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Trace Formulae for a Conformable Fractional Diffusion Operator

Yasar Cakmak?

?Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, 58140 Sivas, Turkey

Abstract. In this paper, we obtain the regularized trace formulae for a diffusion operator, which includes
conformable fractional derivatives of order a (0 < a < 1) instead of the ordinary derivatives in a traditional
diffusion operator by the contour integration method. The results of this paper are of great importance in
solving inverse problems and can be considered as partial fractional generalizations.

1. Introduction

The fractional derivative has an important place in the applied mathematics. Since 1695, several defini-
tions of fractional derivatives such as the Riemann-Liouville, Caputo, and Griinwald-Letnikov derivatives
have been introduced by many authors (see [1]-[4]). In 2014, Khalil et al. defined the conformable fractional
derivative by modifying the limit definition of the classical derivative (see [5]). Shortly after, Abdeljawad
showed the elementary properties of this derivative (see [6]). Some other important ideas on the con-
formable derivative were given in ([7], [8], [9]). In 2017, Zhao and Luo gave a physical interpretation of
this derivative (see [10]). There are many advantages of Conformable fractional derivative with respect to
fractional derivatives. For example, while some mathematical properties such as the product, chain, and
division rules are not provided in fractional derivatives, these properties are provided in the conformable
fractional derivative. In [11], it has been realized that this derivative proves to be essential and useful in
generating new types of fractional operators. The Conformable fractional derivative arises in various fields
such as anomalous diffusion, variational calculus, mechanics, arbitrary time scale problems (see [12]-[17]).
Recently, important studies for various operators and differential systems which include the conformable
fractional derivatives have been published (see [18]-[30] and references therein).

The trace of a matrix with finite-dimensional is the sum of the elements on the main diagonal and is
finite. However, the trace of ordinary differential operators with infinite-dimensional, which is the sum of
all eigenvalues, is not finite. Therefore, the concept regularize trace, which is finite, is mentioned for these
type operators. The regularized trace formulae have great importance, especially, in the solution of the
inverse problem according to two spectra.

For about seventy years, the regularized trace formulae for the different types of differential operators
have been investigated. Firstly, in 1953, Gelfand and Levitan obtained the regularized trace formula for
the classical Sturm-Liouville operator with Neumann conditions (see [31]). The study led to the birth of a
great and very important theory. After this study, the theory of regularized trace has been continued for
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the various operators by many researchers (see [32]-[48], and references therein). In 2010, Yang obtained
the regularized trace formulas for the classical diffusion operator, i.e., a quadratic pencil of the Schrodinger
operator (see [49]). For the conformable fractional differential operators, there is only one study on the
trace formulation. In 2019, Mortazaasl and Jodayree Akbarfam calculated the regularized trace formula for
a conformable fractional Sturm-Liouville problem (see [50]).

We consider the boundary value problem L,(p(x), g(x),h, H) = L,, called as the conformable fractional
diffusion operator (CFDO), of the form

oy = —ToToy + [2Ap(x) + g(x)] y = )\Zy, O<x<m (1)
Ua(y) := Tay(0) — hy(0) =0 2)
Va(y) = Tay(n) + Hy(m) = 0 (©)

where A is the spectral parameter, 11, H € R, q(x) € W;a [0, 7], p(x) € W%a [0, 7t] are real valued functions,
p(x) # const., « € (0,1] and T,y is a conformable fractional derivative of y = y(x) of order & which is defined

by

h 1-ay _
Ty = i PE )~ ()

lim A , x>0and T,y(0) = JCh_}r(r)ETay(x).

We note that more detailed knowledge about the conformable fractional calculus can be seen in [5]-[7],
[27]-[29].

In the present paper, we obtained the asymptotics of the eigenvalues and eigenfunctions of the operator
L, in the section Preliminaries and the regularized trace formulae for the operator in section Main Result.

2. Preliminaries

In this section, we will obtain the asymptotics of the eigenvalues and eigenfunctions of the operator L,.
Let the functions ¢ = @ (x, A; @) and ¢ := ¢ (x, A; a) be the solutions of the equation (1) satisfying the
initial conditions

respectively. It is clear that U, (@) =0, V, (¢) = 0.
Denote
v

Ay (A) = Wo [y, 0] = = YTap — ¢Tat), (6)

Ty Tap

where A, (1) is called as the characteristic function of the operator L, and W, [¢, ¢] is the fractional
Wronskian of the functions i and ¢. Furthermore, it is proven in [50] that W, [¢, ¢] does not depend on x
for each fixed & and can be written as

Aa(N) = Va(p) = —Ua (¥). ?)
Lemma 2.1. For [A] — oo and each fixed a, the following asymptotic formulae hold:

@ (x,A; ) = cos (?—Yx“ - P(x)) +0 (I}_I exp (%x"‘)) , (8)

Tap (x, A; ) = = (A = p(x)) sin(%x"‘ - P(x)) +0 (exp (%x”)) )

where A = 0 + it and

P(x) := fo p(t)dat. (10)
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Proof. Based on the proof of Lemma 1 for a = 1 in [51], we can rewrite equation (1) as follows

Tap(x) Tap(x)
T, Toy+ ———T,y+ A —p(x X)+p ()| y+ ——=T,y. 11
VT et PPy = [900 + @]y + £ T (11)
Itis clear for each fixed a that the system of functions {cos ( P(x)) sin (%x“ - P(x))} isa fundamental
system for the following differential equation
Tap(x) 2
T, Toy+ Ty +[A—px =0. 12

Thus, by the variation of parameters the solution of equation (1) satisfying the initial conditions (4)
provides the following integral equations

@(x, A; a) = cos (}‘ & — P(x)) + A_p(o) sm( - P(x))

in ’E(x“—t"‘)—P(x) P(t) Ta
o [ttt gy 2 0) o, i) + 2Tt )] (13)

and by a—differentiating (13) with respect to x,

Top(x, A;a) = — (A = p(x)) {sm( P(x)) =0 p(o) cos( x* - P(x))

o [l (g ) gt 2500 + EER T, ] . 0

For each fixed «, denote

p1 (A) = gxg‘(p(x, A; @) exp (—%x“) 2 (A) = max Tap(x, A; ) eXP(—lallxa) :

Since 'cos( P(x))l < exp (%xa) and ’sin(ﬁxa - P(x))’ < exp (%xb‘), we deduce from (13) and (14)
that

H1 (A) < C(l + ||;1\|\ + H‘l(f\) + “C\(lé))/ L2 (A) < C(I/\l + |h| + L (/\) + le/ii\))

Hence, we get
u (1) <G ua(A) < CIA
or
¢ (x, A;0) = O (exp (Hx)), Tap (x, A;0) = O(Aexp (Ex?)), 1Al - oo.

Substituting these into (13) and (14) we obtain (8) and (9). O

Applying successive approximations method to the equations (13), we can have the more detalied



Y. Cakmak / Filomat 36:14 (2022), 4665—4674 4668

asymptotic of the function ¢ (x, A; @) as follows

p(x, A; @) = cos (gx“ - P(x)) + p—(x)zap(o) cos (ﬁx"‘ - P(x))
+1 (h +1 f ) (a0 + p2() dat) sin (2x* - P(x))
0

+31 fo x (q(t) + Pz(t)) sin (ﬁ (x* = 2t%) — P(x) + 2P(t)) dot

_ﬁbﬂﬁumaas@cw—2#)—H@+2ﬂﬂyMt (15)
o M) g [ g+ 200) () - mm+mw»%4ﬁnGW—P@ﬂ

x 2
|z Gy [0 (q<t>+p2<t>)daf—%( | (q<t>+v2<t>)daf)]cos(éx“—f’(x))

Tl
+O(IAI’ exp( )), [A] = oo,
uniformly with respect to x € [0, 7], for each fixed a.

The eigenvalues of L, coincide with the zeros of its characteristic function Ay(A) = V, (@) = Tap(mt, A; a)+
Ho(n, A; a). Thus, using the formula (15), we can establish the following asymptotic

Aad) = =Asin (37% - co) + LOO) i (A2 _ ) 4 ¢y cos (A — ) + % sin (27 — o)
+% cos (4n* - ¢o) + 1 f () + p*(t)) cos [ 2 (" = 2t%) = co + 2P (1) dat (16)
+1 j; Tt sin[2 (7 - 26%) = co + 2P(8) dut + o(# exp (lailrc"‘)), A] = oo,
where,
¢ = P(m) = [[" p(t)dat,

co=h+H+1 [7(q) + () dat,

T 0)—p(0 1+a()—pl+a p— 1+a . . ,
o =N >(p<2> PO) _ p PO (e Z(ﬁ(ai) +hH + 5 [ (q(t) +p2(t)) dot + 1 (fo (q(t) +p2(t)) dat) ,

(H-h)(p(r)-p(0 T
= BEBGETO) 4 3 [ (g(t) + () (2000) ~ p() PO it
Take a circleI'y = {}LI Al === (N + ) N=0,12,.. } in the A—plane for each fixed a. By the standard

method using (16) and Rouche’s theorem (see [52]) and taking A,(A,) = 0, one can prove that in the circle
I'y, there exist exactly |n| eigenvalues A, and have the form

no acpg 1 +A,

Ap =
w1l e nm

+ O(lz), [n] — oo, 17)
n

where n € Z and

7T 7T
Ay =1 f (q(t) + pz(t)) cos(fjt? + 2k 2P(t)) dot — % f Tap(t) sin(ﬁfftt + 2k 2P(t)) dyt
0 0

Corollary 2.2. According to (17), for each fixed o and sufficiently large |nl|, the eigenvalues A, are real and simple.
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In this section, we will find two regularized trace formulae for the operator L, using the contour

integration method as in [49].

Theorem 3.1. Let {A,},~q be the sequence of the eigenvalues of the operator L,. Then, for each fixed a, the following

trace formulae are valid:

2(Ao —co)+ ) [An+ Ay — 200 - A | = KOO

anlw n

2 i

-1 fo n(1 2) (q(t) + p*(1)) sin 2P(t)dat + § j; n(l 2) Tap(t) cos 2P()d,t

and

zmo—wf+§:kmfww?ukm—%f—z@ﬂaz—ﬁﬁ—Zﬁﬂ

=1
Sy a ' (95 + p*() cos 2P(B)dat + & f ' Top(t) sin 2P(t)d, t
0 0
+ (p() = o) (p() = P(O)) = (p() = )™ + (p(0) = o) — LD
7 T 2

+2hH + (h + H) fo (9 + p2(t)) dut + & ( fo (9t + () dat) ,

where

By = [ (q(t) + p(t)) sin (2
Cu = [ (9(t) + p2(1)) cos (225 ) cos 2P(t)dat + [ Tup(t) cos (221 ) sin 2P(t)dt.

) sin 2P(t)d,t — fo T.p(t) sin (zszf ) cos 2P(t)d,t,

Proof. Firstly, we consider the case ¢y = 0.
Denote

A(A) = —Asin (A n“) .

It is clear for each fixed a that the zeros of the function A(A) is

Un = e nez,

%= a1’

(18)

(19)

(20)

where only 1 = 0 is double. We note that for each fixed «a and sufficiently large N, the eigenvalues A,

which are the zeros of A,(A) are inside I'y and the numbers u, do not lie on the contour I'y.

Let Ay(A) = A(A = A,) and AY(A) = A(
functions A, (A) and A%(A) that

. .0
Aa(A) _ 20 = Ay A,(N) 24 - %
A = an = T
Ag(A) A=Ay Ad(A) =

respectively where A= %.
Thus, from the residue theorem, the following equalities are valid:

N
Al 1y _ 2 2a()
& P ARfar= ) Res (150, ) = Z(/\ + 1)
N

n=-—N

) then we have from the logaritmic derivatives of the

(21)
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and similarly

N N
1 AH(A) A (A)
R ARm = )3 Res( ng nﬁal) Z [t + (=2))

n=-—

Subtracting (21) and (22) side by side, we get

N . .0
| AV _ ALY __1 Aa(A)
Y A+ A= gsﬁ /\(AM) - AM)M L /\d(l n %) = —z—mgg In SpdA.
n=0 In I'n
On the other hand, it follows from (16) and (20) that

% =1- p(n)+p(20A>+ZA(A) - Cl+fu) cot(%n"‘) -2-3 cot(A "‘) + O()\q exp(h| “)), on Ty,

where
AN =1 [7(qt) + p2(t)) sin (B2 — 2P(H)) dat + 1 [ Tup(t) cos (AL - 2P(t)) dat,
(1) =1 [ (q(t) + p2(t)) cos (B — 2P(H)) dat — § 1" Tup(t) sin (2L - 2P(t)) d,t.

Taking Taylor’s expansion formula for the In(1 — u) into account, we get

IH(ASEQ)) p(n)+p(20/{+2A(A) _ cl+f( )Cot(/\ a) + O( ) on Ty.

Thus, substituting (25) into (23), we find

N
Y A+ A = 56 OB A + 5L 56 a8 cot (2n*) dA + 2 95 O(%)dA.
n=0 I'n

I'n I'n

4670

(22)

(23)

(24)

(25)

(26)

By the well-known formulas such as the generalized Cauchy integral formula, the residue theorem and

cotz = 1 +2zY 00 m (see [53] for more details), the contour integrals in (26) calculate that

1 pm+p(0)+244) 54 _ p(m+p(0)
—56 0240 ) = 1020 4 4 (),

27
I'n

. N
L 56 S cop (An)dd = 2BO 4 1Y 1[B (22 ) - B(- 22

I'n n=1

and for sufficiently large N and each fixed «

$ o(k)a|- o)

From (26)-(29), we get

N
200+ Y {An+ Ay — sk [B () - B (-5 )]} = 22522 + A 0) + B0 L 0(4).
n=1
For N — o0 in (30),

2Ao+i{/\n+/\-n L [B(2) - B~} = 2% 4 A 0) + ai)
n=1

is obtained.
Now we consider the case ¢y # 0.

(27)

(28)

(29)

(30)

(31)
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It is obvious that we can rewrite the equation (1) as
~ToToy + [2(A = o) (P(x) = €0) +9(x) + 2cop(x) = G|y = (A = o) .
Denote A —¢g = A, q(x) + 2cop(x) — ¢ = q(x) and p(x) — co = p(x). Thus we get that
—T,Toy + [2;\1;7(x) + ’qv(x)] y= Xzy. (32)

For the equation (32), in the case ¢y = foﬂ p(t)dat = 0, according to (31), we obtain

naml-a v/

Mot Y [l = ] = B 4 7 (0) 4 2B )

where
A(X):=A)=A(A),B(1):=B(A) =B(A) and B(4Z) - B(-2) = B,.

Substituting the expressions of Xn, g(x) and p(x) into (33), we arrive at (18).
Similarly, we prove that the formula (19) is true.

We consider the case ¢y = 0 again. Denote A,(A) = A2(A — A,) and AY(A) = A2 (/\ -t ) Then, we have

-1

N

2, 2 na \? na V| Z 2( M) _ A
Z[A A%, - () _(_nﬁl)]— ﬁg@ A (AM)‘M(A))M
n= N
— 2 AN a(A)
= 5 D Ad(In 55) = — 2% 95 2A1In SdA. (34)

From (24), we obtain

1r1(A E;\;) = p(n)+p(20A)+2A(A) - C]Jf(}\) cot(?;n“) - ;22 -3 cot(A “) + O(%) onIy. (35)

Thus, the integral on the right side of (34) is written as

- 2/\ In Aggj;dA S D [p(r0) + p(0) + 2A (V)] dA + 5= Sé 2[c1 + B(A)] cot(%na)d)\
N N

2mi 2mi
I'n I'n

+5L 2C2d)\+— 2 cot(4 a)cm+2mg§ O(%)da. (36)
I'n

For the contour integrals in (36), we have

5= @ [p(n) +p0) +2A(M)]dA =0, )
I'n

7 2ler+ B cot () dh = Z + SN+ 20+ Z [B(22) + B(-22)], 8)

ﬁ ) %d/\ = 2C2 , (39)

= %cot(%n“)d/\ =0. )

I'n
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Substituting the expressions of (29) and (37)-(40) into (36), we arrive

N
2711 2/\1 Agg\\)d/\ 2ac1 4 4M1N " 2a550) 4 20 2 Z [B(nZLY ]) + B( i 1)] +20) + O(%)
n=1
and from (34)

N
203+ ) {12402, - 2(2e ) -t - 2 B () 4 B(- 28]} = 20 4 204204 0(4). @)
n=0

For N — oo in (41),

> 2

23+ )" {2422, -2 ()" - 220 - 2 [+ B (- )|} = 2 4 220 0y (42)
n=0

is obtained.
In the case ¢y # 0, from (42), we can write that
~ 2 r— ~ 2 —

222 + Z [Aﬁ +A2, -2 (L) -t zjif"] = 20 4 280 4 o7 (43)

n=0

Substituting the known expressions of Xn, g(x) and p(x) into (43), we arrive the formula (19), where

C. = B(Z5) +B(-45),

c1 =<1,

~  (p-a)(p-p©)  (pr0-c0) +(pO)-c)" (pr0-p©@)* (h+H) (T 5
€2 = 2 - 2 T T 4(+a) +hH + == fo (Q(f) +p (f))daf

+1 ([ (a) + p21) dat)z . O

4. Conclusion

In this paper, we suggested a diffusion operator with conformable fractional derivatives and obtained
the trace formulae for this operator. This results can be considered as a fractional generalization of the
trace formulae for the classical diffusion operator in [49]. We believe that the researchers can study inverse
problems according to two spectra for the given operator by using these formulae.
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