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Abstract
The complete mitogenome sequence of Talpa martinorum, a recently described Balkan endemic mole, was assembled from 
next generation sequence data. The mitogenome is similar to that of the three other Talpa species sequenced to date, being 
16,835 bp in length, and containing 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, an origin 
of L-strand replication, and a control region or D-loop. Compared to other Talpa mitogenomes sequenced to date, that of T. 
martinorum differs in the length of D-loop and stop codon usage. TAG and T-- are the stop codons for the ND1 and ATP8 
genes, respectively, in T. martinorum, whilst TAA acts as a stop codon for both ND1 and ATP8 in the other three Talpa 
species sequenced. Phylogeny reconstructions based on Maximum Likelihood and Bayesian inference analyses yielded 
phylogenies with similar topologies, demonstrating that T. martinorum nests within the western lineage of the genus, being 
closely related to T. aquitania and T. occidentalis.
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Introduction

The subterranean mole genus Talpa Linnaeus, 1758 is 
endemic to the western Palaearctic region, distributed from 
the Iberian Peninsula to China and Siberia (Hutterer 2005). 
Only nine species were considered valid in the most recent 
version of Mammal Species of the World (Hutterer 2005): the 
common mole T. europaea Linnaeus, 1758, the blind mole 

T. caeca Savi, 1822, the Roman mole T. romana Thomas, 
1902, the Levant mole T. levantis Thomas, 1906, the Iberian 
blind mole T. occidentalis Cabrera, 1907, the Balkan mole 
T. stankovici Martino and Martino, 1931, the Siberian mole 
T. altaica Nikolasky, 1883, Père David’s mole T. davidiana 
Milne-Edwards, 1884, and the Caucasian mole T. cauca-
sica Satunin, 1908. Recent molecular studies, however, have 
indicated a higher species-level diversity within the group, 
suggesting that some genetically divergent lineages qualify 
as cryptic species, which are not readily identified based on 
morphological characters (Bannikova et al. 2015; Demirtaş 
et al. 2020). Using a combination of molecular genetics tech-
niques and morphometrics, two new mole species, T. aquita-
nia Nicolas et al., 2017 from southern France and northern 
Spain, and T. martinorum Kryštufek et al., 2018 from the 
south-western Black Sea coast (Thrace), have been described 
in recent years (Nicolas et al. 2017; Kryštufek et al. 2018). 
In addition, Bannikova et al. (2015) recently separated two 
additional, genetically well-defined, lineages in the Caucasus 
and Anatolia, corresponding to T. talyschensis Vereschagin, 
1945 and T. ognevi Stroganov, 1948. Finally, Demirtaş et al. 
(2020) have demonstrated that T. levantis s.l. in Anatolia is 
divisible into divergent eastern and western sublineages on 
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both mitochondrial and nuclear markers, and on this basis 
argued that the eastern sublineage should be considered as a 
separate species (T. transcaucasica Dahl, 1945). As a result 
of these findings, the number of recognized species in the 
genus Talpa has increased from nine (Hutterer 2005) to 14 
(Bannikova et al. 2015; Kryštufek and Motokawa 2018; 
Demirtaş et al. 2020).

T. martinorum was originally believed to be restricted 
to the Thrace region of Bulgaria, along the south-western 
Black Sea coast. More recently, Kefelioğlu et al. (2020) have 
demonstrated that T. martinorum also occurs in nearby Euro-
pean Turkey. Almost nothing is known about biology of this 
recently described species, which appears to be restricted to 
a small area of the southeastern Balkans.

To date, the complete mitogenomes of three species of the 
genus Talpa (T. aquitania, T. europaea and T. occidentalis) 
have been sequenced (Mouchaty et al. 2000; Gutiérrez et al. 
2018; Aleix-Mata et al. 2020), along with those of 11 other 
species of the Talpidae. Complete mitochondrial genomes 
have become much more accessible with the advent of next-
generation sequencing (NGS) (Ye et al. 2014), and are very 
useful for understanding genetic variability at both intra- and 
interspecific levels, as well as for phylogenetic and phyloge-
ographical reconstruction across a wide range of organisms 
and taxonomic levels (e.g. Anijalg et al. 2018; Laurimäe 
et al. 2018; Ding et al. 2019; Nie et al. 2020; Nicolas et al. 
2020). In this study, we report the sequencing and character-
ization (by NGS) of the complete mitogenome of the Talpa 
species T. martinorum, and provide additional insights into 
its evolutionary relationships with other Talpa species for 
which fully described mitogenomes are currently available.

Materials and methods

Specimen collection and DNA extraction

A male T. martinorum (Kryštufek et al. 2018) was captured 
at Kağıthane (41° 07′ N 28° 57′ E; Istanbul, Turkey). All 
capture and sacrifice protocols were approved by the Ani-
mal Experiments Local Ethics Committee at Ondokuz Mayis 
University (code: 2019/28). Total DNA was extracted from 
muscle tissue using phenol–chloroform (Köchl et al. 2005). 
The quality of extracted DNA was detected by 1.5% agarose 
gel electrophoresis and the DNA was stored at − 20 °C until 
further use.

Preparation of libraries, sequencing, mitogenome 
assembly and gene annotation

Illumina libraries were generated from total DNA with an 
Illumina Nextera XT DNA Sample Prep Kit (Illumina, San 
Diego, CA). DNA quality was assessed with Qubit, final 

library length distribution and checking for the absence of 
adapters, performed using Qsep100 (Bioptic, New Taipei 
City, Taiwan). Normalized and pooled DNA libraries were 
subjected to de novo genome sequencing on an Illumina 
MiSeq System, using 300-cycle MiSeq Reagent Micro Kit 
v2 at CUTAM (http:// cutam. cumhu riyet. edu. tr/). Demulti-
plexing and adapter trimming were carried out using miseq 
reporter v2.3.32 (Illumina). FastQC (Andrews 2010) was 
used for quality control checks on raw sequence data. Raw 
reads were assembled to a reference complete mitochon-
drial genome of Talpa europaea (NCBI accession Y19192) 
using Bowtie2 v2.3.5.1 in -very-sensitive mode, equivalent 
to options -D 20 -R 3 -N 0 -L 20 -i S,1,0.50 (Langmead and 
Salzberg 2012). The mapped SAM file was processed with 
Samtools v1.10 (Li et al. 2009) to create a sorted BAM file. 
The consensus sequence from the .bam file was extracted 
using vcfutils.pl perl script. Mean coverage was calculated 
from the .bam file using Rsamtools v2.2.3 (Morgan et al. 
2020). The resulting T. martinorum mitogenome consensus 
sequence was annotated using MITOS (http:// mitos. bioinf. 
uni- leipz ig. de) (Bernt et al. 2013) with default settings. 
Gene boundaries were also checked by alignment against 
mitogenome sequences of T. aquitania (NCBI accession 
MN443911), T. europaea (NCBI accession Y19192) and 
T. occidentalis (NCBI accession NC_039630). Mitochon-
drial genomes were aligned using MAFFT v7.453 (Katoh 
and Standley 2013) with--localpair and—maxiterate 1000 
options. Translations and codon usage statistics for 13 pro-
tein-coding genes (PCGs) were conducted with Geneious 
Prime 2019.1 (Biomatters Ltd., Auckland, New Zealand). 
The circularized image of the mitogenome was made using 
OrganellarGenomeDRAW tools (http:// ogdraw. mpimp- 
golm. mpg. de/) (Lohse et al. 2013). Skewness of nucleotide 
composition was gauged according to the following for-
mulae: AT skew [(A − T)/(A + T)] and GC skew [(G − C)/
(G + C)] (Perna and Kocher 1995). Base composition and 
skew of the complete mitochondrial genome were calculated 
using MEGAX v10 (Kumar et al. 2018).

Phylogenetic analyses

For phylogenetic analyses we used the concatenated 
sequences of 13 PCGs from other members of the Talpi-
dae available in GenBank (Condylura cristata KU144678, 
Galemys pyrenaicus AY833419, Mogera robusta KT934322 
and MK431828, Mogera wogura AB099482, Parascaptor 
leucura MW114662, Scapanulus oweni KM506754, Talpa 
aquitania MN443911, Talpa occidentalis NC_039630, 
Talpa europaea Y19192, Uropsilus andersoni JX945573 
and NC_041144, Uropsilus gracilis KM379136, Uropsi-
lus investigator JX945574, Uropsilus soricipes JQ658979 
and Urotrichus talpoides AB099483). PCG sequences of 
four species of the family Soricidae (Crocidura russula 

http://cutam.cumhuriyet.edu.tr/
http://mitos.bioinf.uni-leipzig.de
http://mitos.bioinf.uni-leipzig.de
http://ogdraw.mpimp-golm.mpg.de/
http://ogdraw.mpimp-golm.mpg.de/
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AY769263, Sorex araneus KT210896, Suncus murinus 
NC_024604 and Blarina brevicauda NC_042734) were used 
as outgroups. The phylogenetic relationships amongst taxa 
were reconstructed using the maximum-likelihood (ML) 
algorithm implemented in PAUP v4.10b (Swofford 2002) 
and Bayesian inference of phylogeny (BI), as implemented 
in MRBAYES v3.2.7a (Ronquist et al. 2012). The Akaike 
information criterion (AIC) implemented in jMODELTEST 
v1.0 (Posada 2008) was used to establish the optimal model 
of sequence evolution for our data and this model was sub-
sequently employed in the ML and BI analyses. The ML tree 
search was conducted using the heuristic search approach, 
the ‘as is’ addition replicate and node supports were assessed 
with 1000 bootstrap (BS) replicates. BI analysis involved 
four Markov chains of one million generations each, with 
trees being sampled every 100 generations and a burn-in 
of 25%. The software tool TRACER v1.7.1 (Rambaut et al. 
2018) was used to check parameters and to determine the 
number of trees needed to reach stationarity (burn-in). 
After discarding burn-in trees and evaluating convergence, 
remaining samples were retained in order to generate 50% 
majority rule consensus trees and calculate posterior prob-
abilities (PB). Previous phylogenetic analyses on multiple 
organisms have suggested that incongruence, the presence 
of topological conflict, might exist between different tree 
building approaches (Hess and Goldman 2011; Song et al. 
2012; Steenwyk et al. 2019). Thus, to further evaluate the 
topological congruence of the ML and BI trees, two main 
tree topology tests were computed using IQ-TREE web 
server (Trifinopoulos et al. 2016). We first combined Newick 
formatted trees (ML and BI) into a single file, and the result-
ing file was then used as input to IQ-TREE. We used the 
“GTR + F + I + G4” model and conducted the Shimodaira-
Hasegawa (SH; Shimodaira and Hasegawa 1999) and the 
approximately unbiased (AU; Shimodaira 2002) tests. These 
tests were conducted using 10,000 resamplings using the res-
ampling estimated log-likelihood (RELL) method (Kishino 
et al. 1990) to evaluate congruence at p-values < 0.05.

Results and discussion

The sequence of genes

The complete mitochondrial genome of T. martinorum 
is 16,835  bp in length (GenBank: OP082230), shorter 
than those of T. europaea (16,884 bp) and T. occidentalis 
(16,962 bp) and slightly longer than that of T. aquitania 
(16,826 bp) (Mouchaty et al. 2000; Gutiérrez et al. 2018; 
Aleix-Mata et al. 2020). However, the order and orientation 
of the T. martinorum mitogenome are identical to those of 
other Talpa species and consists of the conserved set of 37 
mammal mitochondrial genes, including 13 PCGs (CYTB, 

ND1–6, ND4L, COX1–3, ATP6 and ATP8), 22 tRNAs (two 
for Leu and Ser and one for each of the other amino acids), 
two rRNAs (12S and 16S), the control region (D-loop) and 
the origin of the light-strand region (OL). The PCG region 
is 11,404 bp long  (11,373 bp in codons and 31 bp in stop 
codons), and 12 of the 13 PCGs are encoded on the heavy 
(H) strand (CYTB, ND1–5, ND4L, COX1–3, ATP6 and 
ATP8), with the remaining PCG (ND6) encoded on the light 
(L) strand. Eight tRNAs are found on the L-strand while 
the other 14 tRNAs and the two rRNAs are located on the 
H-strand. The D-loop is 1375 bp long, located between 
tRNA-Pro and tRNA-Phe, as seen in the mitogenomes of 
other species of Talpa (Mouchaty et al. 2000; Gutiérrez et al. 
2018; Aleix-Mata et al. 2020) (Table 1, Fig. 1). 

Nucleotide composition, degree of overlap, 
intergenic spacer regions and skewness

The mitogenome of T. martinorum is AT-biased, with a 
nucleotide composition of 34.02% A, 24.54% C, 14.32% 
G, and 27.12% T. The 13 mitochondrial PCGs consist of 
33.00% A, 25.40% C, 13.40% G and 28.20% T. The 13 PCGs 
are AT-biased, with a total AT content of 61.20%, ranging 
from 57.50% in COX3 to 70.10% in ATP8. Overall, the AT 
skew (0.11) for the T. martinorum mitogenome is positive, 
reflecting a higher occurrence of As than Ts, and the GC 
skew (− 0.26) is appreciably negative, indicating a higher 
content of Cs compared to Gs (Supplementary Materials 
Table S1). There were seven overlapping regions with a total 
length of 75 bp (ranging from 1 to 41 bp, with the longest 
overlapping region located between ATP8 and ATP6 genes) 
and 14 intergenic spacers with a total length of 33 bp (rang-
ing from 1 to 7 bp) (Table 1).

Protein‑coding genes and codon usage

The 13 mitochondrial PCGs in T. martinorum encode 3791 
amino acids (Table 1; Supplementary Materials Table S1). 
There are three start codons used in the T. martinorum 
mtDNA: ATA for ND2, ATT for ND3 and ND5, and the 
most frequent one, ATG, for ND1, COX1, COX2, ATP8, 
ATP6, COX3, ND4L, ND4, ND6, CYTB. Nine genes end 
on a complete stop codon: TAG (ND1, ND2), TAA (COX1, 
COX2, ATP6, ND4L, ND5, ND6) and AGA (CYTB). The 
remaining four genes (ATP8, COX3, ND3, ND4) end on an 
abbreviated stop codon (T--). An incomplete stop codon 
is commonly found in metazoan mitogenomes, and is pre-
sumably completed via poly-adenylation of the 3′-end of 
the mRNA after transcription (Ojala et al. 1981). Accord-
ingly, the most abundant start and stop codons were ATG 
(76.92%) and TAA (46.15%), respectively, as in other 
mammal mitogenomes, including mole species (Mouchaty 
et al. 2000; Cabria et al. 2006; Chen et al. 2015; Kim and 
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Park 2015; Xu et al. 2016; Kim et al. 2017; Gutiérrez et al. 
2018; Aleix-Mata et al. 2020; Lamelas et al. 2020). Due 
to the A + T richness of the mitogenome of T. martino-
rum (Supplementary Materials Table S1), a strong bias 
toward A + T-rich codons was observed in the PCGs. The 
AT skew was positive in all but one PCG (ND4L), whilst 
the GC skew was negative in all 13 PCGs (Supplementary 

Materials Table S1 and Fig. S1). A high proportion of 
A + T in PCGs is typical in mammalian mitogenomes 
(Kim et  al. 2017; Gutiérrez et  al. 2018). As reported 
by Chen et al. (2014) and Labella et al. (2019), codon 
usage bias in mitochondrial genomes may be caused by 
mutational bias and/or natural selection. In our study, the 

Table 1  Gene organization of the Talpa martinorum mitochondrial genome

H heavy strand, L light strand

Gene Start position Stop position Length (bp) Intergenic 
nucleotides (bp)

Anticodon Start codon Stop codon Strand

tRNA-Phe 1 70 70 2 GAA H
12S rRNA 73 1041 969 0 H
tRNA-Val 1042 1109 68 0 TAC H
16S rRNA 1110 2681 1572 0 H
tRNA-Leu(UUR) 2682 2756 75 2 TAA H
ND1 2759 3712 954 2 ATG TAG H
tRNA-Ile 3715 3783 69  − 3 GAT H
tRNA-Gln 3781 3853 73 1 TTG L
tRNA-Met 3855 3923 69 0 CAT H
ND2 3924 4967 1044  − 2 ATA TAG H
tRNA-Trp 4966 5033 68 5 TCA H
tRNA-Ala 5039 5107 69 1 TGC L
tRNA-Asn 5109 5181 73 0 GTT L
OL 5182 5220 39  − 3 H
tRNA-Cys 5218 5284 67 0 GCA L
tRNA-Tyr 5285 5351 67 1 GTA L
COX1 5353 6897 1545 1 ATG TAA H
tRNA-Ser(UCN) 6899 6967 69 7 TGA L
tRNA-Asp 6975 7043 69 0 GTC H
COX2 7044 7727 684 3 ATG TAA H
tRNA-Lys 7731 7798 68 1 TTT H
ATP8 7800 8001 202  − 41 ATG T-- H
ATP6 7961 8641 681  − 1 ATG TAA H
COX3 8641 9424 784 0 ATG T-- H
tRNA-Gly 9425 9494 70 0 TCC H
ND3 9495 9840 346 0 ATT T-- H
tRNA-Arg 9841 9908 68 0 TCG H
ND4L 9909 10,205 297  − 7 ATG TAA H
ND4 10,199 11,576 1378 0 ATG T-- H
tRNA-His 11,577 11,644 68 0 GTG H
tRNA-Ser(AGY) 11,645 11,705 61 2 GCT H
tRNA-Leu(CUN) 11,708 11,777 70 0 TAG H
ND5 11,778 13,598 1821  − 18 ATT TAA H
ND6 13,582 14,109 528 0 ATG TAA L
tRNA-Glu 14,110 14,178 69 4 TTC L
CYTB 14,183 15,322 1140 0 ATG AGA H
tRNA-Thr 15,323 15,391 69 1 TGT H
tRNA-Pro 15,393 15,460 68 0 TGG L
D-loop 15,461 16,835 1375 0 H
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codon distribution chart (Supplementary Materials Fig. 
S2) revealed that four amino acids (Leucine 2, 449; Iso-
leucine, 315; Threonine, 305; and Alanine, 260) were the 
most common in the mitochondrial PCGs of T. martino-
rum. The five codons with the highest relative synonymous 
codon usage (RSCU) values described in the PCGs from T. 
martinorum are as follows: CTA (Leucine 2) (2.84), CGA 
(Arginine) (2.77), TCA (Serine 2) (2.73), CCA (Proline) 
(2.70), ACA (Threonine) (2.23), GTA (Valine) (2.18), 
GGA (Glycine) (1.87) and TGA (Tryptophan) (1.81) (see 
Supplementary Materials Fig. S2).

Transfer RNA and ribosomal RNA genes, D‑loop 
sequences and origin of replication for the light 
strand (OL)

The combined size of the 22 tRNA genes was 1516 bp, 
varying in size from 61  bp (tRNA-Ser(AGY)) to 75  bp 
(tRNA-Leu(UUR)). A total of 14 tRNAs are encoded by the 
H-strand, and the remaining eight tRNAs are encoded by 
the L-strand (Table 1). The AT skew of the tRNAs was posi-
tive (Supplementary Materials Table S1). All tRNA genes 
showed a typical clover-leaf structure (Giegé et al. 1993) 
with the exception of tRNA-Ser (GCT) (Supplementary 
Materials Fig. S3). The tRNA-Ser (GCT) gene cannot be 
folded into typical clover-leaf secondary structures due to 

Fig. 1  Circular map of the mitogenome of Talpa martinorum. The outside and inside of the ring indicate the heavy (H) and light (L) strands, 
respectively. The inner ring shows the GC content of the genome
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the lack of the dihydrouracil (DHU) stem and loop, as in 
some other mammals (Gissi et al. 1998; Jiang et al. 2012; 
Ding et al. 2016).

The 12S and 16S rRNAs were 969 bp and 1572 bp in 
length, respectively. The two rRNA genes are located 
between the tRNA-Phe and tRNA-Leu(UUR) genes, and are 
separated by the tRNA-Val gene (Table 1, Fig. 1). The base 
composition of the two combined rRNA genes was 37.30% 
A, 20.20% C, %18.20 G and %24.30 T. The AT skew (0.21) 
for the two combined rRNA genes was appreciably positive, 
reflecting a higher occurrence of As to Ts, and its GC skew 
(− 0.05) is negative, indicating a slight excess of C over G 
nucleotides (see Supplementary Materials Table S1).

The most variable region in vertebrate mtDNA, the non-
coding control region (or D-loop), was 1375 bp long in T. 
martinorum, located between the tRNA-Pro and tRNA-Phe 
genes (Table 1, Fig. 1), as in the mitogenomes of the other 
three mole species (Mouchaty et al. 2000; Gutiérrez et al. 
2018; Aleix-Mata et al. 2020). The nucleotide composi-
tion of the D-loop was 35.70% A, 29.40% C, 12.70% G 
and 22.20% T. This composition is in line with most of the 
mammals, except Primates, for which A + T > G + C in all 
the domains of the D-loop region (Sbisà et al. 1997). The 
D-loop AT skew was positive, whilst the GC skew was nega-
tive (Supplementary Materials Table S1). The origin of light 
strand synthesis (OL) in the mtDNA of T. martinorum was 
39 bp long and located between tRNA-Asn and tRNA-Cys 
in the WANCY region, which consists of a cluster of five 
tRNA genes (tRNA-Trp, tRNA-Ala, tRNA-Asn, tRNA-Cys, 
and tRNA-Tyr) (Table 1, Fig. 1), as in other mammals (Kim 
et al. 2017; Gutiérrez et al. 2018; Aleix-Mata et al. 2020). 
The stem-loop structure of OL of T. martinorum begins with 
the conserved motif 5′-CTTCT-3′.

The mitogenome sequence of T. martinorum has a similar 
genome organization and structure as those of other Talpa 
species, but there are differences in the length of D-loop 
and stop codon usage. T. occidentalis has the longest mole 
D-loop (1504 bp) reported to date, T. aquitania having the 
shortest (1370 bp). TAG and T-- are the stop codons for 
the ND1 and ATP8 genes in T. martinorum, respectively. 
In contrast, TAA is the typical stop codon for both the ND1 
and ATP8 genes in the other three Talpa species sequenced 
to date (Supplementary Materials Table S2).

Phylogenetic analysis

The best-fit DNA substitution model selected by jMODEL-
TEST under AIC was GTR, with gamma correction (G) of 
0.9660 and a proportion of invariable sites (I) of 0.4850; this 
was then used in phylogenetic analyses. ML and BI analy-
ses yielded similar topologies (p-value > 0.05 for both SH 
and AU tests), differing mainly in relative bootstrap/poste-
rior probability values for some nodes and the position of 

Galemys pyrenaicus on the trees (Fig. 2). In both the ML and 
BI trees, Talpa is located in the clade together with Mogera 
and Parascaptor leucura (BS = 100 and PP = 1), and a close 
association between this group and a smaller one consisting 
of Condylura cristata, Scapanulus oweni and Urotrichus tal-
poides was consistently recovered but was not sufficiently 
supported by bootstrap percentages (PP = 0.90). In the BI 
tree G. pyrenaicus grouped with C. cristata, S. oweni and 
U. talpoides, whilst in the ML tree it was located in a basal 
position on another early diverging branch that separated 
from these two groups, as previously reported (Cabria et al. 
2006; Tu et al. 2012, 2015; Gutiérrez et al. 2018; Aleix-
Mata et al. 2020). Consistent with previous phylogenetic 
analyses of Talpidae (Shinohara et al. 2003; Tu et al. 2012; 
Gutiérrez et al. 2018; Aleix-Mata et al. 2020), the inclusion 
of the four species of Uropsilus (subfamily Uropsilinae) in 
one early diverging well-supported clade was confirmed by 
both the ML and BI methods (BS = 100 and PP = 1). Rela-
tionships within Talpa are interesting. Based on partial or 
complete CYTB sequences, it has already been shown that 
the recently-described T. martinorum belongs to the western 
group, comprising the common mole T. europaea, the blind 
mole T. caeca, the Roman mole T. romana, the Levant mole 
T. levantis, the Aquitanian mole T. aquitania, the Iberian 
blind mole T. occidentalis and the Balkan mole T. stankovici 
(Kryštufek et al. 2018; Demirtaş et al. 2020; Kefelioğlu et al. 
2020). Previous studies also suggested that T. martinorum 
was clustered with T. aquitania, T. europaea and T. occi-
dentalis in the same clade within the western group, but the 
branching order was not resolved using CYTB sequences 
alone. Based on the 13 mitochondrial PCGs, our ML and 
BI trees resolved the relationships as (((T. occidentalis, T. 
aquitania), T. martinorum), T. europaea) with strong sup-
port values (BS = 100 and PP = 1), our study also suggests 
that T. europaea forms a basal branch within the western 
Talpa clade (Fig. 2). Sequencing and characterization of 
the mitogenomes of further species of the genus Talpa and 
the use of nuclear markers will help our understanding the 
phylogenetic relationships within this genus in the future. 
This is important because, as with many other genera of 
small mammals, moles exhibit considerable morphological 
conservatism, so that molecular data can improve our under-
standing of their geographical and evolutionary diversity.

Conclusion

The whole mitochondrial genome of T. martinorum, a 
recently described endemic Balkan mole, is sequenced and 
characterized. The complete mitogenome of T. martinorum 
has a genomic organization and structure similar to those 
described for other mammal species. It is 16,835 bp in 
length, consisting of 13 protein-coding genes, 22 transfer 
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RNA genes, two ribosomal RNA genes, and a control region. 
It is comparable in size to those from other species of the 
genus Talpa such as T. aquitania (16,776–16,826 bp), T. 
europaea (16,884 bp) and T. occidentalis (16,962 bp). The 
mitogenomes of Talpa species have highly conserved gene 
order, and similar to other vertebrate mitogenomes, all of 
the PCGs in the mitogenome of T. martinorum utilize ATN 
as a start codon, ATG being the most frequent. Twelve 
PCGs, 14 tRNAs and two rRNAs are located on the heavy 

strand, while ND6 and eight tRNAs are found on the light 
strand. All of the tRNAs can be folded into typical clover-
leaf secondary structures, with the exception of tRNA-Ser 
(GCT), which lacks a DHU stem and loop. The D-loop is 
placed between the tRNA-Pro and tRNA-Phe genes, and 
the L-strand origin of replication (OL) is located between 
tRNA-Asn and tRNA-Cys in the WANCY region. In this 
study, phylogenetic reconstructions with other members of 
the Talpidae based on 13 PCGs using BI and ML methods 

Fig. 2  Results of BI and ML analyses combined on a ML tree based 
on concatenated PCG sequences of T. martinorum and other mem-
bers of Talpidae for which mitogenomes are available. Numbers at 

nodes indicate bootstrap support values (ML)/posterior probabili-
ties (BI). Bootstrap values ≥ 90% and Bayesian posterior probabili-
ties ≥ 0.90 are shown
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resolved phylogenetic relationships in the genus Talpa, with 
T. martinorum clustering as a monophyletic group with T. 
occidentalis, T. aquitania, and T. europaea.
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