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Abstract
Water resources around the world are getting polluted day by day due to the rapidly developing industry. Industrial wastes 
have caused serious damage to the environment in recent years. Especially, dyes are waste products that mix with waters 
such as lakes, rivers and seas and have toxic and carcinogenic effects. In this study, the removal of methyl orange (MO) dye, 
which was chosen as a model dye compound, from aqueous solution by biosorption using hemp waste was investigated. The 
biosorption process was optimized by the parameters of pH, initial dye concentration and amount of biosorbent. Biosorp-
tion of MO to hemp waste was investigated by isotherms, kinetics and thermodynamic studies. It was determined that the 
biosorption equilibrium fitted to the Langmuir isotherm ( R2=0.9739). As a result of the experimental studies, 83% biosorption 
value and 1428 mg/g maximum biosorption capacity were reached with 250 mg/L dye concentration and 0.5 g/L biosorbent 
amount at pH = 2. It was determined that the reaction kinetics were in accordance with the pseudo-second-order kinetics ( R2

=0.9911). In addition to, the study aims to evaluate to what extent the modeling of the biosorption process is successful. For 
this purpose, we used multigene genetic programming (MGGP), which has been renewed with the latest developments in 
the field of model extraction. The results show that MGGP is efficient for modeling the biosorption process in real environ-
ments. The analysis of MGGP models also showed that pH is the most important parameter affecting the biosorption process.
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Introduction

Water pollution is a serious problem affecting the eco-
system and people all over the world. One of the most 
important reasons is dye waste (Khwannimit et al. 2020). 
Dyes have been used for many years in various fields such 
as food, textile, automotive, medical and cosmetic indus-
tries (Arici 2021). Even a small amount of the dyes can 
be seen in water and harms the ecosystem by preventing 
light transmission (Joudi et al. 2020). Azo dyes are anionic 

and contain nitrogen–nitrogen double bonds ( −N = N− ) 
in their structure. They have a complex aromatic structure, 
and the biodegradability of azo dyes is poor (Subbaiah and 
Kim 2016). Due to the aromatic ring structure, the dyes 
are carcinogenic and harmful (Su et al. 2014). For exam-
ple, MO is a water-soluble, synthetic anionic and monoazo 
dye used in various fields such as paper, food and medi-
cine. It is a toxic, carcinogenic and teratogenic dye with 
harmful effects such as jaundice, vomiting and cyanosis 
in humans. It also harms aquatic life and soil by disturb-
ing the ecological balance. Therefore, the removal of MO, 
which is a frequently used dye in the industrial field, from 
residual water is important for human and environmental 
health (Lafi et al. 2020; Arici 2021; Wu et al. 2021). Vari-
ous techniques such as coagulation, flocculation, flotation, 
oxidation, ozonation, ion exchange, precipitation, membrane 
separation, photocatalysis, and adsorption are used for the 
removal of dyes from wastewater (Lafi et al. 2020; Subbaiah 
and Kim 2016). Most of these methods are effective and 
efficient, but costly and difficult to implement. Adsorption 
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is a cheap, simple technique that is easy to apply. In addi-
tion, the use of a variety of adsorbents has led researchers 
to the adsorption technique (Wu et al. 2021). Biosorption 
uses many materials that are inexpensive, environmentally 
friendly and readily available (Azeez and Al-zuhairi 2021). 
These biosorbents include various materials such as palm 
ash, rice husks, neem sawdust and pumpkin seeds (Subbaiah 
and Kim 2016). Hemp fiber is known as Cannabis sativa. It 
is an important plant used in various fields such as medicine, 
textile and pharmaceuticals (Berni et al. 2021; Dinçel 2022). 
Hemp contains bioactive constituents such as flavonoids, 
saponins and alkaloids (Zhu et al. 2021). Studies show that 
hemp has good sorption properties and reported that hemp 
fiber is a successful sorbent for the removal of Zn(II) ion 
from aqueous solution. In addition, hemp has been reported 
to have good biomass and biodiesel properties (Tofan et al. 
2016). In a study using papaya fiber, MO was removed from 
aqueous solution at pH 2 and after 120 min (Ahmaruzzaman 
2012). In Bayazit's work, magnetic multi-wall carbon nano-
tubes (MWCNT) was used to removal MO from aqueous 
solution. The adsorption value of 98% was reached when 
the magnetic was modified with Fe3O4 (Bayazit 2014). It 
is possible to examine the parameters affecting the removal 
of dyes or heavy metals from wastewater with various data 
programs. Assasi et al. modeled the photocatalytic degra-
dation of crystal violet dye with a ZnO photocatalyst with 
the Box–Behnken experimental design and investigated the 
factors affecting the degradation rate (Assassi et al. 2021). 
In another study, an empirical model was created for the 
nickel removal of fig biosorbent from wastewater with a full 
factorial design. pH and biosorbent mass were determined to 
be important among the parameters affecting the biosorption 
process (Madjene et al. 2016). Similarly, in the response sur-
face method using the Box–Behnken model, the adsorption 
pH, initial dye concentration and adsorbent dose variables 
of the ciprofoxacin antibiotic were optimized (Nguyen and 
Van 2022). Activated sludge was used as a biosorbent in a 
study when the removal of pharmaceutical wastes in waste 
materials was examined (Runjavec, et al. 2022).

Genetic programming (GP) is a field of evolutionary 
computation that automatically searches for parameters and 
nonlinear equations to find the optimal formula to represent 
a system. Nowadays, many complicated problems in engi-
neering (Ashofteh et al. 2015; Keshavarz and Mehramiri 
2015) (Li and Wong 2015), commerce (Fallahpour et al. 
2016), production planning (Nguyen et al. 2017) and other 
problems in computer science such as computer vision (Liu 
et al. 2016), signal processing (Feli and Abdali-Mohammadi 
2019) and artificial neural network design (Suganuma et al. 
2018) can be solved using GP. The widespread use of GP 
in many disciplines and fields is mainly due to its flexible 
and understandable structures. Moreover, many studies have 
shown that GP is more successful than various methods such 

as ANN and SVM (Muduli et al. 2015; Muduli and Das 
2014; Pan et al. 2013). Therefore, in this study, the predic-
tion performance and frequency of inputs of the experimen-
tal data were evaluated using multigene GP, the most widely 
used version of GP.

Biosorption of MO dye from an aqueous solution was 
investigated using hemp waste as a biosorbent that we know 
has not been used before. Hemp waste was directly used as 
a biosorbent without chemical treatment due to its fibrous 
structure, environmental friendliness, and to evaluate natu-
ral wastes. For this purpose, the effects of pH, initial dye 
concentration, biosorbent dose and temperature parameters 
on the biosorption process were studied. Equilibrium with 
Langmuir, Freundlich and Harkins–Jura isotherms, first-
order reaction kinetics, second-order reaction kinetics, intra-
particle diffusion and Elovich model kinetics and reaction 
kinetics were investigated. In addition, we successfully 
applied GP, which supports the study of parameter effects in 
modeling the biosorption process. So, in summary, impres-
sive performance along with real experimental data is an 
important goal in modeling biosorption processes using 
the GP method. The main contributions of this study are 
twofold:

•	 To the best of our knowledge, we are the first to propose 
multigene genetic programming-based modeling for the 
biosorption of MO in hemp waste as part of an evolution-
ary learning process.

•	 Hemp waste was evaluated by using it to remove envi-
ronmentally harmful MO.

As a result, it is thought that this study will fill a gap in 
the literature and make a significant contribution with the 
use of hemp waste for MO removal from aqueous solution 
for the first time and MGGP modeling.

Experimental

Materials

The methyl orange used in the study was obtained from 
Surechem Product, and hydrochloric acid (HCl, 33%) and 
sodium hydroxide (NaOH, pellet) were obtained from 
Kimetsan. Waste hemp grown for fiber production in the 
Amasya-Turkey region was obtained from ATC-Hawk. Fig-
ure 1a, b shows the hemp plant and its harvest in the field. 
Table 1 includes the physicochemical properties, structure 
and maximum absorbance wavelength of the dye.
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Biosorption procedure

The size of the hemp waste separated into its fibers was 
reduced by 0.5–2 mm using a grinding machine (EMIR 
industrial kitchen products, model EMR-Q-01) to increase 
the contact area. The aqueous methyl orange solution was 
first prepared as a stock solution with a concentration of 
1000 mg/L. Then it was diluted and prepared at the specified 
concentrations. The experiments were performed intermit-
tently in a 250-mL glass flask and 100 mL dye volume. Sam-
ples taken at specified time intervals were filtered. Then, the 
absorbance values were determined at 464 nm by UV–Vis 
spectroscopy. In the biosorption studies, dye removal was 
optimized by the parameters of pH (2–8), dye concentration 
(10–250 mg/L), biosorbent amount (0.5–10 g/L), contact 
time (0–240 min) and temperature (25–50 °C). 

In the equation, Co is the initial concentration of the dye 
(mg/L) and C is the concentration (mg/L) at time t.

The biosorption capacity of hemp wastes is calculated 
according to the following Eqs. 2 and 3.

(1)%Biosorption =
Co − C

Co
× 100

In Eqs. 2 and 3, qe is the biosorption capacity (mg/g) at 
equilibrium, qt is the biosorption capacity (mg/g) at t = t, 
Ce is the final concentration (mg/L), V  is the solution vol-
ume (mL), and m is the biosorbent amount (g). Biosorption 
experiments were repeated three times.

Characterization

To investigate the relationship between hemp waste and the 
dye MO, chemical structure analysis was performed using 
a the attenuated total reflection Fourier transform infrared 
spectroscopy (ATR-FTIR) spectrophotometer (Bruker, Ten-
sor II) in the range 4000–400 cm−1. Morphological images 
were obtained using Tescan Mira 3 XMU scanning electron 
microscopy (SEM) instrument. Absorbance values of the 
dye MO were determined by ultraviolet (UV) spectroscopy 
(Schimadzu 1601).

Genetic programming

GP is the pioneer of automatic programming methods and 
is the basis of the genetic algorithm (GA). It was intro-
duced in 1985 by Cramer (1985) and further developed by 
Koza (1994). The steps of the algorithm of GP are similar 
to those of GA. The most fundamental difference between 
the methods is the representation of the solutions. While 
GA represents the solutions as fixed code sequences, GP 
represents them as parse trees whose structure consists of a 
combination of terminals and functions. The smallest unit 
of trees is called a node in GP. The nodes are selected from 
the set of terminals (variables and constants such as x and y) 
and the set of functions (arithmetic operators, logical func-
tions, mathematical functions) defined specifically for the 
problems.

(2)qe =
(Co − Ce).V

m

(3)qt =
((Co − Ct).V)

m

Fig. 1   a Hemp plant and b 
hemp harvested in the field

Table 1   Properties of dye

Dye Methyl orange

Chemicals formula C14H14N3NaO3S
Molecule weight (g/mol) 327.34
Ionic structure Anionic
Solubility High (for water)
Color Red-Yellow
λmax 464 nm
IUPAC nomenclature 4-dimethylami-

noazobenzene-4'- 
sulfonic acid



7360	 Chemical Papers (2022) 76:7357–7372

1 3

The flowchart GP is shown in Fig. 2. The first step of the 
flowchart is to create the initial population. The work of 
the natural selection operator, crossover operator and muta-
tion operator in GA is adapted to GP to improve existing 
solutions and search for new solutions (Poli et al. 2008). 
The natural selection operator evaluates the fitness of each 
individual in the population for the problem. In all cases, 
the fitness of the individual is determined by running a 
specific fitness function and analyzing the entire tree (Gan 
et al. 2009). Individuals that have a good fitness value are 
more likely to be represented in the next generation. In the 
crossover operator, individuals with two parents are selected 
from the population based on their fitness. The mutation 
operator is randomly determined from the selected individ-
ual mutation point/node with fitness-based probability and 
allows searching for new, unseen and unexplored solutions 
(Karaboğa 2017). The best solutions of the generation are 
transferred to the current generation in elitism. The program 
is terminated when the given termination criteria (such as 
the specific fitness value of the solutions and the number of 
iterations) are met.

In addition to the standard GP, several versions of this 
type of automatic programming have been described in the 
literature, including multigene GP (MGGP) (Searson et al. 
2010), geometric semantic GP (Moraglio et al. 2012) and 
gene expression programming (Ferreira 2001). In this study, 
MGGP is also briefly mentioned because it is studied using 
MGGP, one of the most commonly used versions.

Fig. 2   Genetic programming flowchart

Table 2   Solution of MGGP model

Genes Genotype Weight Phenotype

 

0.47 cos
(

x
1

)

+ x
2
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(
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3

)

∗ (x
1
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2
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(
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(

x
1

)
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2
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x
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multi‑gene genetic programming (MGGP)

MGGP is a widely used version of GP, which, unlike the 
standard models of GP, allows the use of multiple trees. In 
MGGP, each model is a linear combination of one or more 
trees. Each tree can be considered as part of a sub-model that 
makes a significant contribution to the overall model. In the 
model, the tree is called the “genotype” and the decoded and 
simplified tree structure is called the “phenotype” (Searson 
et al. 2010). Table 2 shows a solution for an MGGP model. 
The mathematical model of the trees representing the solu-
tion corresponds to sub-equations, where x1,x2 and x3 are 
defined as independent variables and f (x1, x2, x3) is defined 
as the dependent variable. These sub-equations form the 
general equation by using the coefficient for each bias and 
other w coefficients.

Results and discussion

ATR‑FTIR analysis

Functional groups from biosorption can be determined by 
ATR-FTIR analysis. The FTIR spectra of hemp waste and 
MO adsorbed hemp waste are shown in Fig. 3. The peak at 
3338 cm−1 of hemp waste indicates the O–H stretch, and 
the peak at 2916 cm−1 represents the C–H stretch and is due 
to the cellulose structure (Dai and Fan 2010). It increases 
the wettability of the O–H function of hemp waste. This 
may provide an advantage as a biosorbent (Viscusi et al. 
2019). It is attributed to the acetyl and uronic ester groups 
from the peak hemicellulose structure that appeared in 
1737 cm−1 (Abraham et al. 2016). The peaks at 1423, 1371, 
1320, and 1238 cm−1 represent the H–C–H plane vibration, 
plane C–H stretching, CH2 stretching and C=O stretching 
of the cellulose structure, respectively. In turn, the peaks 
at 1032 and 560 cm−1 are due to the cellulose structure and 

Fig. 3   FTIR spectrum of hemp 
wastes before and after biosorp-
tion of MO

Fig. 4   SEM images of a 
unloaded hemp wastes and b 
MO-loaded hemp wastes
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represent C–C stretching and C–OH out-of-plane bending 
bonds, respectively (Dai and Fan 2010). When the FTIR 
spectrum of the MO-loaded hemp waste was examined after 
MO biosorption, some new peaks were observed. The peaks 
at 1111 cm−1 and 1160 cm−1 are attributed to the –S=O 
and –CH3 bonds of the MO structure. The peak occurring 
at 1622 cm−1 is related to the N=N group. Small peaks 
between 524 cm−1 and 894 cm−1 that occur after biosorp-
tion are in the fingerprint region (Bayazit 2014).

SEM analysis

The morphology of the surface structure was studied to test 
the usefulness of hemp waste as a biosorbent. SEM images 
of hemp waste before and after biosorption with MO are 
shown in Fig. 4. The smooth fibrous structure of hemp waste 
before biosorption attracts attention (Chimeni et al. 2018). It 
can be clearly seen that the hemp waste swells in its fibrous 
and regular structure after biosorption of the dye MO.

Parameters affecting biosorption

The pH of the dye solution is important because it changes 
the surface properties of the adsorbent, the degree of ioniza-
tion and the color of the dye. Figure 5a shows the effects of 

pH on biosorption capacity ( qe ) and biosorption (%). MO 
has a negative charge when the solution pH is less than 3.4. 
In addition, when MO dissolves in water, it forms continu-
ous anions due to the sulfonate group in its structure. The 
resulting anions want to react with positive charges. There-
fore, the biosorption value of MO dye increases in acidic 
conditions (Lafi et al. 2020). The best removal of MO from 
an aqueous solution was achieved with 53% biosorption ( qe
=2.54 mg/g) at pH = 2. The biosorption values reached at pH 
4, 6 and 8, respectively, were determined as 44%, 38% and 
34%. As a result, it can be assumed that hemp waste adsorbs 
MO better in acidic medium. Biosorption value and biosorp-
tion capacity decrease with increasing pH.

The initial dye concentration is an important parameter 
for the biosorption process. It has been reported that adsorp-
tion capacity increases with dye concentration (Ahmaruzza-
man 2012). In the study, different concentrations of dye solu-
tion (10, 25, 50, 100 and 250 mg/L) were used to investigate 
the effects of initial dye concentration. The pH of the dye 
solution was maintained at 2, and 0.1 g/L amount of hemp 
waste biosorbent was used. The results show that the initial 
dye concentration increases proportionally with biosorp-
tion capacity (Fig. 5b). The maximum biosorption capac-
ity (122.51 mg/g) was reached when the dye concentration 
was 250 mg/L. Similarly, a biosorption value of 76% was 

Fig. 5   % Biosorption vs biosorption capacity ( qe ) a pH, b initial dye concentration, c biosorbent amount
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achieved. In agreement with the literature, it can be said that 
high concentration of MO increases biosorption (Darwish 
et al. 2019).

Hemp waste was used in amounts of 0.5, 1, 2.5, 5 and 
10 g/L to determine the appropriate biosorbent amount for 
the biosorption process. The initial dye concentration was 
adjusted to 250 mg/L and a pH of 2. It can be seen in Fig. 5c 
that the biosorption capacity decreases as the amount of 
biosorbent increases. The amount of biosorption decreases 
slightly. Although the biosorption did not change signifi-
cantly with increasing amount of biosorbent, a decrease in 
biosorption capacity was observed. A biosorption capac-
ity of 274 mg/g and a biosorption of 83% were achieved at 
the amount of 0.5 g/L hemp waste. At an amount of 10 g/L 
of biosorbent, a capacity of 9 mg/g was reached. The rea-
son for this is that as the amount of biosorbent increases, 
the active sites responsible for adsorption on the surface 
increase proportionally. Because the active sites increase in 
number, they overlap, the diffusion distance increases and 
it may be difficult for the dye molecules to reach the active 
sites. For this reason, it is thought that the biosorption capac-
ity decreases as the amount of biosorbent increases (Su et al. 
2014; Mahmoodi et al. 2016; Lafi et al. 2020).

Biosorption isotherm models

Biosorption isotherms obtained at different concentrations 
provide information about the capacity of the biosorbent, 
surface properties and adsorption mechanism. In this study, 
Langmuir, Freundlich and Harkins–Jura isotherms were used 
to investigate the equilibrium mechanism in the biosorption 
of MO by hemp waste. The Langmuir isotherm states that 
adsorption is monolayer and homogeneous on the surface of 
the adsorbent. The Freundlich isotherm states that the adsor-
bent surface is heterogeneous and there is multilayer adsorp-
tion (Li et al. 2015). The Harkins–Jura isotherm indicates 
multilayer biosorption and heterogeneous pore distribution 
on the biosorbent surface (Liu and Wang 2013; Okpara et al. 
2021). The Langmuir isotherm is shown in the following 
Eq. 4. KL (L/mg) is the Langmuir constant, and qmax (mg/g) 
is the maximum biosorption capacity. In Eq. 5, RL shows 
the dimensionless equilibrium parameter. The RL constant 
is used to determine the fitness of the Langmuir isotherm. 
The isotherm is not favorable if RL is greater than 1, linear 
if equal to 1, favorable if 0 to 1 and irreversible if equal to 
0. The Freundlich isotherm is shown in Eq. 6. Here Kf  is 
the Freundlich constant. Similarly, 1∕n is a Freundlich con-
stant related to biosorption. Biosorption is efficient if 1∕n is 
between 0 and 1 (Darwish et al. 2019; Okpara et al. 2021). 

Fig. 6   a Langmuir isotherm model, b Freundlich isotherm, c Harkins–Jura model
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The Harkins–Jura isotherm is given in Eq. 7. AH and BH 
are Harkins–Jura isotherm constants (Liu and Wang 2013).

In Fig. 6a, b, c, graphs of Langmuir, Freundlich and 
Harkins–Jura isotherms, respectively, and in Table 3, the 
data calculated using the graph are given. Based on the 
high R2 value (0.9739) of the Langmuir isotherm, it can be 
concluded that it is a monolayer adsorption mechanism. In 
addition, the distribution of active sites of hemp waste is 

(4)
1

qe
=

1

qmax
+

(

1

KL.qmax

)

(

1

Ce

)

(5)RL =
1

1 + KL.Co

(6)Lnqe = LnKf +
(

1

n

)

LnCe

(7)
1

qe2
=

BH

AH

−

(

1

AH

)

logCe

homogeneous (Table 3). The highest biosorption capac-
ity ( qmax ) value obtained from the Langmuir isotherm was 
calculated as 1428 mg/g. According to these results, the 
biosorption process is compatible with the Langmuir iso-
therm. A RL value of 0.9 indicates that the biosorption sys-
tem is favorable (Magdy et al. 2018). Since the Freundlich 
isotherm R2 value is 0.8051, it can be said that the isotherm 
of the biosorption process fits. However, it is less compat-
ible than the Langmuir isotherm. In this case, the biosorbent 
surface is heterogeneous and has good biosorption property. 
The high regression value ( R2 = 0.9234) of the Harkins–Jura 
isotherm indicates multilayer biosorption on the hemp sur-
face and the presence of heterogeneous pores on the surface 
(Okpara et al. 2021).

In the biosorption of MO on hemp waste, the initial dye 
concentration has a significant effect on the biosorption 
capacity. In the Table 4, the biosorption capacity of hemp 
waste is compared with literature data. It can be seen that the 
biosorption capacity of hemp waste is quite high. This could 
be due to its fibrous structure. The fact that hemp waste 
is naturally occurring and has a high biosorption capacity 
without any modification makes it an important biosorbent.

Kinetic models

The effect of contact time with the biosorbent was studied in 
the range of 0–240 min (pH = 2, 250 mg/L initial dye con-
centration, 0.5 g/L of biosorbent). Biosorption kinetics were 
studied using pseudo-first-order reaction kinetics (Eq. 8), 
pseudo-second-order reaction (Eq. 9), intra-particle diffusion 
(Eq. 10) and Elovich model (Eq. 11) kinetics. Respectively, 
k1 , k2 , kid , � and � are the reaction rate constants according to 
the models and are calculated and given in Table 5.

(8)log
(

qe − qt
)

= logqe −
k1

2.303
t

Table 3   Data of Langmuir, 
Freundlich and Harkins-Jura 
isotherms

Isotherm Value

Langmuir
R2 0.9739
RL 0.9
q
max

 (mg/g) 1428
KL (L/mg) 0.0004
Freundlich
R2 0.7963
1∕n 1.4097
kF(L/g) 0.31
Harkins-Jura
R2 0.9234
AH (g2/L) 2.3
BH (mg2/L) 1.436

Table 4   Comparison of hemp waste with other sorbents for maxi-
mum sorption capacity ( q

max
 ) of MO

Sorbent q
max

 , (mg/g) References

Modified extracted cellulose 16.94 Lafi et al. (2020)
Wheat straw 50.4 Su et al. (2014)
NiO-NPs 97.56 Riaz et al. (2022)
Bentonite modified Ni–Fe 

layered double hydroxide
215.9 Sriram et al. (2022)

Fe3O4 MNPs 277. 14 Azeez and Al-zuhairi 
(2021)

Papaya leaf 333.34 Ahmaruzzaman (2012)
Hemp wastes 1428 This study

Table 5   Data of kinetic models

Kinetic models Parameters Value

Pseudo-first order R2

qt(mg/g)
qe (mg/g)
k
1(min−1

)

0.3787
23.24
23.89
0.015

Pseudo-second order R2

qt(mg/g)
qe (mg/g)
k
2
 (g/mg.min)

0.9911
136.8
140.84
0.002

Intra-particle diffusion R2

ki(mg/g.min2)
0.5927
16.661

Elovich R2

�(g/mg)
0.8299
0.018
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The reaction kinetics for the biosorption process were 
investigated at pH 2, for an initial dye concentration of 

(9)
t

qt
=

1

k2.qe2
+

1

qe
t

(10)qt = kid ⋅ t
1∕2 + C

(11)qt =
1

�
ln(�.�) +

1

�
lnt

250 mg/L, 0.5 g/L of hemp waste and a contact time of 
240 min. By evaluating the experimental data with kinetic 
models, it was found that the biosorption kinetics agreed 
well with the pseudo-second-order kinetic model for hemp 
waste (Fig. 7b). Biosorption was found to follow the pseudo-
second-order kinetic model. Representation of the biosorp-
tion kinetics of MO to hemp with second-order reaction 
kinetics indicates the presence of chemisorption (Sriram 
et al. 2022). On the other hand, the Elovich kinetic model 
expresses ion exchange; since the R2 value is 0.8299, ion 
exchange can also be mentioned (Su et al. 2014). Regres-
sion values of first-order reaction kinetics (R2 = 0.3787 ) and 
intra-particle diffusion model ( R2 = 0.5927) are low. While 
these results confirm the existence of a chemical type of 
biosorption between hemp waste and MO, it is thought that 
ion exchange may also occur.

Biosorption thermodynamic

To examine the effect of temperature on the biosorption of 
MO to hemp, the biosorption process at 25, 35 and 50 °C 
temperatures was investigated (Fig. 8). Thermodynamic 
parameters enthalpy energy (∆H, kJ/mol), entropy change 
(∆S, kJ/mol.K) and free energy change (∆G, kJ/mol) data 
were calculated according to Eqs. 12, 13, 14. The graph in 

Fig. 7   Biosorption kinetics of hemp wastes a pseudo-first order, b pseudo-second order, c Elovich, d intra-particle diffusion

Fig. 8   Biosorption thermodynamic
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Fig. 8 is obtained according to the Van’t Hoff equation in 
Eq. 13.

Here, Kc is the equilibrium constant, Ca is the amount of 
dye retained in unit mass of biosorbent (mg/g), and Ce is the 
dye concentration remaining in solution (mg/L). Ideal gas 
constant R is taken as 8.314 J/mol K.

∆H value was calculated as − 0.18 kJ/mol, and ∆S value 
was calculated as − 1.072 kJ/mol.K. The ∆G value calcu-
lated for 25, 35 and 50 °C temperatures was determined 
as 319.2, 330 and 346.07 kJ/mol, respectively. ∆H and ∆S 
values are negative in the results obtained. These results 
show that biosorption exhibits exothermic behavior and has 
a decreasing entropy characteristic. Positive ∆G values indi-
cate that biosorption will not occur spontaneously and its 
applicability is low with increasing temperature (Azeez and 
Al-zuhairi 2021; Joudi et al. 2020).

The biosorption values obtained at 25, 35 and 50 °C 
were 83%, 72% and 71%, respectively. In accordance with 
the thermodynamic data results, increasing temperature 
decreased the biosorption. Conditions affecting biosorption 
were also investigated with GP in addition to experimental 
results. Due to the negative effect of the temperature increase 
on the biosorption process, the temperature value was taken 
as 25 °C in GP input values. The GP model was operated on 
the experimental data obtained at 25 °C.

(12)Kc = Ca∕Ce

(13)InKc =
ΔS

R
−

ΔH

R
.
1

T

(14)ΔG = ΔH − TΔS

Desorption capacity

At the end of the optimized biosorption process in the last 
part of the experimental study, the desorption capacity of the 
MO-loaded hemp waste biosorbent was investigated. First, 
the dye-loaded biosorbent was filtered and dried in an oven 
at 40 °C for 24 h. It was then used in desorption experiments. 
The hemp waste biosorbent was regenerated in HCl, NaOH 
and NaCl aqueous solutions (0.1 mol/L each) for 240 min. 
At the end of the desorption experiments, the solution was 
filtered by filtration and the biosorbent was separated from 
the solution. The amount of desorption was determined by 
reading the absorbance of the sample taken from the remain-
ing solution in UV spectroscopy at 464 nm. The amount of 
desorption was determined according to Eq. 15.

Here qdes is the amount of MO desorbed (mg/g).
In this way, the results for both the recovery of MO and 

the reusability of the biosorbent are given in Fig. 9. Accord-
ing to the results, the desorption of the biosorbent was 
obtained in minimum HCl solution (7.5%) and maximum 
NaOH solution (40.6%). According to these results, hemp 
waste is a low cost and usable sorbent for removal and recov-
ery of MO dye from aqueous solutions.

Modeling the biosorption process with MGGP

In this section, we present the experimental results of MGGP 
using a dataset. First, we explain the dataset used and then 
go into detail about the experimental setup of the current 
study. Finally, we present the results obtained with the 
dataset.

Dataset

As mentioned earlier, the goal of this study is to build a 
model that describes the relationship between input and 
output features. The dataset is partitioned based on the data 
partitioning widely used in machine learning (70% training 
and 30% test samples). The total number of samples in the 
dataset is 123, so 86 randomly selected samples (about 70%) 
were used for training and the remaining 37 samples (about 
30%) were used for testing. Each data sample has 6 features: 
( x1 ) pH, ( x2 ) initial dye concentration (mg/L), ( x3 ) biosorb-
ent amount (g), ( x4 ) contact time (min), ( x5 ) temperature 
(°C), ( y ) biosorption (%). The biosorption is the target fea-
ture ( y ) and should be predicted from other features.

(15)Desorption = (qdes∕qads) × 100

Fig. 9   Desorption of MO with different solvents (pH 2, Co ∶ 
250 mg/L, m: 0.05 g, contact time: 240 min, temperature 25 °C)
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Fitness function and parameters

We used the algorithm MGGP to improve the predictive per-
formance of the removal proses modeling. The performance 
of the models is evaluated using the root-mean-square error 
(RMSE) on both the training set and the test set. The fitness 
function is shown in Eq. (16).

where N is the number of samples, f
(

xi
)

 is the outputs of the 
extracted models and Yi is the real outputs. The complexity 
of the solution trees obtained by the methods is calculated 
by Eq. (17) in proportion to the number of nodes and the 
depth of the trees.

where C is the complexity of the tree, d is the depth of the 
tree and n is the total number of nodes in the correspond-
ing depth of the tree. In addition, the performance of the 
modeling was statistically evaluated by the coefficient of 
determination (goodness of fit, R2 ) using Eq. (18):

(16)RMSE =

√

√

√

√
1

N

N
∑

i=1

(

f
(

xi
)

− Yi
)2

(17)C =

d
∑

k=1

n ∗ k

(18)R2 = 1 −

∑N

i=1

�

f
�

xi
�

− Yi
�2

∑N

i=1

�

Yi − Y
�2

where N is the number of samples, f
(

xi
) and Yi are the pre-

dicted and real y values of sample i , respectively, and Y is 
the mean of the real output values. Other parameter val-
ues used in GP are listed in Table 6. The divide(∕) function 
in the function set is a reserved version where the value 
of the divisor equals 0 and is later corrected to 1. Other-
wise, a normal division is performed. The function square 
defines the square of a number, the function cube is the third 
power of a number, the function mult3 is the multiplication 
of three variables ( x1 * x2*x3 ), and the function add3 is the 
sum of three ( x1 + x2+x3 ) used in the runs. Also, neg(−x) 
and negexp(exp(−x)) are defined. It was decided to use the 
parameters listed in Table 6 by trying different parameters.

Modeling results with MGGP

The simulation results in Table 7 are obtained by indepen-
dently testing MGGP with 100 runs of 500 iterations each. 
In the experiments, the data were not normalized because 
the samples in the data set are more successful with non-
normalized data. However, the dataset is randomly shuffled 
to monitor the success of the algorithm with unseen data. 
When evaluating the simulation results, it can be seen that 
many of the models have a R2

train
 value close to 1, indicating 

a good fit to the training data. This means that the models 
provide a very good approximation to the problem function 
in the region of interest.

Figures 10 and 11 show how well the best model fits the 
training and test data, respectively.

Equation (19) shows the best overall model of all runs 
performed by GP. The best model in all runs builds x1 , x2 , 
x3 , x4 parameters. The temperature parameter is not included 
in the model. Information about the complexity of the model 
can be found in Table 8, and the relationship between gene 
weights is shown in Fig. 12. As shown in Fig. 12, the best 
model consists of 6 genes and the second gene has abso-
lute size compared to the other genes. In addition, using the 
p-value, we highlight the bias coefficient of the model and 
all genes are less than 0.05 at a 95% confidence level, which 
makes it significant and necessary for the model.

The expression complexity in Table 8 is calculated using 
Eq. (17). The total number of nodes in all genes was 38, 
which is an ideal number for a model of complexity. It is 

(19)

y = 5563e
−

√

x2

tanh(x4) − 21.28ln
�

ln
�

x1
��

+ 90.75tanh
�

x2
3
x2
4

�

− 32.79tanh

�

0.8722x2

x4

�

− 6.625e + 5tanh

�

0.0046tanh
�

x4
�

x2

�

+ 0.06485x3
1
− 0.06485x1x3x4 + 24.23

Table 6   Parameters

Parameters GP

Population size 500
Initialization Ramped half and half
Maximum tree depth 4
Crossover rate 0.84
Mutation rate 0.14
Direct reproduction rate 0.02
Maximum number of gen 6
Functions times, minus, plus, rdivide (pro-

tected), square, tan, exp,log, 
mult3, add3, cube, negexp, neg, 
abs

Table 7   Simulation results of GP

Metrics Best fitness R
2

train
R
2

test

Mean 7.84 0.90 0.94
Best 5.92 0.95 0.96
Worst 8.84 0.88 0.88
Standard Deviation 0.56 0.01 0.02
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Fig. 10   Multi-gene regression 
the best model prediction

Fig. 11   Multi-gene regression 
the best model prediction scat-
terplot
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Table 8   Structural properties 
relating to MGGP model 
representation

Description Value

Genes 6
Nodes 38
Expressional complexity 111
Depth 4
Inputs 4
Inputs used x

1
,x

2
,x

3
,x

4

Fig. 12   Gene weights of the 
best model

Fig. 13   Population input fre-
quency of all runs ( R2

train
≥ 0.75

)
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clear that all parameters except temperature are included in 
the mathematical equation of the best model. Also we visu-
alize at the frequency distribution of input variables in all 
best models from 100 runs, which are represented by R2

train
 

in Figs. 13 and 14. An R2
train

 value of 0.75 in our experiment 
indicates that 75% of the variance of the studied dependent 
output variable ((y ) biosorption) is explained by the vari-
ance of the independent input variables ((x1 ) pH, ( x2 ) initial 
dye concentration, ( x3 ) biosorbent amount, ( x4 ) contact time, 
( x5 ) temperature). Therefore, in Figs. 13 and 14, frequen-
cies were calculated over the most successful models of the 
experiments with R2

train
 values of 0.75 and 0.9, respectively.

The population size of each run is 500. The population 
size of a total of 100 runs is 500*100 = 50,000. In other 
words, Figs. 13 and 14 are obtained by evaluating 50,000 
different individuals. Among these 50,000 individuals, there 
are 44,125 individuals with R2

train
 value greater than 0.75 and 

14,181 individuals with R2
train

 value greater than 0.9. When 
the input frequencies of 44,125 individuals are evaluated, 
the frequency of occurrence of parameters in models is x1 , 
x2 , x4 , x3,x5 from strong to weak. Also, the input frequen-
cies of 14,181 individuals have the same order. When both 
graphs are evaluated together, it is concluded that the most 
important input for this dataset is x1 (pH).

Conclusion

In this study, the biosorption mechanism of MO, an anionic 
dye from hemp waste, was investigated, and hemp waste 
was selected as the biosorbent. It was found that hemp waste 
achieved 83% biosorption at a pH of 2, an initial dye concen-
tration of 250 mg/L, 0.5 g/L biosorbent, and a contact time 
of 240 min. The results of FTIR and SEM show that MO is 
biosorbed in fibrous hemp waste. The biosorption process 
was consistent with pseudo-second-order reaction kinetics. 

Biosorption in homogeneous monolayers and on heterogene-
ous surfaces was performed according to the isotherms of 
Langmuir, Freundlich and Harkins–Jura. A very high qmax 
value of 1428 mg/g was obtained in the biosorption process 
of the MO dye of hemp waste. Desorption studies of hemp 
waste showed 40.6% dye recovery in NaOH solution, and 
hemp waste is a recyclable biosorbent. It was concluded that 
the use of hemp waste will provide an advantage both in 
recycling vegetable wastes and in the fight against water pol-
lution. In addition to, hemp waste can be placed inside struc-
tures of certain sizes (e.g., pipes, ropes and metal or glass 
rods) rather than dumped directly into irrigated areas. Thus, 
when the structural element is removed from the water, the 
dye-loaded biosorbent is separated in the water.

We also extracted the modeling of the biosorption pro-
cess. In doing so, we have compared the results of the model 
obtained using the MGGP with the results obtained from real 
experiments. Our proposed MGGP models validated on real 
experiments have achieved superior performance and have 
shown high R2 values in the obtained results. The model 
results are in agreement with the experimental data. In this 
case, apart from the temperature (because it is a constant 
value), the amount of biosorbent was the parameter that had 
the least effect on the biosorption in the experimental data. 
Although the amount of biosorbent affected the biosorption 
capacity in the experimental results, it did not significantly 
affect the biosorption. The most influential parameters are 
pH, initial dye concentration and contact time. In future, we 
plan to use the hemp waste biosorbent for the removal of 
other dyes and heavy metals.

The original aspect of this study is the use of the wastes 
of the hemp plant, which has just started production in Tur-
key, to remove MO dye from the aqueous solution, while the 
other is the successful model obtained by multigene genetic 
programming of the parameters affecting the process.

Fig. 14   Population input fre-
quency of all runs ( R2

train
≥ 0.90

)
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