)
+

(
F1 (xt, yt)
F2 (xt, yt)

)
, (3.10)

where J (E∗) = J(x∗, y∗), and

F1 (xt, yt) = −rx2
t − aytxt + O

(
X4

t

)
,

F2 (xt, yt) = bxtyt + O
(
X4

t

)
,

where Xt = (xt, yt)T . System (3.10) can be expressed as(
xt+1

yt+1

)
= J (E∗)

(
xt

yt

)
+

1
2

B (xt, xt) +
1
6

C (xt, xt, xt) + O
(
x4

t

)
, (3.11)

where B (x, y) =
(

B1 (x, y)
B2 (x, y)

)
and C (x, y, u) =

(
C1 (x, y, u)
C2 (x, y, u)

)
are symmetric multi-linear vector

functions of x, y, u ∈ R2.We define the functions B (x, y) and C (x, y, u) by the following formulas:

B1 (x, y) =
2∑

j,k=1

∂2F1
∂ξ j∂ξk

∣∣∣∣
ξ=0

x jyk

= −2rx1y1 − ax1y2 − ax2y1,

B2 (x, y)
=

2∑
j,k=1

∂2F2
∂ξ j∂ξk

∣∣∣∣
ξ=0

x jyk = bx1y2 + bx2y1,

C1 (x, y, u) 2
=

∑
j,k,l=1

∂3F1
∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x jykul = 0,

C2

(
x, y, u

)
=

2∑
j,k,l=1

∂3F2
∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x jykul = 0.

(3.12)

For r near to rNS and z ∈ C, we use the transformation X = zq + zq; then, system (3.11) becomes

z→ λ (r) z + g (z, z, r) , (3.13)

where λ (r) = (1 + φ (r)) ei arctan(r), with φ(rNS ) = 0, and g (z, z, r) is a smooth complex-valued function.
After Taylor expression of g with respect to (z, z) , we obtain

g (z, z, r) =
∑

k+l≥2

1
k!l!

gkl (r) zkzl, with gkl ∈ k, l = 0, 1, .... (3.14)

Given the symmetric multi-linear vector functions, the Taylor coefficients gkl can be expressed by the
following formulas:
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g20 (rNS ) = < p, B (q, q) >,
g11 (rNS ) = < p, B (q, q) >, (3.15)
g02 (rNS ) = < p, B (q, q) >,
g21 (rNS ) = < p,C (q, q, q) > .

The coefficient β2(rNS ), which determines the direction of the appearance of the invariant curve in a
generic system exhibiting the Neimark-Sacker bifurcation, can be calculated as follows:

β2 (rNS ) = Re
(
e−i arctan(rNS )

2
g21

)
(3.16)

−Re


(
1 − 2ei arctan(rNS )

)
e−2i arctan(rNS )

2
(
1 − ei arctan(rNS )) g20g11


−

1
2
|g11|

2
−

1
4
|g02|

2 ,

where ei arctan(rNS ) = λ (rNS ) .
From the above analysis, we have the following theorem:

Theorem 3.1.1. Suppose that E2 is a positive unique fixed point of system (1.1). If Eq (3.5) holds,
β2 (rNS ) , 0 and the parameter r changes its value in a small vicinity of NS BE2; then, system (1.1)
passes through a Neimark-Sacker bifurcation at the fixed point E2. Moreover, if β2 (rNS ) < 0
(β2 (rNS ) > 0) , then the Neimark-Sacker bifurcation of System (1.1) at r = rNS is supercritical
(subcritical) and there exists a unique closed invariant curve bifurcation from E2 for r = rNS , which is
attracting (repelling).

3.2. Flip bifurcation at the point E2

In this subsection, we will discuss the existence conditions for and direction of the flip bifurcation
at a unique positive fixed point E2 of system (1.1) by choosing r as a bifurcation parameter.

If Lemma 2.3 (iv) holds, we see that one of the eigenvalues of J(E2) is −1 and the other eigenvalue
is neither 1 nor −1. Therefore, there can be a flip bifurcation of the fixed point E2 if the parameter r
varies in the small neighborhood of FBE2 , where

FBE2 =

{
(r, a, b, d, s) ∈ R5

+ : (d + 1)b(r − 1) + sb2 > r(d + 1)2, r = rF = r1 , r , r2, r2 +
2b

d2 − bd + 3d − b + 2

}
. (3.17)

The eigenvalues of system (1.1) under these conditions are given by

λ1(r1) = −1, λ2(r1) = −
b2s + 4d2 − 2bs − 3b − 2bds + 10d + 6 − 3bd

−d2 − 4d + bd + b − 3
. (3.18)

In order to be λ2(r1) , ±1, we have
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bs(b − 2(1 + d)) , −3d2 + 2b − 6d + 2bd − 3, (3.19)
, −5d2 + 4b − 14d + 4bd − 9.

Suppose that q, p ∈ R2 are two eigenvectors of J
(
FBE2

)
and the transposed matrix JT (

FBE2

)
,

respectively, for λ1(r1) = −1. Then, we have

J
(
FBE2

)
q = −q and JT (

FBE2

)
= −p.

By direct calculation, we obtain

q ∼
(
1,−

(3d2 + 6d − 2bd − 2bds + 3 + b2 − 2bs − 2b)b
a(−7d − 5d2 + b − d3 + 2bd + bd2 − 3)

)T

(3.20)

and

p ∼
(
1,

a(1 + d)
2b

)T

. (3.21)

To achieve the normalization < p, q >= 1, where <, > means the standard scalar product in R2, we can
write the normalized vectors p and q as

q =
(
1,− (3d2+6d−2bd−2bds+3+b2−2bs−2b)b

a(−7d−5d2+b−d3+2bd+bd2−3)

)T
,

p =
(

2(−d2−4d+bd+b−3)
5d2+14d−4bd−2bds+b2 s−4b−2bs+9 ,−

a(1+d)(−d2−4d+bd+b−3)
b(5d2+14d−4bd−2bds+b2 s−4b−2bs+9)

)T
.

(3.22)

Assume that xt = Xt − x∗, yt = Yt − y∗ and J (E∗) = J(x∗, y∗). We transform the fixed point E2 of
system (1.1) into the origin (0, 0) . By Taylor expansion, system (1.1) can be taken as(

xt

yt

)
→ J (E∗)

(
xt

yt

)
+

(
F1 (xt, yt)
F2 (xt, yt)

)
, (3.23)

where

F1 (xt, yt) = −rF x2
t − aytxt + O

(
X4

t

)
,

F2 (xt, yt) = bxtyt + O
(
X4

t

)
,

where Xt = (xt, yt)T . System (3.23) can be expressed as(
xt+1

yt+1

)
= J (E∗)

(
xt

yt

)
+

1
2

B (xt, xt) +
1
6

C (xt, xt, xt) + O
(
x4

t

)
, (3.24)

where B (x, y) =
(

B1 (x, y)
B2 (x, y)

)
and C (x, y, u) =

(
C1 (x, y, u)
C2 (x, y, u)

)
are symmetric multi-linear vector

functions of x, y, u ∈ R2 that are defined as follows:
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B1 (x, y) =
2∑

j,k=1

∂2F1
∂ξ j∂ξk

∣∣∣∣
ξ=0

x jyk

= −2rF x1y1 − ax1y2 − ax2y1,

B2 (x, y)
=

2∑
j,k=1

∂2F2
∂ξ j∂ξk

∣∣∣∣
ξ=0

x jyk = bx1y2 + bx2y1,

C1 (x, y, u) 2
=

∑
j,k,l=1

∂3F1
∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x jykul = 0,

C2

(
x, y, u

)
=

2∑
j,k,l=1

∂3F2
∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x jykul = 0.

(3.25)

The sign of the coefficient β2(rFB) determines the direction of the flip bifurcation, and it can be
calculated as follows:

β2 (rF) =
1
6
⟨p,C(q, q, q)⟩ −

1
2

〈
p, B(q, (J − I)−1B(q, q))

〉
. (3.26)

From the above analysis, we have the following theorem:

Theorem 3.2.1. Suppose that E2 is a positive unique fixed point of system (1.1). If the condition given
by (3.19) holds, β2 (rF) , 0 and the parameter r changes its value in a small vicinity of FBE2; then,
system (1.1) experiences a flip bifurcation at the fixed point E2.Moreover, if β2 (rF) > 0 (β2 (rF) < 0)),
then there exists stable (unstable) period-2 orbits that bifurcate from E2.

4. Chaos control

In dynamical systems, it is desirable to optimize the system according to some performance criteria
and avoid chaos. In order to stabilize the chaos in the case of unstable trajectories of the systems,
different control techniques are applied. Therefore, chaos control is one of the attractive topics of
current studies [8–10].

Chaos control can be obtained by applying various methods to the discrete-time systems. To control
the chaos in system (1.1), we chose to explore a feedback control strategy and apply the OGY method
to system (1.1) in the sense of [22]. In order to apply OGY techniques to system (1.1), we rewrite it as
follows:

Xt+1 = rXt(1 − Xt) − aXtYt + s = f (Xt,Yt, r) ,
Yt+1 = bXtYt − dYt = g (Xt,Yt, r) ,

(4.1)

where r is a controlling parameter. Furthermore, r is restricted to lie in some small interval |r − r0| < µ,

where µ > 0 and r0 denotes the nominal value belonging to the chaotic region. We apply a stabilizing
feedback control strategy in order to move the trajectory toward the desired orbit. Suppose that (X∗,Y∗)
is an unstable fixed point of system (1.1) in the chaotic region produced by the emergence of Neimark-
Sacker bifurcation; then, system (4.1) can be approximated in the neighborhood of the unstable fixed
point (X∗,Y∗) by the following linear map:[

Xt+1 − X∗

Yt+1 − Y∗

]
≈ A

[
Xt − X∗

Yt − Y∗

]
+ B [r − r0] , (4.2)
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where

A =

[ ∂ f (X∗,Y∗,r0)
∂X

∂ f (X∗,Y∗,r0)
∂Y

∂g(X∗,Y∗,r0)
∂X

∂g(X∗,Y∗,r0)
∂Y

]
=

 − r0d2+2r0d+r+sb2−bd−b
b(d+1)

−a(d+1)
b

r0bd+r0b−rd2−2r0d−r0+sb2−bd−b
a(d+1) 1


and

B =
[ ∂ f (X∗,Y∗,r0)

∂r
∂g(X∗,Y∗,r0)

∂r

]
=

[
d+1

b −
(d+1)2

b2

0

]
.

On the other hand, system (4.1) can be controlled provided that the following matrix exists:

C = [B : AB] =

 d+1
b −

(d+1)2

b2 −
(b−d−1)(r0d2+2r0d+r+sb2−bd−b)

b3

0 (b−d−1)(r0bd+r0b−r0d2−2r0d−r0+sb2−bd−b)
b2a

 ,
which has a rank of 2. We suppose that [r − r0] = −K

[
Xt − X∗

Yt − Y∗

]
; where K =

[
ρ1 ρ2

]
, then,

system (4.2) can be written as follows:[
Xt+1 − X∗

Yt+1 − Y∗

]
≈ [A − BK]

[
Xt − X∗

Yt − Y∗

]
. (4.3)

The corresponding controlled system given by (1.1) can be written as

Xt+1 = (r0 − ρ1 (Xt − X∗) − ρ2 (Yt − Y∗)) Xt(1 − Xt) − aXtYt + s,
Yt+1 = bXtYt − dYt,

(4.4)

where −ρ1 (Xt − X∗) − ρ2 (Yt − Y∗) is the control force; ρ1 and ρ2 are defined as the feedback gains.
Furthermore, the fixed point (X∗,Y∗) of system (4.4) is locally asymptotically stable if and only if both
eigenvalues of the matrix A−BK lie in an open unit disk. The Jacobian matrix A−BK of the controlled
system given by (4.4) can be written as follows:

A − BK =

 − r0d2+2r0d+r+sb2−bd−b
b(d+1) − ( d+1

b −
(d+1)2

b2 )ρ1 −
(d+1)(ab+ρ2(b−d−1))

b2

r0bd+r0b−rd2−2r0d−r0+sb2−bd−b
a(d+1) 1

 .
The characteristic equation of the Jacobian matrix A − BK is given by

P(λ) = λ2 − (tr(A − BK)) λ + det(A − BK) = 0. (4.5)

Let λ1 and λ2 be roots of the characteristic equation given by (4.5); then,

λ1 + λ2 = (d+1
b −

(d+1)2

b2 )ρ1 −
r0d2+2r0d+r+sb2−bd−b

b(d+1) + 1,
λ1λ2 = (d2−bd+2d−b+1

b2 )ρ1 +
−4r0d2−5r0d−2r0−bd+r0bd2+2r0bd+rb−r0d3+sb2d−bd2

b(d+1)

+( r0−2r0bd2+bd2+3r0d2−sb2d+db2r0+2bd+3r0d−b2d−4dbr0−sb2+sb3+b+b2r0+r−b2−2r0b
ab2 )ρ2

(4.6)

are valid. In order to obtain the lines of marginal stability, we must solve the equations λ1 = ±1 and
λ1 λ2 = 1. These constraints ensure that the absolute value of λ1 and λ2 is less than 1. Assume that
λ1λ2 = 1; then, the second part of Eq (4.6) implies that
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L1 :=
(

(ad3+(a(3−b))d2+(−2ab+3a)d−ab+a)
b2a(d+1)

)
ρ1 +

(
(d4r0+(−2r0b+b+4r)d3+(−sb2+b2r0+3b+6r0−b2−6r0b)d2

b2a(d+1)

+
(4r0−6r0b+3b−2sb2+2b2r0+sb3−2b2)d−sb2+sb3+b+(b2+1)r0−b(b+2r0))

b2a(d+1)

)
ρ2

+
(−ab2+ab2r0−4abr0)d2+(−5abr0+2ab2r0−2ab2+ab3 s)d−ab2−2abr0+ab2r0

b2a(d+1) = 0.

Moreover, we suppose that λ1 = 1; then, using Eq (4.6), we get

L2 :=
(

r0d3+(−2r0b+b+3r0)d2+(−sb2+b2r+2b+3r0−b2−4r0b)d−abr0+ab2r0+ab3 s−ab2

ab2

)
ρ2

−
ρ2d2

b +
(−ab2−2abr0+ab2r0)d

ab2 + −abr0+ab2r0+ab3 s−ab2

ab2 = 0.

Finally, taking λ1 = −1 and using Eq (4.6), we get

L3 :=
(
−

2(bd+b−d2−2d−1)
b2

)
ρ1 +

(
sb
a +

d(r0−s−1)−s−1
a +

−2r0d(d+2)+(d+1)2−2r0
ab +

rd(d2+3d+3)+r0
ab2

)
ρ2

+
(−d3+(−5+b)d2+(2b−7)d+b−3)r0

b(d+1) +
−bd2+(sb2+2b)d−sb2+3b

b(d+1) = 0.

Then, stable eigenvalues lie within the triangular region in the ρ1ρ2 plane bounded by the straight lines
L1, L2 and L3 for particular parametric values.

5. Numerical analysis

In this section, we will give three examples to illustrate the results obtained in the above sections.
Computer algebra systems such as Mathematica, Maple and Matlab were used for the calculations and
graphic drawings.

Example 5.1. With this example, our aim is to present numerical simulations to validate the above
theoretical results by choosing r as the bifurcation parameter for system (1.1) around the fixed point
E2 . The parameter values were taken from [23]. The Neimark-Sacker bifurcation point rNS was
obtained as rNS = 0.70339999998. By taking the parameter values
(rNS , a, b, d, s) = (0.70339999998, 3.5, 4.5, 0.25, 0.9), the positive fixed point of system (1.1) has been
evaluated as E2 = (0.2777777778, 0.7852698412) . Using these parameter values, we get the
following Jacobian matrix:

JE2(rNS ) =
[
−2.435555555 −0.9722222223
3.533714285 1

]
.

The eigenvalues were calculated to be:

λ1,2 = −07177777775 ± 0.6962722616i.

Let q, p ∈ C2 be complex eigenvectors corresponding to λ1,2, respectively:

q ∼ (−0.1970369430 − 0.4861111113i, i)T ,

and
p ∼ (0.7161657538 − 1.766857144i,−i)T .
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To obtain the normalization ⟨p, q⟩ = 1, we can take the normalized vectors to be

q = (−0.1970369430 − 0.4861111113i, i)T

and
p = (−2.537595197 − 2.31342584810−9i,−1.233553221 + 0.4999999989i)T .

To compute the coefficients of normal form, we can transform the fixed point E2 to the point (0, 0) by
changing the following variables:

X = x − 0.2777777778,
Y = y − 0.7852698412.

Hence, we can compute the coefficients of the normal form of the system by using the formulas given
by Eq (3.15), as follows:

g20(rNS ) = 1.645826320 − 2.815555559i,

g11(rNS ) = −2.255064549 + 2.187500003i,

g02(rNS ) = 3.419158808 − 1.559444448i,

g21(rNS ) = 0.

From Eq (3.16), the critical part is then obtained as β2 (rNS ) = −17.302665 < 0. Therefore, the
Neimark-Sacker bifurcation is supercritical and it shows the correctness of Theorem 3.1.1. The
bifurcation diagram, maximum Lyapunov exponents and this phase portraits of system (1.1) are
shown in Figures 2 and 3.

Figure 2. Bifurcation diagram and Maximum Lyapunov exponents for system (1.1) with
values of a=3.5, b=4.5, d=0.25 and s=0.9, as well as r ∈ [0.6,0.74] and the initial value
(x0, y0)=(0.26,0.8). (a) Bifurcation diagram for Xt; (b) bifurcation diagram for Yt; (c)
maximum Lyapunov exponents.
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Figure 3. Bifurcation diagram and MLE for system (1.1) with values of a=3.5,
b=4.5, d=0.25 and r = 0.7039999998, as well as s ∈[0.8,0.94] and the initial value
(x0, y0)=(0.26,0.8). (a) Bifurcation diagram for Xt; (b) bifurcation diagram for Yt; (c)
maximum Lyapunov exponents.

The bifurcation diagrams in Figure 2(a) and (b) show that the stability of E2 happens for r <
0.7039999998, but there is a loss of stability at r = 0.7039999998, and an attractive invariant curve
appears if r > 0.7039999998.We computed the maximum Lyapunov exponents to detect the presence
of chaos in the system. The existence of chaotic regions in the parameter space is clearly visible in
Figure 2(c).

Now, we present the Neimark-Sacker bifurcation diagrams and maximum Lyapunov exponents for
system (1.1) by choosing the immigration parameter s instead of r as a bifurcation parameter.

The phase portraits for different values of r are displayed in Figure 4, which clearly depicts the
process of how a smooth invariant circle bifurcates from the stable fixed point
E2 = (0.27777778, 0.7852698412) . When r exceeds 0.7039999998, there appears a circular curve
enclosing the fixed point E2, and its radius becomes larger with respect to the growth of r.
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Figure 4. Phase portraits of system (1.1) for different values of r.

Example 5.2. Let (rF , a, b, d, s) = (0.1953418483, 2.1, 2, 0.1, 1.7). The positive fixed point of
system (1.1) has been evaluated as E2 = (0.55, 1.037529963) . Also, the flip bifurcation point rF was
obtained as rF = 0.1953418483. Using these parameter values, we can obtain the following Jacobian
matrix:

JE2(rF) =
[
−2.198347107 −1.155
2.075059926 1.000000000

]
.

The eigenvalues were calculated to be

λ1 = −1, λ2 = −0.1983471077.

Let q, p ∈ R2 be eigenvectors of J and the transposed matrix JT , respectively, for λ1 = −1. Then, we
have

J (rFB) q = −q and JT (rFB) = −p.

Direct computation gives
q ∼ (−0.6939646278, 0.7200090940)T ,

and
p ∼ (−0.86596925300,−0.5000972431)T .

To obtain the normalization ⟨p, q⟩ = 1, we can take the normalized vectors to be

q = (−0.6939646278, 0.7200090940)T

and
p = (−3.595061266,−2.076147879)T .
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Then, the symmetric multi-linear vector functions can be obtained as follows:

B1(x, y) = −2rF x1y1 − 2.1(x1y2 + x2y1)
B2(x, y) = 2(x1y2 + x2y1),

C1(x, y, u) = 0,
C2(x, y, u) = 0.

From Eq (3.26), the critical part is obtained as β2 (rF) = 0.6745625580 > 0. Therefore, unique and
stable period-2 orbits bifurcate from E2, and it shows the correctness of Theorem 3.2.1. The bifurcation
diagram, maximum Lyapunov exponents and this phase portraits of system (1.1) are shown in Figures 5
and 6.

From Figure 5(a) and (b), we see that the fixed point E2 = (0.55, 1.037529963) is stable for r <
0.1953418483, and loses its stability at the flip bifurcation parameter value r = 0.1953418483.We also
observe that, if r > 0.1953418483, the flip bifurcation giving a 2-periodic orbit occurs. Moreover, the
maximum Lyapunov exponents were computed, and the existence of chaotic regions in the parameter
space is clearly visible in Figure 5(c).

We present the flip bifurcation diagrams and maximum Lyapunov exponents for system (1.1),which
were obtained by choosing the immigration parameter s instead of r as a bifurcation parameter.

Figure 5. Bifurcation diagram and MLE for system (1.1) with values of a=2.1, b=2, d=0.1
and s=1.7, as well as the initial value (x0, y0) =(0.91,0.61). (a) Bifurcation diagram for Xt;
(b) bifurcation diagram for Yt; (c) maximum Lyapunov exponents.
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Figure 6. Bifurcation diagram and MLE for system (1.1) with values of a=2.1, b=2, d=0.1
and r = 0.1953418483, and as well as the initial value (x0, y0) =(0.54,1.02). (a) Bifurcation
diagram for Xt; (b) bifurcation diagram for Yt; (c) maximum Lyapunov exponents.

In Figure 7, we present the phase portraits of system (1.1) for different values of r.

Figure 7. Phase portraits of system (1.1) for different values of r.
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Example 5.3. In order to discuss the OGY feedback control method for system (1.1), we take r0 =

0.73 and (a, b, d, s) = (3.5, 4.5, 0.25, 0.9). In this case, system (1.1) has unique positive fixed point
(X∗,Y∗) = (0.2777777778, 0.7906349207), which is unstable. Then, the corresponding controlled
system is given by

Xn+1 = (0.73 − ρ1(Xn − 0.2777777778) − ρ2(Yn − 0.7906349207))Xn(1 − Xn) − aXnYn + s,
Yn+1 = bXnYn − dYn,

(5.1)

where K =
[
ρ1 ρ2

]
is a matrix and (X∗,Y∗) = (0.2777777778, 0.7906349207) is an unstable fixed point

of system (1.1) . We have

A =
[
−2.442777778 −0.9722222222
3.557857143 1

]
,

B =
[

0.2006172840
0

]
and

C = [B : AB]

=

[
0.2006172840 −0.4900634432
0 0.7137676369

]
.

Then, it is easy to check that the rank of Matrix C is 2. Therefore, system (5.1) is controllable. Then,
the Jacobian matrix A − BK of the controlled system given by (5.1) is

A − BK =
[
−2.442777778 − 0.2006172840ρ1 0.9722222222 − 0.2006172840ρ2

3.557857153 1

]
. (5.2)

Moreover, the lines L1, L2 and L3 of marginal stability are given by

L1 = 0.01625 − 0.2006172840ρ1 + 0.7137676369ρ2 = 0,
L2 = 3.459027778 + 0.7137676369ρ2 = 0,
L3 = 0.573472222 − 0.4012345680ρ1 + 0.7137676369ρ2 = 0.

Then, the stable triangular region bounded by the marginal lines L1, L2 and L3 for the controlled system
given by (5.1) is shown in Figure 8.
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Figure 8. Triangular stability region bounded by L1, L2 and
L3 for the controlled system given by (5.1).

6. Conclusions

Since most predator-prey systems in the wild are not isolated, it is important to consider the effects
of the presence of some number of immigrants. The immigration effect of the predator-prey system
has rarely been studied in the literature. Therefore, we considered a discrete-time predator-prey system
with a constant-rate immigration of the prey and investigated the dynamics of modified system (1.1)
around coexistence fixed point in this paper.

In the case of s = 0, we obtained the trivial fixed point, non-predatory fixed point for r > 1

and coexistence fixed point for r >
b

b − d − 1
. In the case of s , 0, the origin is not a fixed point.

System (1.1) has two fixed points, namely, E1 and E2. Moreover, simple calculations showed that, if
(d+1)b(r−1)+ sb2 > r(d+1)2, then system (1.1) has a unique positive fixed point E2.As r is varied, the
system exhibits several complicated dynamical behaviors, including the emergence of Neimark-Sacker
and flip bifurcations, an invariant circle, a period-2 orbit and chaotic sets. We presented some figures
to explain the theoretical analysis in Section 4. In Figure 2 and Figure 5, the bifurcation, maximum
Lyapunov exponents and phase portraits are given for some parameter values. Figure 2 and Figure 5
show that, when the bifurcation parameter r passes a critical bifurcation value, the stability of the
coexistence fixed point of the system changes from stable to unstable. In Figure 2(c) and Figure 5(c),
the computation of the maximum Lyapunov exponents confirm the presence of chaotic behavior in
the system. In Figure 4 and Figure 7, the phase portraits of the system for different values of the
r parameter are plotted. Moreover, the Neimark-Sacker bifurcation has been successfully controlled
with an OGY control strategy. From our numerical investigation, it is clear that an OGY method based
on a feedback control strategy can restore the stability. This control method is effective in order to
advance or completely eliminate the chaos due to the emergence of Neimark-Sacker bifurcation. In
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this study, because of consistency with the biological facts, we used the same parameter values that
were used in [23]. As a final point, we can say that the parameter r has a strong effect on the stability
of system (1.1) for the control of two populations.

On the other hand, the biological meaning of the term s being included in the system is that a small
number of immigrants is added persistently to the prey population in each generation. A very small
immigration into the system occurs as a stabilizing factor for the system. A positive immigration factor
is enough to change the quality of the dynamics of the system. Specially, adding the term s contributes
to asymptotic stability. This means that adding a small immigration s may imply that cyclic population
can be stabilized.

When the immigration effect is applied to a small number of species, the level of the species
increases significantly. In the same way, when the harvesting effect is applied to a large number of
species, the level of the species is significantly reduced [38]. Thanks to these two external factors, all
species in the ecosystem can be preserved to stabilize the unstable system. In a future study, we plan
to explore the effects of these factors on the population model.

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. A. J. Lotka, Elements of mathematical biology, Williams & Wilkins, Baltimore, 1925.

2. V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Memoire
della R. Accad. Nazionale dei Lincei, 1926.

3. V. Krivan, Prey-predator models, In: S. E. Jørgensen, B. D. Fath, Encyclopedia of ecology, 4
(2008), 2929–2940.
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7. S. Işık, A study of stability and bifurcation analysis in discrete-time predator-
prey system involving the Allee effect, Int. J. Biomath., 12 (2019), 1950011.
https://doi.org/10.1142/S1793524519500116

8. Q. Din, Neimark-Sacker bifurcation and chaos control in Hassel-Varley model, J. Differ. Equ. Appl.,
23 (2016), 741–762. https://doi.org/10.1080/10236198.2016.1277213

9. Q. Din, Complexity and choas control in a discrete-time prey-predator model, Commun. Nonlinear
Sci. Numer. Simul., 49 (2017), 113–134. https://doi.org/10.1016/j.cnsns.2017.01.025

10. Q. Din, Controlling chaos in a discrete-time prey-predator model with Allee effects, Int. J. Dyn.
Control, 6 (2018), 858–872. https://doi.org/10.1007/s40435-017-0347-1

AIMS Mathematics Volume 7, Issue 8, 14354–14375.

http://dx.doi.org/https://doi.org/10.1515/phys-2015-0055
http://dx.doi.org/https://doi.org/10.1016/S0022-5193(05)80170-5
http://dx.doi.org/https://doi.org/10.1142/S1793524519500116
http://dx.doi.org/https://doi.org/10.1080/10236198.2016.1277213
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2017.01.025
http://dx.doi.org/https://doi.org/10.1007/s40435-017-0347-1


14374

11. O. A. Gumus, F. Kangalgil, Dynamics of a host-parasite model connected with immigration, New
Trends Math. Sci., 5 (2017), 332–339.

12. R. D. Holt, Immigration and the dynamics of peripheral populations, Advances in Herpetology
and Evolutionary Biology, Harvard University, Cambridge, 1983.

13. S. Kartal, Mathematical modeling and analysis of tumor-immune system interastion by using
Lotka-Volterra predator-prey like model with piecewise constant arguments, Period. Eng. Nat. Sci.,
2 (2014), 7–12. http://dx.doi.org/10.21533/pen.v2i1.36

14. S. Kartal, Dynamics of a plant-herbivore model with differential-difference equations, Cogent
Math., 3 (2016), 1136198. https://doi.org/10.1080/23311835.2015.1136198

15. S. Kartal, Flip and Neimark-Sacker bifurcation in a differential equation with
piecewise constant arguments model, J. Differ. Equ. Appl., 23 (2017), 763–778.
https://doi.org/10.1080/10236198.2016.1277214

16. S. Kartal, F. Gurcan, Global behaviour of a predator-prey like model with piecewise constant
arguments, J. Biol. Dyn., 9 (2015), 159–171. https://doi.org/10.1080/17513758.2015.1049225

17. R. Yang, J. Dan, W. Wenlog, A diffusive predator-prey model with generalist predator and time
delay, AIMS Math., 7 (2022), 4574–4591. https://doi.org/10.3934/math.2022255

18. A. Q. Khan, Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model,
SpringerPlus, 5 (2016), 126. https://doi.org/10.1186/s40064-015-1618-y

19. A. Q. Khan, Stability and Neimark-Sacker bifurcation of a ratio-dependence predator-prey model,
Math. Methods Appl. Sci., 40 (2017), 4109–4117. https://doi.org/10.1002/mma.4290

20. R. K. Ghaziani, W. Govaerts, C. Sonck, Resonance and bifurcation in a discrete-time predator-prey
system with Holling functional response, Nonlinear Anal.: Real World Appl., 13 (2012), 1451–
1465. https://doi.org/10.1016/j.nonrwa.2011.11.009

21. Y. A. Kuznetsov, Elements of applied bifurcation theory, New York: Springer-Verlag, 1998.

22. E. Ott, C. Grebogi, J. A. Yorke, Controlling choas, Phys. Rev. Lett., 64 (1990), 1196–1199.
https://doi.org/10.1103/PhysRevLett.64.1196

23. S. M. S. Rana, Bifurcation and complex dynamics of a discrete-time predator-prey system, Comput.
Ecol. Software, 5 (2015), 187–200.

24. S. M. S. Rana, U. Kulsum, Bifurcation analysis and chaos control in a discrete-time predator-prey
system of Leslie type with simplified Holling type IV functional response, Discrete Dyn. Nature
Soc., 2017 (2017), 9705985. https://doi.org/10.1155/2017/9705985

25. S. M. S. Rana, Bifurcation and complex dynamics of a discrete-time predator-prey system involving
roup defense, Comput. Ecol. Software, 5 (2015), 222–238.

26. J. Sugie, Y. Saito, Uniqueness of limit cycles in a Rosenzweig-Macarthur model with prey
immigration, SIAM J. Appl. Math., 72 (2012), 299–316. https://doi.org/10.1137/11084008X

27. G. Zhu, J. Wei, Global stability and bifurcation analysis of a delayed predator-prey system with
prey immigration, Electron. J. Qual. Theory Differ. Equ., 13 (2016), 1–20.

28. I. Seval, F. Kangalgil, On the analysis of stability, bifurcation, and chaos control of discrete-time
predator-prey model with Allee effect on predator, Hacettepe J. Math. Stat., 51 (2022), 404–420.

AIMS Mathematics Volume 7, Issue 8, 14354–14375.

http://dx.doi.org/http://dx.doi.org/10.21533/pen.v2i1.36
http://dx.doi.org/https://doi.org/10.1080/23311835.2015.1136198
http://dx.doi.org/https://doi.org/10.1080/10236198.2016.1277214
http://dx.doi.org/https://doi.org/10.1080/17513758.2015.1049225
http://dx.doi.org/https://doi.org/10.3934/math.2022255
http://dx.doi.org/https://doi.org/10.1186/s40064-015-1618-y
http://dx.doi.org/https://doi.org/10.1002/mma.4290
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2011.11.009
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.64.1196
http://dx.doi.org/https://doi.org/10.1155/2017/9705985
http://dx.doi.org/https://doi.org/10.1137/11084008X


14375

29. M. A. Stephano, I. H. Jung, Effects of refuge prey on stability of the prey-predator model subject
to immigrants: A mathematical modelling approach, Tanzania J. Sci., 47 (2021), 1376–1391.

30. P. Rohani, O. Miramontes, Immigration and the persistence of chaos in population models, J. Theor.
Biol., 175 (1995), 203–206. https://doi.org/10.1006/jtbi.1995.0133

31. G. D. Ruxton, Low levels of immigration between chaotic populations can reduce system
extinctions by inducing asynchronous regular cycles, Proc. Royal Soc. London B, 256 (1994),
189–193. https://doi.org/10.1098/rspb.1994.0069

32. L. Stone, D. Hart, Effects of immigration on dynamics of simple population models, Theor. Popul.
Biol., 55 (1999), 227–234. https://doi.org/10.1006/tpbi.1998.1393

33. F. Kangalgil, N. Topsakal, Stability analysis and flip bifurcation of a discrete-time prey-predator
model with predator immigration, Asian J. Math. Comput. Res., 27 (2020), 1–10.
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