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Significance

Our study identified a 
dysregulation and hyperactivity 
of the critical metabolic process 
of the central carbon and energy 
metabolism, and metabolic flux 
related to the amino acid 
metabolism during the acute 
progressive phases of infection 
can promote the exhausted 
phenotype upon recovery leading 
to postviral fatigue syndrome in 
CCHFV (Crimean- Congo 
hemorrhagic fever virus) 
infection.
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Crimean- Congo hemorrhagic fever (CCHF) caused by CCHF virus (CCHFV) is one 
of the epidemic- prone diseases prioritized by the World Health Organisation as public 
health emergency with an urgent need for accelerated research. The trajectory of host 
response against CCHFV is multifarious and remains unknown. Here, we reported the 
temporal spectrum of pathogenesis following the CCHFV infection using genome- wide 
blood transcriptomics analysis followed by advanced systems biology analysis, tempo-
ral immune- pathogenic alterations, and context- specific progressive and postinfection 
genome- scale metabolic models (GSMM) on samples collected during the acute (T0), 
early convalescent (T1), and convalescent- phase (T2). The interplay between the retinoic 
acid- inducible gene- I- like/nucleotide- binding oligomerization domain- like receptor and 
tumor necrosis factor signaling governed the trajectory of antiviral immune responses. The 
rearrangement of intracellular metabolic fluxes toward the amino acid metabolism and 
metabolic shift toward oxidative phosphorylation and fatty acid oxidation during acute 
CCHFV infection determine the pathogenicity. The upregulation of the tricarboxylic 
acid cycle during CCHFV infection, compared to the noninfected healthy control and 
between the severity groups, indicated an increased energy demand and cellular stress. The 
upregulation of glycolysis and pyruvate metabolism potentiated energy generation through 
alternative pathways associated with the severity of the infection. The downregulation of 
metabolic processes at the convalescent phase identified by blood cell transcriptomics and 
single- cell type proteomics of five immune cells (CD4+ and CD8+ T cells, CD14+ mono-
cytes, B cells, and NK cells) potentially leads to metabolic rewiring through the recovery 
due to hyperactivity during the acute phase leading to post- viral fatigue syndrome.

Crimean- Congo hemorrhagic fever virus | genome- scale metabolic models | post viral fatigue

Tick- borne Crimean- Congo hemorrhagic fever virus (CCHFV) is a global threat for its 
pandemic potential. The virus is presently endemic in 49 countries in Africa, the Middle 
East, and Asia, and sporadic reports in European countries illustrate its increasing risk in 
the context of climate change. Even since January 2022, an unprecedented increase in 
Crimean- Congo Hemorrhagic Fever (CCHF) has been observed more than that in pre­
vious years (1, 2). Due to the biosafety level (BSL) 4 requirement for handling the 
CCHFV- infected materials and the high case fatality ratio (CFR) (10 to 50%) (3), little 
is known about the pathogenesis and host immune response dynamics during progressive 
CCHFV infection. Previously, we reported on the cross- sectional system- level transcrip­
tomics profile in CCHFV- infected patients during the acute phase of infection (4). While 
this unique study identified the systemic alteration of host response, characterization of 
the early immune response against the CCHFV infection was not possible due to the 
nonavailability of the longitudinal samples. Though cross- sectional studies provide a 
snapshot of the viral pathogenesis and host immune response, it fails to provide an under­
standing of the dynamics of viral replication, immune response, and disease progression. 
Identifying the system- level host response using the peripheral blood that contains critical 
immune system components following infection provides a global view of how the host 
immune system mounts a response to the virus, attempting to clear it from the body.

Among the CCHFV- endemic countries, the CFR in Turkey is relatively low [5%] (5), 
with a robust public health system, expert clinicians, and good access to patient care 
providing a unique opportunity to study early immune response against the CCHFV. We 
hypothesized that the dynamic nature of the alteration of the transcriptome during the 
early phase of the infection to the recovery captures the entire temporal spectrum of 
virus- mediated disease dynamics and pathogenesis and responsible for postviral fatigue 
(PVF) upon recovery.

OPEN ACCESS

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ujjwal.neogi@ki.se
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2304722120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2304722120/-/DCSupplemental
https://orcid.org/0000-0002-9515-770X
https://orcid.org/0000-0002-1086-5409
https://orcid.org/0000-0001-5621-2844
https://orcid.org/0000-0003-2273-3152
https://orcid.org/0000-0003-4554-2391
https://orcid.org/0000-0002-5931-419X
https://orcid.org/0000-0002-7381-3606
https://orcid.org/0000-0002-4254-6090
https://orcid.org/0000-0001-6128-4279
https://orcid.org/0000-0002-1287-0906
https://orcid.org/0000-0003-1136-3010
mailto:
https://orcid.org/0000-0002-0844-3338
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2304722120&domain=pdf&date_stamp=2023-9-1


2 of 11   https://doi.org/10.1073/pnas.2304722120 pnas.org

Here, we performed temporal genome- wide transcriptomics 
analysis using whole blood from a CCHF- cohort collected at Sivas 
Cumhuriyet University Hospital (SCUH), Turkey, from con­
firmed CCHF patients, on the hospitalization day (T0, acute 
phase), at discharge (T1, early convalescent phase), and median 
30 d since the onset of the symptoms (T2, convalescent phase). 
Utilizing the advanced network- based systems biology analysis, 
digital cell quantification (DCQ), and temporal pathogenic alter­
ations by time series clustering, we report on fundamental immune 
responses and metabolic rewiring as a consequence of infection 
that leads to the pathology of CCHF. We further developed the 
system- level context- specific genome- scale metabolic model 
(GSMM) for CCHFV infection, as recently described by us in 
COVID- 19 (6), to identify the impact of viral infection in the 
metabolic process and rearrangement of intracellular metabolic 
fluxes during the progressive infection, which can be the target of 
the clinical intervention for CCHF.

Results

Characteristics of the Cohorts. We recruited 30 hospitalized 
patients with CCHFV infection with a median time of 4 d (range 
1 to 6 d) post symptoms onset (T0, n = 30) and followed them for 
30 d. By using severity grading scores (SGS), 43% (13/30) patients 
were grouped into severity group 1 (SG- 1, low risk of death), 30% 
(9/30) patients into severity group 2 (SG- 2, intermediate risk of 
death), and 27% (8/30) patients into severity group 3 (SG- 3, high 
risk of death). In the SG- 3 group, five patients succumbed to death 
during hospitalization. Subsequent samples were collected from the 
survivors on discharge day with a median 10 (IQR: 9 to 11) days post 
symptoms onset (T1, n = 25) and a median duration of 30 (IQR: 28 
to 33) days post symptoms onset (T2, n = 24). The patient severity 
grade and the sample collection are shown in Fig. 1A. Additionally, 
we have collected gender and age- matched CCHFV- seronegative 
samples healthy- control (HC, n = 30). The HCs were matched 
with the CCHFV patients regarding age (mean ± SD, years: 51.7 
± 17.4 vs. 50.4 ± 17.6) and gender (female: 17%). At recruitment, 
all patients (100%) had a history of fever and presented with 
nonspecific symptoms such as headache (97%), muscle ache (93%), 
weakness (90%), and nausea and/or vomiting (70%). Splenomegaly 
(77%), high- grade fever (70%), and liver enlargement (57%) were 
the most frequent signs among the patients (SI Appendix, Fig. S1). 
Bleeding was observed in half of the patients, including bleeding 
gum, epistaxis, hemoptysis, hematemesis, melena, hematuria, and 
vaginal bleeding (for females), which were specific for CCHFV 
infection. The cohort characteristics and clinical presentation at 
recruitment are provided in Dataset S1.

Immune Cell Dynamics during CCHFV- Pathogenesis. The asso­
ciation between patient samples (Fig. 1B) and principal component 
analysis (Fig. 1C) showed distinct clustering of T0 and T1. The 
T2 samples were clustered near HC, suggesting recovery from 
the infection. To avoid the bias of the cell proportions due to 
the use of whole blood RNAseq (6), we performed the DCQ 
to estimate the cell type proportions from bulk blood RNAseq 
data computationally and adjusted for that. Drastic changes were 
noticed in several immune cell trajectories but normalized at the 
T2 time point (Fig. 1D). The myeloid cells, neutrophils, Natural 
Killer (NK) cells, and to some extent, T- cells were most affected 
during the infection (Fig.  1E and SI  Appendix, Fig.  S2). The 
classical monocytes (CM) were expanded during the T1 and T2 
timepoint, while intermediate monocytes (IM) were expanded 
during the T0 time point compared to the HC. On the contrary 
plasmacytoid dendritic cells (pDCs), neutrophils, and NK cells 

were expanded during the T0 time point but came down to the 
HC level when the infection resolved. The pairwise coexpression 
landscape of marker genes of specific cell types (Fig. 1F) showed an 
altered correlation between the signature genes in the immune cells 
during the acute and early convalescent phase (T0 and T1) while 
normalized to the level of HC (Fig. 1F) at the convalescent phase 
(T2). These data indicate the altered immune cell dynamics and 
an impaired interaction between these cell types during CCHFV 
acute infection but repaired back when the infection was cleared.

System- Level Temporal CCHFV- Pathogenesis Signature. We used 
time series clustering using TMixClust (7) to identify the trajectories 
of the gene expression profile alterations. Using the likelihood ratio 
test, we identified 2,504 genes significantly expressed across the three 
time points with a high degree of confidence (adjusted P < 0.001) 
(Fig. 2A). To understand their temporal expression dynamics, the 
time series clustering of the 2,504 genes identified four expression 
trajectory modules (M1 to M4) (Fig.  2B and Dataset  S2). The 
expression of the genes (n = 879) in M1 initially decreased slowly 
between T0 and T1 time points and then decreased rapidly (Fig. 2B). 
For genes (n = 531) in M4, the expressions decreased drastically 
at the beginning and then slowly decreased until point T2. In 
contrast, the genes in M2 (n = 634) gradually increased over time, 
while in M3 (n = 460), the gene expression was first increased at 
the T1 while decreasing at the T2 (Fig. 2B). To avoid bias due to 
the cell type alterations, we performed differential gene expression 
(DGE) between the T0 and T2 after adjusting for cell types differing 
between the time points. We observed that 99% (2,495/2,504) genes 
significantly differed (adjusted P < 0.05) between the time points 
(Fig. 2C and Dataset S3). The gene set enrichment analysis (GSEA) of 
the four modules identified a distinct pattern of innate and adaptive 
immunity and metabolic processes (Fig.  2D). The significantly 
enriched pathways (adjusted P < 0.1) in M1 were mainly metabolic 
pathways, e.g., one carbon pool by folate and pyruvate metabolism. 
In the M3, metabolic pathways like oxidative phosphorylation 
(OXPHOS), glucagon signaling pathways, and adaptive immune 
response pathways like Th1 and Th2 receptor signaling processes 
indicate a dynamic nature of the metabolic process and adaptive 
immune response in CCHFV- pathogenesis (Dataset S4). The gene 
expression changes in M4 showed that the gene expression profile for 
the genes associated with the innate antiviral response pathways like 
RIG- I- like receptor, Nucleotide oligomerization domain (NOD)- 
like receptor, TNF signaling, and chemokine signaling NF- kB 
signaling was highly exertive at the acute phase of the disease (T0). 
Their demand decreased rapidly as the adaptive immunity came into 
play (T1), and after that, a slow decrease to the normal level. No 
significantly enriched pathways were found for M2 genes. We also 
checked the acute phase (T0) virus titer and its association with the 
module genes; a positive correlation was observed with M2 genes, 
while a negative association was observed with M1 and M3 genes 
related to the metabolic and adaptive immune response (Fig. 2E). 
Interestingly no correlation was observed between the virus titer 
and the genes related to the antiviral response and interferon (IFN) 
stimulating genes (ISGs), indicating either low- level virus titer can 
efficiently induce effective antiviral response and that is universal 
across the patients or ineffective suppression of virus production 
by the expressed ISGs. Though there were only three patients in 
SG- 3, individual severity- specific trajectory analyses identified lower 
expression of module 1 and module 3 genes compared to the SG- 1 
and SG- 2 (Fig. 2F), and there were statistical significance differences 
in T2 time point (SI Appendix, Fig. S3). No apparent change in the 
rate of viral decline was observed at the hospital discharge despite 
high viral titer in the SG- 1 group (SI Appendix, Fig. S4). These data 
indicate a robust metabolic modulation toward the central carbon 
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metabolisms (CCMs) (e.g., pyruvate metabolism, OXPHOS) and its 
association with the innate antiviral response. A metabolic exhausted 
phenotype was observed that was associated with severity despite a 
few samples.

Metabolic Perturbation Associated with Disease Severity. 
Metabolic perturbation associated with disease severity. Acute viral 
illnesses can lead to metabolic alterations such as increased energy 

expenditure and dysregulation of various metabolic pathways. As 
we observed that the gene expression trajectory is linked with the 
metabolic process and innate antiviral response (Fig. 2), we aimed 
to identify the severity- specific alterations during the CCHFV 
infection. Due to the small sample size, we combined SG- 2 and 
SG- 3 (severe) and compared them with HC and SG- 1 (mild). 
While comparing with HC, both the mild (Fig. 3A and Dataset S5) 
and severe groups (Fig. 3B and Dataset S6) showed upregulation 
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Fig. 1. Temporal CCHFV pathogenesis and immune profiling: (A) Swimmer plot showing patient sampling information, including clinical features SGS, SG, 
and sampling time points. x axes represent days in the hospital, day 0 denotes the day of hospitalization, and y axes represent patient IDs ordered according 
to SG. (B) Patient- to- patient Spearman's correlation matrix clustering. The heatmap shows correlation coefficients computed using scaled TPM values of the 
top 5,000 varying genes based on median absolute deviation [HC (n = 22), T0 (n = 22), T1 (n = 23), T2 (n = 24)]. All correlations were highly significant (adjusted  
P < 0.0001) due to the high number of features used. Column and row annotations represent the patient cohort and disease severity group. (C) PCA plot visualizes 
the sample distribution. PCA was created using the scaled TPM values of top 5,000 varying genes based on the median absolute deviation. Ellipses represent 
90% confidence space for each cohort, and point shapes correspond to the severity group. Centroid points of each cohort are computed and connected to each 
sample in the respective cohort with lines. (D) Bubble graph representing DCQ results. Bubble size and color gradient are relative to the median percentage 
of cell proportion estimated in each cohort. Asterisks represent a significant change in individual cell population from T0 to T2 by Friedman's test (adjusted  
P < 0.05). (E) Blood immune cell proportion using DCQ. Boxplot of DCQ results showing comparison among the four cohorts. Asterisks represent a significant 
change (adjusted P < 0.05) in the Mann–Whitney U test. (F) Network visualization of significant Spearman association (adjusted P < 0.001) between marker genes 
of cell types estimated in Fig. 1D in cohort HC, T0, T1, and T2, respectively. Bubble size corresponds to the mean TPM value. Nodes and edges represent marker 
genes of corresponding cell type and Spearman association, respectively.
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of ISGs and chemokines. Interestingly, while comparing mild and 
severe, no specific pattern was observed, but there was upregulation 
of 98 genes and downregulation of 84 genes (Fig.  3C and 
Dataset S7). The directionally based GSEA identified upregulation 
of tricarboxylic acid cycle (TCA) in all the comparisons indicate 
an increased energy demand, altered metabolic requirements, 

and cellular stress (Fig.  3D). Interestingly, while comparing 
the mild with severe, there was upregulation of glycolysis and 
pyruvate metabolism that potentiated energy generation through 
alternative pathways due to impaired mitochondrial metabolism. 
Subsequent downregulation of the antiviral pathways indicates 
a negative correlation between the antiviral and central carbon 
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Fig.  2. Immuno- metabolic trajectories of CCHFV- pathogenesis. (A) Heatmap of genes identified as significantly changing (adjusted P < 0.001) among the 
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TMixClust algorithm. (B) Modules identified using the TMixClust algorithm. Each module represents a specific trajectory of gene expression. The red dotted line 
denotes the mean scaled expression value of genes belonging to the corresponding module in a healthy state. (C) MA plot of DGE analysis between T0 and T2. 
Orange- colored circles denote genes visualized in Fig. 2A. Empty circles denote nonsignificant expression (adjusted P > 0.05). (D) Network of significant Spearman 
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metabolic process. The correlation between the IFN- stimulating 
gene with the genes involved in the TCA cycle, glycolysis, and 
pyruvate metabolism further supports this (Fig. 3E). Therefore, we 
can posit that the hyperactive metabolic process due to increased 
energy demands and the exhaustion of the antiviral response leads 
to severe disease in CCHFV patients during acute infection.

Metabolic Models Identified Altered CCM during Acute CCHFV 
Infection. We observed a robust metabolic modulation during 
the CCHFV infection (Fig. 2), resembling our earlier study (4) 
and its association with the disease severity (Fig. 3). However, the 
trajectories of the metabolic process were yet to be discovered. We 
recently developed a systemic GSMM for Severe acute respiratory 
syndrome coronavirus 2 (SARS­CoV­2) (6) and HIV- 1 (8) that 
can identify the alteration in the metabolic reaction and flux 

balance. Here, we developed context- specific (time- dependent 
postinfection) personalized and group- level GSMM and performed 
flux balance analysis (FBA) to identify unique metabolic reactions 
during the different courses of infection. Significant altered 
metabolic reactions (n = 546, Dataset S8) were identified during 
infections and in HC (Fig. 4A) linked with CCM and transport 
of the metabolites related to the CCM. During the acute T0 
phase, the altered flux of essential (leucine and threonine) and 
nonessential amino acids (AA) (arginine, alanine, and glutamine) 
were observed compared to T1, T2, and HC, indicating high 
demand of the AA during the acute phase of infection (Fig. 4B). 
The transports of the key TCA cycle metabolites pyruvate, 
isocitrate, and alpha- ketoglutarate were also found to be altered 
(Fig. 4C). While looking at the metabolic reactions, dysregulated 
pentose phosphate pathway (PPP) and metabolic shift toward 
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fatty acid oxidation were observed during the T0 phase (Fig. 4C). 
The mitochondrial TCA cycle was also altered, including the 
additional ATP production through OXPHOS (Fig. 4C), and the 
AA transports were also significantly associated (adjusted P < 0.05) 
with metabolic reactions (Fig. 4D). Our data thus indicate a high 
transportation of essential and nonessential AA, a shift toward fatty 
acid oxidation, and additional ATP generation through OXPHOS 

as the hallmark during the acute phase of infection that normalized 
to a certain extent during the recovery phase.

Downregulation of Metabolic Pathways during Recovery. We 
observed higher metabolic activity (Fig. 4) during the acute phase 
of infection that can potentially lead to metabolic insufficiency 
with altered signaling cascades at the convalescent phase (Fig. 4C). 
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Therefore, to map the altered signaling cascades and metabolic 
rewiring following recovery, we performed DGE between the T2 and 
HC. The patient association matrix identified a clear separation of 
the HC and the T2 samples (Fig. 5A), indicating a leftover CCHFV 
imprint after recovery. The DGE, after adjustment for the cell type, 
identified upregulation of 1,853 genes and downregulation of 917 
(adjusted P < 0.05). Among the genes, the persistence of high Epithelial 
Stromal Interaction 1 (ESPTI1), IFI27, and other inflammatory 
genes indicate residual inflammation (Fig. 5B and Dataset S9). The 
pathway enrichment analysis identified the downregulation of the 
metabolic processes like glycolysis, TCA cycle, OXPHOS, and related 
signaling cascades like PI3K- Akt/mTOR/HIF- 1 signaling pathways 
indicative of energy maladjustment (Fig. 5C and Dataset S10). To 
further fingerprint which cells were metabolically impaired, we 
isolated CD4 T- cells, CD8 T- cells, monocytes, B- cells, and NK 
cells and performed LC- MS/MS- based sctProteomics (Single- Cell 
Type Proteomics) (Fig. 5D). Due to the low sample size and protein 
coverage, GSEA was performed using a consensus scoring approach 
(9) by incorporating the directionality of protein abundance. The 
GSEA identified that most metabolic pathways in CD8+ T cells, 
B cells, and NK cells were down- regulated at T2 (Fig.  5E and 
SI Appendix, Fig. S5), in line with the bulk RNAseq data, which 
indicated metabolic insufficiency at recovery. Interestingly, there was 
upregulation of the OXPHOS pathway in monocytes, and CD4+ 
T- cells can regulate the production of cytokines and enhanced 
respiratory burst with increased production of reactive oxygen 
species (ROS) (10). The self- reported health evaluation at the T2 
time point further supported it, where 83% (20/24) of patients 
experienced fatigue that inhibited their daily activities after discharge. 
Other reported experiences, including musculoskeletal pain (75%), 
anorexia (50%), weight loss (50%), headache (38%), palpitation 
(38%), and sweating (38%), indicated PVF (Fig. 5F). Combining 
the blood transcriptomics and sctProteomics analysis, our proof- of- 
concept study suggested that metabolic rewiring during the recovery 
phase potentially leads to PVF in CCHF.

Discussion

Our study discovered the fundamental understanding of the host 
immune response and the temporal spectrum of virus- mediated 
disease dynamics and pathogenesis following the CCHFV infection. 
We have identified the trajectory of antiviral immune responses 
(e.g., RIG- I- like receptor, NOD- like receptor signaling, and TNF 
signaling) and the impact of viral infection on host metabolism. 
Significantly, our data showed a correlation between the rearrange­
ment of intracellular metabolic fluxes (e.g., toward the AA metab­
olism, dysregulated PPP, and metabolic shift toward OXPHOS and 
fatty acid oxidation at acute phase) and CCHF diseases. The upreg­
ulation of the TCA cycle during CCHFV infection, compared to 
the noninfected HC and between the severity groups (SG), indi­
cated an increased energy demand and cellular stress. The upregu­
lation of glycolysis and pyruvate metabolism potentiated energy 
generation through alternative pathways associated with the severity 
of the infection. Using the sctProteomics of five immune cells, we 
further reported that down- regulated metabolic processes potentially 
lead to metabolic insufficiency through the recovery due to hyper­
activity during the acute phase leading to PVF. The upregulation of 
the OXPHOS pathway in monocytes can regulate the production 
of cytokines and enhance respiratory burst with increased produc­
tion of ROS during the recovery phase (10).

Earlier studies have suggested that immune cells play a role in 
CCHFV pathogenesis through infection of specific cell types, e.g., 
mononuclear phagocytes, endothelial cells, and hepatocytes which 
are the main targets of infection (11). Though trajectory pathogenesis 

studies of the viral infection were not reported earlier in humans, 
DCQ- based immune cell identification was reported in the acute 
phase of Ebola (12), and SARS- CoV- 2 (6) has been reported. For 
example, during the acute phase of Ebola virus disease (EVD), there 
was a reduction in the monocytes and CD4 T- cells and an increase 
in memory CD8 T- cells and NK cells (12). In contrast, in 
SARS- CoV- 2, there was an increase in neutrophil and blood mono­
cyte populations (CM and IM) (6). Interestingly, there was no 
change in CM in the early acute phase (T0) of CCHFV infection 
but an increase at the later T1 and T2 phases. Both the pDCs and 
mDCs were increased at the acute phase (T0) and hospital discharge 
(T1) but normalized at HC- level at the T2 time point, indicating a 
role of DCs during the early acute phase of CCHF infection. We, 
therefore, posit that CM plays the role of effective control and clear­
ance of the CCHFV during the recovery phase.

Our earlier study reported system- level host's metabolic repro­
gramming toward CCM with distinct upregulation of OXPHOS 
during acute CCHFV infection (8). This corroborated with the 
transcriptomics or proteomics performed in vitro infection models 
in cancer cell lines (13) and in vivo infection studies in nonhuman 
primates (14) and mice (15), showing dysregulation of the meta­
bolic process and upregulation in the IFN pathways. The temporal 
quantitative proteomics analysis by liquid chromatography–mass 
spectrometry (LC–MS) in the CCHFV- infected human hepato­
cellular carcinoma cell line, Huh7 model reported by us showed 
dynamic changes in the ISGs and metabolic process during the 
progressive replication (4). To our knowledge to date, no study has 
investigated a longitudinal immune response against CCHFV 
pathogenesis in patients. Cross- sectional studies also suggested that 
the regulation of the immune response was mediated by high levels 
of regulatory cytokine IL- 10, which inhibits cell- mediated immu­
nity by down- regulating IL- 12 expression in CCHF patients (16). 
It can also inhibit the mediators of inflammation through the mod­
ulation of the antigen- presenting cells (17). The cumulative infor­
mation obtained from both in vitro and in patients thus provides 
details on the viral pathogenesis and the cellular response during 
different phases of infection that can help to identify critical targets 
for therapeutic interventions and inform the development of effec­
tive treatments and vaccines.

Being a single- stranded RNA virus, CCHFV can be recognized 
by cellular RNA receptors such as RIG- I/MDA5, leading to IFN 
production, or sensed by NOD- like receptors that lead to inflam­
masome activation, critical events in inflammatory immune 
response processes (18, 19). CCHFV has been shown to induce 
ISG56, MxA, and IFN- β (19), and blocking of IFN signaling can 
cause attenuation of these ISGs (20) even in lethal CCHF infections 
in mice (21, 22). The virus has also evolved mechanisms to hijack 
these processes, and in virus infection models, IFN had no inhib­
itory effect on the virus replication postinfection (23, 24). We have 
observed that the ISGs were up- regulated during the acute phase 
of the disease, a probable initial response to the virus infection, and 
showed a downregulation when the adaptive immune responses set 
in at T2 following a conventional pattern observed during virus 
infections. However, it was difficult to ascertain whether the ISGs 
had any protective effect from the virus or whether they could 
overcome the antiviral responses since no correlation was observed 
between the virus titer and viral sensing and antiviral response path­
ways in module M4. As our study was restricted to the CCHFV 
patients who survived the infection, we can speculate a positive role 
of the ISGs in controlling CCHFV pathogenesis.

We also report a robust metabolic modulation toward the CCMs 
(e.g., pyruvate metabolism, OXPHOS) and its association with the 
antiviral response. The severely altered transports of AA and the 
key TCA cycle metabolites during the acute phase of infection 

http://www.pnas.org/lookup/doi/10.1073/pnas.2304722120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304722120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304722120#supplementary-materials
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indicate the hypermetabolic state during the infection. Interestingly, 
the dysregulated PPP and metabolic shift toward fatty acid oxida­
tion and the additional ATP production through OXPHOS during 
the T0 phase indicate altered energy metabolism to provide more 
energy to the cells to counter the infection. This hypermetabolic 
state during the acute phase led to metabolic insufficiency with 
altered signaling cascades at the convalescent phase despite restoring 
the metabolic process. The observation supports that the essential 
metabolic processes (e.g., glycolysis, TCA cycle, and OXPHOS) 
and the regulatory signaling cascades (Akt/mTOR/HIF- 1 signal­
ing) were down- regulated at T2 than HC. This is further recapit­
ulated in immune cell sctProteomics, where most metabolic 
pathways were down- regulated in the CCHFV- convalescent sam­
ples. Most of the metabolic processes, including glycolysis and its 
regulator, HIF- 1 signaling, and IL- 17 signaling, were down- regulated 
in CD8+ T- cells in CCHFV- convalescent samples. The IL- 17 sig­
naling pathways play an essential role in host defense, including 
the CD8+ T cell cytotoxicity stimulation, as observed in the West 
Nile Virus (WNV) infection (25). As metabolic reprogramming is 
critical for CD8+ T- cells activation, proliferation, virus clearance, 
and protection against secondary infections (26), reprogramming 
the impaired metabolic pathways to promote CD8+ T‐ cell could 
tailor desirable CD8+ T‐ cell immune responses early, as observed 
in the HCV infection (27).

Several viral infections, like Dengue fever (28), WNV (29), 
SARS- CoV- 2 (30), EVDs (31), and Marburg viruses (32), impact 
the neuropsychiatric systems upon complications present PVF, which 
may linger for months after infection. The PVF presents similar to 
chronic fatigue syndrome, characterized by fatigue/weakness, head­
ache, dizziness, musculoskeletal pain, and cognitive and sleep disor­
ders, and could be linked to dysregulated CCM (33) and microbial 
dysbiosis impacting the gut–brain axis (34). It could be associated 
with virus- specific pathophysiologic changes, immunologic aberra­
tions, and inflammatory damage during acute infection. Several 
clinical studies have reported the acute phase of symptoms in CCHF 
patients. However, the clinical manifestations of CCHF during the 
postacute phase have not been widely investigated. During the con­
valescent phase (10 to 20 d after symptoms onset), the survivors 
experience fatigue, tachycardia, hair loss, neuritis, hearing loss, loss 
of memory, and bradycardia for a long time (35). During the con­
valescent period, 83% of CCHF patients in our cohort reported 
having fatigue, evidenced by a relationship between the PVF and 
metabolic insufficiency upon recovery. Herein, we postulate that the 
high prevalence of fatigue among CCHF patients, both in the acute 
and convalescent phases, can be explained partly by dysregulated 
metabolic pathways during infection, as reported in COVID- 19  
(36, 37). A better understanding of the immuno- metabolic mecha­
nism of the PVF in CCHF patients can identify therapeutic targets 
for better and faster recovery.

In conclusion, our study identified the temporal systemic anti­
viral response following the CCHFV infection and metabolic 
rearrangement. Dysregulation and hyperactivity of the critical 
metabolic process of the central carbon and energy metabolism 
and metabolic flux related to the AA metabolism during the acute 
progressive phases of infection can potentially promote the 
exhausted phenotype upon recovery. Reprogramming the impaired 
metabolic pathways to improve the antiviral mechanism by har­
nessing immunometabolic regulations may pave the way for early 
recovery and improve the quality of life.

Materials and Methods

Ethics Statement and Biosafety. This study was approved by the Regional 
Ethics Committees, Stockholm (Dnr. 2017- /1712- 31/2), and the Sivas Cumhuriyet 

University, Turkey (2020- 07/03). All patients and/or their relatives were informed 
about the purpose of the study and signed a consent form before sample collec-
tion. The Institutional Biosafety Committee (IBC) of Turkey by Turkish Ministry of 
Health (Turkish MoH) has established clear protocols to prevent the transmission of 
CCHFV in both hospital and laboratory settings. These protocols involve the proper 
use of personal protective equipment and equipment, as well as safe transfer of 
samples. Regular training is provided to researchers, healthcare workers, and labo-
ratory staff to effectively manage the biohazards associated with CCHFV, following 
approved local IBC guidelines of Turkish MoH. To handle the serial blood samples 
and estimate serum CCHFV levels, a BSL- 2 laboratory situated on the same campus 
was utilized. The transfer of samples between SCUH and the BSL- 2 laboratory 
adhered to established guidelines developed by the local IBC. The extracted RNA 
from the samples was subsequently transported to Sweden.

Cohort Characteristics. We recruited 30 patients hospitalized with CCHFV infec-
tion between 15th April and 18th June 2021 with a median time of 4 d (range 
1 to 6 d) after the onset of symptoms (T0). By using SGS, 43% (13/30) patients 
were grouped into severity group 1 (SG- 1, low risk of death), 30% (9/30) patients 
into severity group 2 (SG- 2, intermediate risk of death), and 27% (8/30) patients 
into severity group 3 (SG- 3, high risk of death). Samples were collected from 25 
patients on discharge day (T1). Third samples were collected from 24 patients (lost 
to follow- up:1) with a median duration of 30 d (IQR: 28 to 33 d) post symptoms 
onset (T2). The patient and healthy control characteristics in Dataset S1, admission 
symptoms, and signs for CCHF patients are presented in SI Appendix, Fig. S1. 
In the SG- 3 group, 5 (63%) of 8 patients succumbed to death, and the CFR for 
the cohort was 17% (5 out of 30). The convalescent phase of 24 CCHF patients 
attended the outpatient clinic of Infectious Diseases and Clinical Microbiology 
at SCUH with a median duration of 30 d (range 19 to 35 d) post symptoms onset 
(T2, convalescent phase) to check their health status. At the time of the clinic visit, 
the patients were questioned for possible postviral symptoms. Whole blood was 
collected in Tempus™ Blood RNA Tube (Thermo Fisher, USA) and EDTA tube for 
peripheral blood mononuclear cells (PBMCs).

RNA Sequencing (RNASeq). The RNA was extracted from the whole blood using 
Tempus™ Spin RNA Isolation Kit (ThermoFisher, USA), followed by library prepara-
tion using SMARTer® Stranded Total RNA Sample Prep Kit–Pico Input Mammalian 
(Takara Bio Europe AB, Sweden). Illumina NovaSeq6000 platform in paired- end 
mode was used for the RNASeq. After excluding the low RNA integrity number 
samples and failed library (n = 5), RNASeq was successful for 69 CCHFV- infected 
samples for all time points and 22 HC, of which all three- time points samples 
were available in 21 patients.

DCQ. The cell type proportions in each sample are computed using a method 
designed from an algorithm adapted from Estimating the Proportions of Immune 
and Cancer Cells (38) and sample- wise normalized gene expression data [TPM 
(transcript per million)] as recently described by us (6).

Transcriptomics Analysis. The raw fastq reads were processed using nf- core 
pipeline rnaseq v3.3 (39). DGE analysis with adjustment for confounding factors 
such as age, gender, cell type proportion, and other possible factors was per-
formed using R/Bioconductor package DESeq2 v1.26.0 (40). The unwanted and 
hidden variation factor in the data was computed using the Bioconductor package 
RUVSeq v1.28.0 (41) and added to the DESeq2 design matrix. R/Bioconductor 
package PIANOv2.2.0 (42) was used for KEGG gene- set enrichment analysis 
(nperm = 1,000, geneset statistic=mean) for differentially expressed genes, and 
gseapy v0.10.5 (43, 44) was used for genes in trajectory modules. The likelihood 
ratio test implemented in the DESeq2 package was used to find genes expressed 
among the three infection time points. Expression trajectory modules were iden-
tified using a Gaussian mixed- effects model implemented in the R/Bioconductor 
package TMixClust v1.16.0 (7). The number of clusters was optimized based on 
the silhouette width calculated by the package.

Genome- Scale Metabolic Modeling (GSMM) and FBA. Context- specific 
metabolic model reconstruction was performed by incorporating normalized 
expression data on human reference genome- scale metabolic models obtained 
from Metabolic Atlas (45). We have generated personalized (individual sample) 
and group- specific (using average gene expression) metabolic models. The 
model reconstruction was performed using Task- driven Integrative Network 
Inference for Tissues (tINIT) algorithm (46, 47). A TPM value of 1 was used as the 

http://www.pnas.org/lookup/doi/10.1073/pnas.2304722120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304722120#supplementary-materials
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expression threshold for the process. Reconstruction of the metabolic model was 
performed by Matlab implementation of the tINIT algorithm (https://github.com/
SysBioChalmers/Human- GEM). RAVEN toolbox v2.4.0 (48) was used for FBA with 
ATP hydrolysis as the objective function.

Isolation of Cell Subsets from PBMCs. The subset of PBMCs at the T2 time 
point (6 each CCHFV- positive and HC) was thawed at 37 °C and washed two 
times in FACS buffer (PBS, 2 mM EDTA, and 2% FBS) by 5 min centrifugation at 
1,500 rpm. Before cell separation, the PBMCs were treated with DNase I solution 
(100 μg/mL) (Stemcell #07900) for 15 min. Cell populations were isolated in 
three batches. Batch 1: CD4+ T cells (EasySep Human CD4 positive selection kit 
II, Stemcell #17852) with flow through used for monocyte isolation (EasySep 
Human monocyte isolation kit, Stemcell #19359), batch 2: CD8+ T cells (EasySep 
Human CD8 Positive Selection Kit II, Stemcell #17853) with flow through used for 
B cell isolation (EasySep Human B cell isolation kit, Stemcell #17954), and batch 
3: NK cell isolation (EasySep Human NK cell isolation kit, Stemcell #17955). All 
isolations were performed using EasySep isolation columns according to the man-
ufacturer's protocols. After isolation, cells were washed twice with PBS, and the cell 
pellet snap was frozen. The purity of the isolation protocols was evaluated using 
flow cytometry for CD4+ T cells [anti- CD3 (clone OKT3, Biolegend #317306) and 
anti- CD4 (clone SK3, Biolegend #344654)], CD8+ T cells [anti- CD3 (clone OKT3, 
Biolegend #317306) and anti- CD8 (clone RPA- T8, Biolegend #301038)], mono-
cytes [anti- CD3 (clone OKT3, Biolegend #317306), anti- CD14 (clone M5E2, BD 
Bioscience #555398), and anti- CD16 (clone 3G8, BD Bioscience #560195)], B cells 
[anti- CD3 (clone OKT3, Biolegend #317306) and anti- CD19 (clone HIB19, BD 
Bioscience #562294)], and NK cells [anti- CD3 (clone OKT3, Biolegend #317306) 
and anti- CD56 (clone B159, BD Bioscience 562289)]. Viability dye LIVE/DEAD 
fixable Near- IR dead cell stain (Invitrogen #L34975) was complemented in each 
stain and required on BD LSRFortessa (BD Bioscience). The purity of the samples 
is given in SI Appendix, Fig. S6.

sctProteomics. Protein was extracted from cell pellets, and liquid chroma-
tography with tandem mass spectrometry (LC- MS/MS) was performed at the 
Proteomics Biomedicum core facility, Karolinska Institutet using an analytical 
workflow previously described (8, 49) with some modifications. In brief, the cell 
pellets were solubilized with 10 µL of 8M urea and 10 µL of 0.2% ProteaseMAX 
(Promega) in 100 mM Tris- HCl, pH 8.5 with 1 µL of 100× protease inhibitor cock-
tail (Roche) following sonication in the water bath for 5 min. Samples were probed 
and sonicated with VibraCell probe (Sonics & Materials, Inc.) for 30 s, with pulse 
2/2, at 20% amplitude after adding 69 µL Tris- HCl buffer and 10 µL acetonitrile 
(ACN). Protein concentration was measured by BCA assay (Thermo Scientific). An 
aliquot of 2 or 5 µg samples (CD8, NK, and CD4, monocyte, B cells, respectively) 
was taken for further preparation, including reduction with dithiothreitol (Sigma) 
at 37 °C for 45 min and alkylation with iodoacetamide for 30 min at room tem-
perature (RT) in the dark. Proteolytic digestion was performed by adding 0.4 or 
1 µg sequencing grade trypsin (Promega) in an enzyme- to- protein ratio of 1:5, 
incubating overnight at 37 °C. Following clean up on the C18 Hypersep plate 
with 5- µL bed volume (Thermo Fisher Scientific), the biological samples were 
labeled with TMTpro reagents in random order adding 150 µg TMT- reagent in 
30 µL dry ACN and incubating at RT for 2 h. The reaction was quenched before 

combining and replicated into an analytical sample in a vial. The TMTpro- labeled 
samples were analyzed by LC- MS/MS as described previously (49, 50). Acquiring 
raw data files were used for protein identification and reporter ion abundance- 
based quantification with Proteome Discoverer v2.5 (Thermo Fisher Scientific) 
using the Mascot Server v5.1 search engine against the human protein database 
(SwissProt). The results were filtered with 5% FDR using the Percolator. The data 
were normalized using R package NormalyzerDE v1.12.0 (25), and differential 
expression analysis was performed using R package limma v3.50.0.

Data, Materials, and Software Availability. The data have been deposited 
with links to BioProject accession number PRJNA916211 in the NCBI BioProject 
database (https://www.ncbi.nlm.nih.gov/bioproject/) (51). All the codes are 
available at GitHub: https://github.com/neogilab/CCHF_GSMM (52). The mass 
spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner 
repository with the dataset identifier PXD038929 (53).
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