

BEST PROXIMITY POINT RESULTS FOR Γ CLASS OF MAPPINGS

RAMALINGAM SAKTHI, SELMA GULYAZ-OZYURT, AND SARAVANAN KARPAGAM

ABSTRACT. In this manuscript, we define the class of Γ consist of p-cyclic mapping with certain assumptions. We investigate the existence and uniqueness of a best proximity point in the setting of a metric space with an additional condition p-completeness. Further, we examine the both existence and uniqueness a best proximity point for the mapping that lies in this class in the context of strictly convex normed linear space.

1. Introduction

In nonlinear functional analysis, best proximity point theory is a crucial tool with dealing with the approximate solutions. Indeed, fixed point theory and best proximity point theory are like two halves of a whole and the same time, they are complements of the each other. In case the equation Fx = x has an exact solution, we deal with the fixed point theory. On the other hand, if there is no exact solution of the equation Fx = x, the best point of proximity theory enters the discussion. Roughly speaking, for a self-mapping F on a metric space (X, d), existence of a fixed point theory is the equivalent of the equation d(x, Fx) = 0. In the case d(x, Fx) > 0we investigate the best approximation. This problem turns into more interesting if consider two subsets A, B of a metric space in a way that $F:A\to B$. In this case, the best approximation is equivalent to the solution of the following equation d(x, Fx) = d(A, B) where $d(A, B) := \inf\{d(a, b) : a \in A \text{ and } b \in B\}$. The solution of the last equality is called best proximity point of non-selfmapping F. It should be noted that almost all real world problems can be expressed as Fx = x, as fixed point problem. As it is expected, not all equations have an exact solution and that express the necessity of the best proximity point theory [1, 9, 12, 13, 18].

In what follows, we shall recall the cyclic mapping and cyclic contractions. For non-empty subset A, B of a metric space (X, d), a selfmapping T on $A \cup B$ is called cyclic if $T(A) \subset B$ and $T(B) \subset A$. In 2003, Kirk-Srinivasan-Veeramani [26] proposed a new contraction, namely cyclic contraction, based on the cyclic mappings. After this initial paper, existence and uniqueness of a cyclic mapping has been investigate heavily by many authors, see e.g. [2-7, 11, 14, 15, 19-23] and the related reference therein.

2. Preliminaries

Definition 2.1. Let (X, d) be a metric space. Let $A_1, A_2, ..., A_p (p \ge 2)$ be non empty subsets of X.

²⁰²⁰ Mathematics Subject Classification. Mathematics Subject Classification: 54H25 47H10. Key words and phrases. p-Cyclic maps, best proximity points, p-completeness.

- (1) A map $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ is called a **p-cyclic map** if $T(A_i) \subseteq A_{i+1}$ where $A_{p+i} = A_i$ ([24]).
- (2) A point $x \in A_i$ is said to be a **best proximity point** of T in A_i , if $d(x, Tx) = dist(A_i, A_{i+1})$ ([24]).
- (3) Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map. T is said to be a **p-cyclic non** expansive map if for $x \in A_i$, $y \in A_{i+1}$, $d(Tx, Ty) \leq d(x, y)$ ([24]).
- (4) A p-cyclic map T is said to be p-cyclic strict contraction([17]) if, for all $x \in A_i, y \in A_{i+1}, 1 \le i \le p$:
 - (i) $\rho(x,y) > dist(A_i, A_{i+1}) \Rightarrow \rho(Tx, Ty) < \rho(x,y)$; and
 - (ii) $\rho(x,y) = dist(A_i, A_{i+1}) \Rightarrow \rho(Tx, Ty) = \rho(x,y).$
- (5) A sequence $\{x_n\}_{n=1}^{\infty} \subseteq \bigcup_{i=1}^{p} A_i$ is called a p-cyclic sequence([17]) if $x_{pn+i} \in A_i$, for all $n \in \mathbb{N}_0$ and i = 1, 2, ..., p.
- (6) We say that $\{x_n\}_{n=1}^{\infty}$ is a p-cyclic Cauchy sequence([17]), if for given $\epsilon > 0$ there exists an $N_0 \in \mathbb{N}$ such that for some $i \in \{1, 2, ..., p\}$, we have
- (2.1) $\rho(x_{pn+i}, x_{pm+i+1}) < dist(A_i, A_{i+1}) + \epsilon, \ \forall \ m, n \ge N_0.$
 - (7) Let $\{x_n\}_{n=1}^{\infty}$ be a p-cyclic sequence in $\bigcup_{i=1}^{p} B_i$. If for some $j \in \{1, 2, \dots, p\}$ the subsequence $\{x_{pn+j}\}$ of $\{x_n\}_{n=1}^{\infty}$ converges in A_j , then we say that $\{x_n\}_{n=1}^{\infty}$ is p-cyclic convergent ([17]).
 - (8) We say that $\bigcup_{i=1}^{p} A_i$ is p-cyclic complete if every p-cyclic Cauchy sequence in $\bigcup_{i=1}^{p} B_i$ is p-cyclic convergent ([17]).

Proposition 2.2 ([17]). Let $A_1, A_2, ..., A_p$, $(p \ge 2)$ be non-empty convex subsets of a strictly convex normed linear space X such that $dist(A_i, A_{i+1}) > 0$, $i \in \{1, 2, ..., p\}$. Let $T: \bigcup_{i=1}^p A_i \longrightarrow \bigcup_{i=1}^p A_i$ be a p-cyclic map. Then, T has at most one best proximity point in A_i , $1 \le i \le p$.

Definition 2.3 ([17]). For a non-empty set M, suppose $\rho: M \times M \to [0, \infty)$ forms a metric and $B_1, B_2, ..., B_p$ ($p \ge 2$) are non-empty subsets of M. A p-cyclic map $T: \bigcup_{i=1}^p B_i \longrightarrow \bigcup_{i=1}^p B_i$ is said to belong to the class Ω if

- T is p-cyclic strict contraction.
- (2) If $x, y \in B_i$, then $\lim_{n\to\infty} \rho(T^{pn}x, T^{pn+1}y) = dist(B_i, B_{i+1}), 1 \le i \le p$.

Definition 2.4 ([25]). Let (X, d) be a metric space. Let $A_1, A_2, ..., A_p$, be non empty subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map such that for some $x \in A_i$, $(1 \le i \le p)$, the following inequality holds for each k = 0, 1, 2, ..., (p-1)

 $(2.2) \quad d(T^{pn+k}x, T^{k+1}y) \leq d(T^{pn+k-1}x, T^ky), \text{ for all } y \in A_i \text{ and for all } n \in \mathbb{N}.$

Then the map T is called **p-cyclic orbital non expansive map**.

Definition 2.5 ([29]). Let (X, d) be a metric space. Let $A_1, A_2, ..., A_p$ be non empty subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map such that for some $x \in A_i$, $(1 \le i \le p)$, for all $y \in A_i$ and for all $n \in \mathbb{N}$, the following inequality holds:

(2.3)
$$d(T^{pn+k}x, T^{k+1}y) \leq \alpha [d(T^{pn+k-1}x, T^ky)] d(T^{pn+k-1}x, T^ky) + [1 - \alpha (d(T^{pn+k-1}x, T^ky)) dist(A_{i+k-1}, A_{i+k})]$$

where $\alpha \in \mathbb{S}$. Then T is called, p-cyclic orbital Geraghty type map.

Proposition 2.6 ([29, Proposition 2.1]). Let (X, d) be a metric space and $A_1, A_2, ..., A_p$ be non empty subsets of X. Let $T : \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic orbital Geraghty type map with an $x \in A_i$, $1 \le i \le p$, satisfying (2.6). Then the following hold:

- a) T is a p cyclic orbital non expansive map.
- b) $\lim_{n\to\infty} d(T^{pn+k}x, T^{pn+k+1}y) = dist(A_{i+k}, A_{i+k+1}), y \in A_i$, for each $k \in \{0, 1, 2, ..., p\}$

Definition 2.7 ([25]). Let (X, d) be a metric space. Let A_i , i = 1,...,p be non empty subsets of X.Let $T : \bigcup_{i=1}^{p} A_i \to \bigcup_{i=1}^{p} A_i$ be a p-cyclic map. Then T is called a **p-cyclic orbital Meir–Keeler contraction map**, if for some $x \in A_i$ $(1 \le i \le p)$, and for each k = 0, 1, 2, ..., (p-1), the following holds: For every $\epsilon > 0$, there exists a $\delta > 0$ such that

(2.4) if there holds
$$d(T^{pn+k-1}x, T^ky) < \operatorname{dist}(A_{i+k-1}, A_{i+k}) + \epsilon + \delta$$

then there holds $d(T^{pn+k}x, T^{k+1}y) < \operatorname{dist}(A_{i+k}, A_{i+k+1}) + \epsilon$,

for all $n \in \mathbb{N}$, for all $y \in A_i$.

Lemma 2.8 ([25]). Let (X,d) be a metric space. Let A_i , i = 1,...,p be non empty subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic orbital Meir-Keeler contraction map. Then there exists an L-function ϕ such that for an $x \in A_i$ satisfying (2.4), the following hold:

(2.5) if there holds
$$d(T^{pn+k-1}x, T^ky) > \operatorname{dist}(A_{i+k-1}, A_{i+k})$$

then there holds $\lambda_{p,n,k}(x,y) < \phi(\lambda_{p,n,k-1}(x,y)),$

where we use the notation $\lambda_{p,n,k}(x,y) = d(T^{pn+k}x,T^{k+1}y) - \operatorname{dist}(A_{i+k},A_{i+k+1})$ and

(2.6) if there holds
$$d(T^{pn+k-1}x, T^ky) = \operatorname{dist}(A_{i+k-1}, A_{i+k})$$

then there holds $d(T^{pn+k}x, T^{k+1}y) = \operatorname{dist}(A_{i+k}, A_{i+k+1}),$

for each k = 1, 2, ..., p, for all $n \in \mathbb{N}$ and for all $y \in A_i$.

Remark 2.9 ([25]). From Lemma 5.1, it follows that a p-cyclic orbital Meir-Keeler contraction map is p-cyclic orbital non expansive map.

Lemma 2.10 ([25]). Let (X,d) be a metric space. Let A_i , i = 1,...,p be non empty subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic orbital Meir–Keeler contraction map with an $x \in A_i$ satisfying (2.4). Then for all $y \in A_i$ and for each $k \in \{0, 1, 2, ..., (p-1)\}$, the sequence $\{d(T^{pn+k}x, T^{pn+k+1}y)\}_{n=1}^{\infty}$ converges to $dist(A_{i+k}, A_{i+k+1})$.

Definition 2.11 ([10]). Let (X, d) be a metric space. Let $A_1, A_2, ..., A_p$ be non empty subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map such that for some $x \in A_i$, $(1 \le i \le p)$, for all $y \in A_i$ and for all $n \in \mathbb{N}$, the following inequality holds:

(2.7)
$$d(T^{pn+k}x, T^{k+1}y) \le \psi[d(T^{pn+k-1}x, T^ky) - dist(A_{i+k-1}, A_{i+k})] + dist(A_{i+k-1}, A_{i+k})$$

where $\psi : [0, \infty) \to [0, \infty)$ is upper semi continuous from the right and satisfies $\psi(t) < t$ for t > 0 and $\psi(0) = 0$. Then T is called **p-cyclic orbital contraction** of Boyd-Wong type.

Proposition 2.12 ([10, Proposition 11]). Let (X, d) be a metric space and $A_1, A_2, ..., A_p$ be non empty subsets of X. Let $T : \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic orbital contraction map of Boyd-Wong type, with an $x \in A_i$, $1 \le i \le p$, satisfying (2.6). Then the following hold:

- a) T is a p cyclic orbital non expansive map.
- b) $\lim_{n\to\infty} d(T^{pn+k}x, T^{pn+k+1}y) = dist(A_{i+k}, A_{i+k+1}), y \in A_i, \text{ for each } k \in \{0, 1, 2, ..., p\}$

Definition 2.13 ([16]). Let $A_1, A_2, \ldots, A_p (p \in \mathbb{N}, p \geq 2)$ be non empty subsets of a metric space X and $\phi: [0, \infty) \longrightarrow [0, \infty)$ be a strictly increasing map. We say that a p-cyclic map $T: \bigcup_{i=1}^p A_i \longrightarrow \bigcup_{i=1}^p A_i$ is p-cyclic orbital ϕ -contraction if for each $k = 0, 1, 2, \ldots, (p-1)$ and for some $x \in A_i$ $(1 \leq i \leq p)$, the following inequality holds:

(2.8) $d(T^{pn+k}x, T^{k+1}y) \le d(T^{pn+k-1}x, T^ky) - \phi(d(T^{pn+k-1}x, T^ky)) + \phi(d(A_{i+k-1}, A_{i+k}))$ for all $y \in A_i$ and $n \in \mathbb{N}$.

Proposition 2.14 ([16, Proposition 2.2]). Every p-cyclic orbital ϕ -contraction map is p-cyclic orbital non-expansive.

Proposition 2.15 ([16, Proposition 2.3]). Let $A_1, A_2, \ldots, A_p (p \in \mathbb{N}, p \geq 2)$ be non empty subsets of a metric space X. Let $\phi : [0, \infty) \longrightarrow [0, \infty)$ be a strictly increasing map. If $T : \bigcup_{i=1}^p A_i \longrightarrow \bigcup_{i=1}^p A_i$ is a p-cyclic orbital ϕ -contraction map such that equation (2.8) holds for some $x \in A_i$, $(1 \leq i \leq p)$, then

$$\lim_{n\to\infty} d(T^{pn+k}x, T^{pn+k+1}y) = dist(A_{i+k}, A_{i+k+1})$$

for every $y \in A_i$ and $k \in \{0, 1, 2, ..., p\}$.

Lemma 2.16 ([8]). Let (X, ||.||) be a uniformly convex Banach space. Let A and B be non empty, closed and convex subsets of X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in A and $\{z_n\}$ be a sequence in B such that the following holds:

- $\lim_{n\to\infty} ||x_n z_n|| = dist(A, B)$
- $\lim_{n\to\infty} ||y_n z_n|| = dist(A, B)$

then $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

3. Γ class of mappings

Definition 3.1. Let (X, d) be a metric space and $A_1, A_2, ..., A_p$ be non empty subsets of X. A p-cyclic map $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ is said to belong to class Γ if T satisfies the following conditions:

- (C1) T is p-cyclic orbital non expansive map.
- (C2) For each $x \in A_i$ $(1 \le i \le p)$ satisfying (2.2),

$$lim_{n\to\infty}d(T^{pn+k}x,T^{pn+k+1}y)=dist(A_{i+k},A_{i+k+1})$$

for all $n \in \mathbb{N}$, for all $y \in A_i$ and $k \in \{0, 1, 2, ..., p\}$

If $T \in \Gamma$ then T entails the distances between the adjacent sets to be equal. This is proved in the following proposition.

Proposition 3.2. Let $X, A_1, A_2, ..., A_p, T$ be as in definition 3.1. Let $T \in \Gamma$. Then $dist(A_1, A_2) = dist(A_2, A_3) = = dist(A_p, A_1)$.

Proof. Without loss of generality, let $x \in A_1$ satisfy 2.2. Then

$$dist(A_k, A_{k+1}) \le d(T^{pn+k}x, T^{pn+k+1}y) \le d(T^{pn+k-1}x, T^{pn+k}y),$$

for all $n \in \mathbb{N}$, for all $y \in A_1$ and $k \in \{0, 1, 2, ..., p\}$. Taking limit as $n \to \infty$ and by condition (C2),

$$dist(A_k, A_{k+1}) \le \lim_{n \to \infty} d(T^{pn+k-1}x, T^{pn+k}y) = dist(A_{k-1}, A_k).$$

Since this is true for each $k \in \{0, 1, 2, ..., p\}$ we have

$$dist(A_1, A_2) = dist(A_{p+1}, A_{p+2}) \le dist(A_p, A_{p+1}) \le \dots \le dist(A_2, A_1).$$

Hence the proof.

Remark 3.3. If $T \in \Omega$ then T is p-cyclic non expansive and this condition alone is enough for the distances between the adjacent sets to be equal. But if $T \in \Gamma$ then both the conditions (C1) and (C2) are needed for the distances between the adjacent sets to be equal.

4. Some known maps which belong to class Γ

Some p-cyclic maps which satisfy various orbital contractive conditions fall under class Γ .

Example 4.1. Let (X, d) be a metric space and $A_1, A_2, ..., A_p$ be non empty subsets of X. Let $T : \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic orbital Meir–Keeler contraction (definition 2.7). Then $T \in \Gamma$.

Example 4.2. Let (X, d) be a metric space and $A_1, A_2, ..., A_p$ be non empty subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic orbital contraction of Boyd-Wong type (definition 2.11). By proposition 2.12 (a) and (b), conditions (C1) and (C2) are satisfied respectively. Therefore $T \in \Gamma$.

Example 4.3. Let (X, d) be a metric space and $A_1, A_2, ..., A_p$ be non empty subsets of X. Let $T : \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic orbital Geraghty type map (definition 2.5). By proposition 2.6 (a) and (b), conditions (C1) and (C2) are satisfied respectively. Therefore $T \in \Gamma$.

Example 4.4. Let (X, d) be a metric space and $A_1, A_2, ..., A_p$ be non empty subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic orbital ϕ -contraction (definition 2.13). By propositions 2.14 and 2.15, conditions (C1) and (C2) are satisfied respectively. Therefore $T \in \Gamma$.

Remark 4.5. Let $T \in \Gamma$ and $x = x_0 \in A_i$ satisfy (C1) and (C2). Set $x_n = T^n x$. Then we see that the sequence of orbit of $x \in A_i$ is a p-cyclic sequence.

5. Best proximity point results for Γ class of mappings

Lemma 5.1. Let (X,d) be a metric space and $A_1, A_2, ..., A_p$ be non empty and closed subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map which belongs to Γ . Assume that for some $k \in \mathbb{N}$ and $x \in A_i$ $(1 \le i \le p)$, the sequence $\{T^{pn+k}x\}$ converges to $\xi \in A_{i+k}$ then ξ is a best proximity point of T in A_{i+k} .

Proof. Let $x \in A_i$ satisfy conditions (C1) and (C2). By proposition 3.2,

$$dist(A_{i+k}, A_{i+k+1}) = dist(A_{i+k-1}, A_{i+k})$$

$$\leq d(T^{pn+k-1}x, \xi), \text{ for each } n \in \mathbb{N}$$

$$\leq d(T^{pn+k-1}x, T^{pn+k}x) + d(T^{pn+k}x, \xi)$$

Since $T \in \Gamma$,

$$\lim_{n \to \infty} \{ d(T^{pn+k-1}x, T^{pn+k}x) + d(T^{pn+k}x, \xi) \} = dist(A_{i+k-1}, A_{i+k}).$$

Now

$$dist(A_{i+k}, A_{i+k+1}) \le d(\xi, T\xi) = \lim_{n \to \infty} d(T^{pn+k}x, T\xi)$$

$$\le \lim_{n \to \infty} d(T^{pn+k-1}x, \xi)$$

$$= \lim_{n \to \infty} \{d(T^{pn+k-1}x, T^{pn+k}x)\}$$

$$= dist(A_{i+k-1}, A_{i+k})$$

$$= dist(A_{i+k}, A_{i+k+1})$$

Therefore $d(\xi, T\xi) = dist(A_{i+k}, A_{i+k+1})$. Hence the proof.

Lemma 5.2. Let (X,d) be a metric space and $A_1, A_2, ..., A_p$ be non empty subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map which belongs to Γ such that $x \in A_1$ satisfies conditions (C1) and (C2). If for every $\epsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that for some $j \in \{0, 1, 2, ..., p\}$,

$$d(T^{pn+j}x, T^{pm+j+1}x) < dist(A_{j+1}, A_{j+2}) + \epsilon \ m, n \ge n_0$$

then for given epsilon > 0 there exists an $n_1 \in \mathbb{N}$ such that for every k = 1, 2, ..., p there holds

$$d(T^{pn+j+k}x, T^{pm+j+k+1}x) < dist(A_{j+k+1}, A_{j+k+2}) + \epsilon \ m, n \ge n_1.$$

Proof. Let $\epsilon > 0$ be given. Applying p-cyclic orbital non expansive condition for each k = 1, 2, ..., p we get

$$\begin{array}{lll} d(T^{pn+j+k}x,T^{pm+j+k+1}x) & \leq & d(T^{pn+j}x,T^{pm+j+1}x) \\ & < & dist(A_{j+1},A_{j+2}) + \epsilon, \ m,n \geq n_0. \\ & = & dist(A_{j+k+1},A_{j+k+2}) + \epsilon \ m,n \geq n_0. \end{array}$$

Hence the proof.

Theorem 5.3. Let (X, d) be a metric space and $A_1, A_2, ..., A_p$ be non empty and closed subsets of X such that $X = \bigcup_{i=1}^p A_i$. Let $T : \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map which belongs to Γ such that $x \in A_i$ $(1 \le i \le p)$ satisfies conditions (C1) and

(C2). Let X be p-cyclic complete. Then the sequence $\{T^{pn+k}x\}$ converges to ξ_{i+k} which is a best proximity point of T in A_{i+k} , for each k=0,1,2,...,p-1.

Proof. Let $x = x_0 \in A_i$ satisfy conditions (C1) and (C2). Define a sequence $\{x_n\}$ in X such that $x_n = T^n x, n \in \mathbb{N}$.

Claim: $\{T^n x\}$ is a p-cyclic Cauchy sequence.

Let $m, n \in \mathbb{N}$ such that m > n. Now

$$d(T^{pm}x, T^{pn+1}x) = d(T^{p(n+r)}x, T^{pn+1}x) \text{ where } m = n+r, \ r \in \mathbb{N}$$
$$= d(T^{pn}y, T^{pn+1}x), \text{ where } y = T^{pr}x \in A_i$$
$$\longrightarrow dist(A_i, A_{i+1}) \text{ as } n \to \infty \text{ by } (C2).$$

This implies that for every $\epsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that

$$d(T^{pm}x, T^{pn+1}x) < dist(A_i, A_{i+1}) + \epsilon, \ m, n \ge n_0.$$

By lemma 5.2, for a given $\epsilon > 0$ there exists an $n_1 \in \mathbb{N}$ such that

$$d(T^{pm+k}x, T^{pn+k+1}x) < dist(A_{i+k}, A_{i+k+1}) + \epsilon, \ m, n \ge n_1$$

for each $k = 0, 1, 2, ..., p - 1$.

Hence $\{T^{pn+k}x\}$ are p-cyclic Cauchy sequences for each k=0,1,2,...,p-1. Since X is p-cyclic complete, each sequence converges to ξ_{i+k} in A_{i+k} . By lemma 5.1 ξ_{i+k} is a best proximity point of T in A_{i+k} for each k=0,1,2,...,p-1.

Even though there exists a best proximity point ξ_k in each set A_k , it is interesting to ask whether $\xi_{k+1} = T\xi_k$?

Corollary 5.4. Let (X,d) be a metric space and $A_1, A_2, ..., A_p$ be non empty and closed subsets of X such that $X = \bigcup_{i=1}^p A_i$. Let $T : \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map which belongs to Γ such that $x \in A_i$ $(1 \le i \le p)$ satisfies conditions (C1) and (C2). Let X be p-cyclic complete and $dist(A_i, A_{i+1}) = 0$ $(1 \le i \le p)$. Then there exists a unique fixed point ξ of T such that $\{T^{pn}x\}$ converges to ξ which belongs to $\bigcap_{i=1}^p A_i$.

Proof. By proposition 3.2 $dist(A_i, A_{i+1}) = 0$ for all i = 1, 2, ..., p. From theorem 5.3, there exists a $\xi \in A_i$ such that $\{T^{pn}x\}$ converges to ξ and $d(\xi, T\xi) = 0$. That is $\xi = T\xi$. Since T is p-cyclic, $\xi \in \bigcap_{i=1}^p A_i$ and is a fixed point of T. To prove that xi is unique, let η be such that $\eta = T\eta$. Then

$$d(\xi, \eta) = \lim_{n \to \infty} d(T^{pn}x, T^{pn+1}\eta) = 0,$$

which implies $\eta = \xi$.

Theorem 5.5. Let X be a strictly convex normed linear space. Let $A_1, A_2, ..., A_p$ be non empty, closed and convex subsets such that $X = \bigcup_{i=1}^p A_i$. Let $T : \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map which belongs to Γ . If X is p-cyclic complete, then there exists a unique best proximity point of T in each subset.

Proof. By theorem 5.3, there exists a best proximity point $T_j \in A_j$ for each j = 1, 2, ..., p. By proposition 2.2 the obtained best proximity point is unique in each set A_j .

Theorem 5.6. Let X be a uniformly convex Banach space. Let $A_1, A_2, ..., A_p$ be non empty, closed and convex subsets of X. Let $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ be a p-cyclic map which belongs to class Γ with an $x \in A_i$, $(1 \le i \le p)$ satisfying conditions (C1) and (C2). Then the sequence $\{T^{pn+k}x\}$ converges to ξ_k which is a unique best proximity point of T in each subset A_{i+k} for each k = 0, 1, 2, ..., p - 1.

Proof. Let $x \in A_i$, $(1 \le i \le p)$ satisfy condition(C1). Let m > n, $m, n \in \mathbb{N}$. By condition (C2) we have

$$\lim_{m \to \infty} ||T^{pm+k}x - T^{pm+k+1}x|| = dist(A_{i+k}, A_{i+k+1}).$$

$$\lim_{m,n\to\infty} ||T^{pn+k}x - T^{pm+k+1}x|| = \lim_{n\to\infty} ||T^{pn+k}x - T^{pn+k+1}y||, \ y = T^{pr}x \ r \in \mathbb{N}$$
$$= dist(A_{i+k}, A_{i+k+1}).$$

By Lemma 2.16, $\lim_{m,n\to\infty} ||T^{pm+k}x-T^{pn+k}x|| = 0$. This implies sequence $\{T^{pn+k}x\}$ is a Cauchy sequence in A_{i+k} for each k=0,1,2,...,p-1. Since X is complete, each sequence converge to a ξ_k in A_{i+k} . By Lemma 5.1, ξ_k is a best proximity point of T in each A_{i+k} . By Proposition 2.2, the obtained best proximity points are unique.

References

- M. U. Ali, B.Alqahtani, T. Kamran and E. Karapınar, Best Proximity Point Results for γ Controlled Proximal Contraction IEEE Access 7 (2019), 128009–128013.
- [2] M. Aliyari, M. Gabeleh and E. Karapınar, Mann and Ishikawa iterative processes for cyclic relatively nonexpansive mappings in uniformly convex Banach spaces, J. Nonlinear Convex Anal. 22 (2021), 699-713.
- [3] H. Aydi, E. Karapmar and B. Samet, Fixed point theorems for various classes of cyclic mappings, J. Appl. Math. 2012 (2012): Article Id 867216.
- [4] M. De La Sen and E. Karapınar, On best proximity points of generalized semi-cyclic impulsive self-mappings, Abstr. Appl. Anal. 2013 (2013): Article Id: 505487.
- [5] M. De La Sen and E. Karapınar, On a cyclic Jungck modified TS-iterative procedure with application examples, Appl. Math. Comp. 233 (2014), 383–397.
- [6] M. De La Sen and E. Karapınar, Some results on best proximity points of cyclic contractions in probabilistic metric spaces, J. Func. Spaces 2015 (2015): Article ID 470574.
- [7] W.-S. Du and E. Karapınar, A note on Caristi type cyclic maps: Related results and applications, Fixed Point Theory Appl. 2013 (2013): 344.
- [8] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001–1006.
- [9] L.Gholizadeh and E. Karapınar, Best proximity point results in dislocated metric spaces via R-functions, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas October 112 (2018), 1391–1407.
- [10] P. K. Hemalatha, T. Gunasekar and S. Karpagam, Existence of fixed points and Best proximity points of p-cyclic orbital contraction of Boyd-Wong type, Int. J. Applied Math. 31 (2018), 805–814.
- [11] G. Hiranmoy, E. Karapinar and L. K. Dey, Best proximity point results for contractive and cyclic contractive type mappings, Numer. Func. Anal. Optim. 42 (2021) 849–864.
- [12] E. Karapınar, Best proximity points of cyclic mappings, Appl. Math. Lett. 25 (2012), 1761–1766.
- [13] E. Karapınar, C.-M. Chen and C.-T. Lee, Best proximity point theorems for two weak cyclic contractions on metric-like spaces, Mathematics 7 (2019): 349.

- [14] E. Karapınar and I.-M. Erhan, Cyclic contractions and fixed point theorems, Filomat 26 (2012), 777-782.
- [15] E. Karapınar, I. M. Erhan and A. Yıldız-Ulus, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci. 6 (2012), 239-244.
- [16] E. Karapınar, S. Karpagam and P. Mahadevan, Existence of fixed points and best proximity points of p-cyclic orbital φ-contraction map, (under review)
- [17] E. Karapınar, S. Karpagam, P. Mahadevan and B. Zlatanov, On Ω class of mappings in a p-cyclic complete metric space, Symmetry 11 (2019): 534.
- [18] E. Karapınar and F. Khojasteh, An approach to best proximity points results via simulation functions, J. Fixed Point Theory Appl. 19 (2017), 1983–1995.
- [19] E. Karapmar, G. Petruşel and K. Taş, Best proximity point theorems for KT-types cyclic orbital contraction mappings, Fixed Point Theory 13 (2012), 537-546.
- [20] E. Karapınar and V. Rakocevic, On cyclic generalized weakly C-contractions on partial metric spaces, Abst. Appl. Analy. 2013 (2013): Article ID 831491.
- [21] E. Karapinar, S. Romaguera and K. Taş, Fixed points for cyclic orbital generalized contractions on complete metric spaces, Cent. Eur. J. Math., 11 (2013), 552–560.
- [22] E. Karapınar and K. Sadarangani, Fixed point theory for cyclic ψ contractions, Fixed Point Theory Appl. 2011 (2011): 69.
- [23] E. Karapinar, A. Yıldız-Ulus and I. M. Erhan, Cyclic contractions on G-metric spaces, Abstr. Appl. Anal. 2012 (2012): Article ID 182947.
- [24] S. Karpagam and S. Agrawal, Best Proximity point theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl. 2009 (2009): Article ID 568072.
- [25] S. Karpagam and B. Zlatanov, Best proximity points of p-cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal. Model. Control 21 (2016), 790-806.
- [26] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79–89.
- [27] A. Kostic, E. Karapınar and V. Rakocevic, Best proximity points and fixed points with R-functions in the framework of w-distances, Bull. Australian Math. Soc. 99 (2019), 497–507.
- [28] M. Petric and B. Zlatanov, Best proximity points and fixed points for p-summing maps, Fixed Point Theory Appl. 1 (2012): 86.
- [29] M. L. Suresh T. Gunasekar, S. Karpagam and B. Zlatanov, A study on p-cyclic Orbital Geraghty type contractions, Inter. J. Eng. Technol. 7 (2018), 883–887.
- [30] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with property UC, Non linear Anal. 71 (2009), 2918–2926.
- [31] B. Zlatanov, Best proximity points for p-summing cyclic orbital Meir-Keeler contractions, Nonlinear Anal. Model. Control. 20 (2015), 528-544.

Manuscript received August 21, 2021 revised January 31, 2022

R. Sakthi

Department of Humanities and Sciences, Rajalakshmi Engineering College, Chennai, India E-mail address: rsakth@gmail.com, sakthi.r@rajalakshmi.edu.in

S. Gulyaz-Ozyurt

Department of Mathematics, Sivas Cumhuriyet University, Sivas, Turkey

E-mail address: selmagulyaz@gmail.com, sgulyaz@cumhuriyet.edu.tr

S. Karpagam

Department of Science and Humanities, Saveetha Schoolof Engineering, Chennai, India E-mail address: karpagam.saravanan@gmail.com