SPRINGER LINK

≡ Menu

Q Search

 $\stackrel{\circ}{\sim}$ Log in

Home > Archiv der Mathematik > Article

Published: 19 July 2023

On the Vietoris semicontinuity property of the L_p balls at p = 1 and an application

<u>Anar Huseyin</u> ⊡

Archiv der Mathematik 121, 171–182 (2023)

38 Accesses | Metrics

Abstract

In this paper, the Vietoris right lower semicontinuity at p = 1 of the set valued map $p \rightarrow B_{\Omega,\mathcal{X},p}(r), p \in [1, \infty]$, is discussed where $B_{\Omega,\mathcal{X},p}(r)$ is the closed ball of the space $L_p(\Omega, \Sigma, \mu; \mathcal{X})$ centered at the origin with radius r, (Ω, Σ, μ) is a finite and positive measure space, \mathcal{X} is a separable Banach space. It is proved that the considered set valued map is Vietoris right lower semicontinuous at p = 1. Introducing additional geometric constraints on the functions from the ball $B_{\Omega,\mathcal{X},1}(r)$, a property, which is close to the Hausdorff right lower semicontinuity, is derived. An application of the obtained result to the set of integrable outputs of the input–output system described by a Urysohn type integral operator is studied.

This is a preview of subscription content, <u>access via</u> <u>your institution</u>.

Access options
Buy article PDF
39,95 €
Price includes VAT (Turkey)
Instant access to the full article PDF.
Rent this article via DeepDyve.
Learn more about Institutional subscriptions

References

1. Aubin, J.P., Frankowska, H.: Set Valued Analysis. Birkhäuser, Boston (1990)