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A novel method based on Wiener filter for denoising Poisson noise from 
medical X-Ray images 
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A B S T R A C T   

Background and Objective: The Poisson noise is added to the image during the acquisition of medical X-Ray 
images. The distorted image due to this noise makes it difficult for physicians to diagnose the disease. Although 
there are various approaches for filtering Poisson noise, these approaches have disadvantages such as excessive 
smoothing of the image, distorting the texture information, reducing the image quality and high computational 
cost. In this study, a novel method that removes Poisson noise from medical X-Ray images is proposed by 
overcoming the above mentioned disadvantages. 
Methods: In the proposed method, the Wiener filter is modified using the FIR filter embedded in the standard 
Wiener algorithm. The FIR filter design was carried out using the ASO optimization algorithm. Optimum local 
mean and optimum local variance values are calculated using the optimization matrix corresponding to the FIR 
filter coefficients and transferred to the standart Wiener filter layer as parameter inputs. 
Results: The proposed method showed superior performance in synthetic images and medical X-Ray images in 
terms of PSNR, MSE, SSIM metrics and image quality metrics such as luminous intensity, Contrast index, Entropy 
and Sharpness. The time consumption of the proposed method is much less. 
Conclusions: The clinical usage of the proposed method may help doctors to be able to diagnose the disease more 
accurately by interpreting the X-ray images. Besides, the proposed method can also have a positive effect on the 
CAD performance by using it at the pre-processing stage of CAD systems.   

1. Introduction 

Medical imaging systems have an important role in the diagnosis 
processes of doctors. Using medical images, the doctors have informa-
tion about the internal parts of the body and the organs [1]. Through 
medical images which are different from other image types in terms of 
the information obtained by pixels, the doctors can diagnose the com-
plex diseases much more accurately [2]. Different types of imaging 
techniques are used for the different parts of the human body. X-ray 
imaging is a technique that is mostly used at the regions between the 
bones and the tissue around the bones [3]. 

The undesirable components that affect the image data due to 
various reasons, are called noise. Basically, there are four types of noise 
encountered in medical images. These are Gaussian Noise, Salt and 
Pepper Noise, Speckle Noise and Poisson Noise. Gauss noise is usually 
caused by sensors or low illumination [4]. Salt and Pepper Noise occurs 
because of the transmission and scanning of images. Such kind of a noise 
has an effect of randomly scattered inverse pixels [5]. Speckle Noise 
depends on the imaging device. The phase sensitivity of the transducers 

causes such kind of a noise [6]. X-Ray imaging is both very popular in 
medical fields and it has a low cost. X-rays are obtained using photons 
smaller than 0.2 nm wavelength [7]. The X-rays obtained in the pro-
ducer system reach the receiver system by scattering. This scatter fol-
lows the Poisson distribution [8]. This behavior of X-rays affects the grey 
levels of an image as random values with Poisson distribution and is 
called the Poisson noise. The magnitude of the noise is directly pro-
portional to the ray amplitude [9]. 

For example, in mammography images, the statistical behavior of 
electromagnetic wave in X-Ray causes poisson noise [10]. 

The doctors may have difficulties in the diagnosis because of the 
noise that naturally exist in the medical images. The Poisson noise in the 
X-ray images prevent the detection of coughing and capillary fractures 
in the bones and it must be eliminated [1112]. Usually, the filtering 
techniques are used to eliminate the noise in the medical images [13]. 
Various filtering techniques that reside in the scope of this study are 
summarized in Section 2. 

The standard Wiener filter is a method used in the field of image 
filtering [14].Cannistraci et al. modified the standard Wiener filter to 
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remove specle noise [15]. They used local median instead of local mean 
in their proposed method. They named their proposed method as “Me-
dian-modified Wiener filter” (MMWF). 

Park and Lee used the MMWF technique for noise removal from 
breast phantom images [16]. Park et al. used the MMWF method to 
improve the quality of gamma camera images [17]. In a recent study, Xie 
et al. proposed a new Wiener filter based on field pattern analysis to 
improve the quality of ultrasound images [18]. In our study, the Wiener 
filter was modified by developing a different technique than the above 
methods. 

Although it is out of the scope of this study, image filtering is also 
included in the current studies in the literature as a preprocessing step in 
studies such as nodule detection and segmentation. For example, Rauf 
et al. used the standard Wiener filter in their study of Lung nodule 
detection and removed noise from computed tomographic images [19]. 
İrfan et al. used size filter to filter the noise in the segmentation study of 
breast ultrasound images [20]. Meraj et al. proposed a U-Net approach 
for segmentation of breast lesions. In their study, they filtered the noisy 
image dataset by a Gaussian filter [21]. 

Optimization algorithms are an artificial intelligence technique that 
is frequently used in various medical image processing studies. In his 
current studies, Dinh has used new optimization algorithms such as 
Grasshopper optimization algorithm (GOA), Equilibrium optimizer Al-
gorithm (EOA), Marine predators algorithm (MPA) in fields such as 
medical image fusion [22 23 24 25 26 27 28]. 

Additionally, removal of noise from the images has also a positive 
effect on the performance of the computer-aided diagnostic (CAD) sys-
tems [29]. 

The aim of this study is to propose a novel and effective filter 
structure that eliminates the disadvantages of the methods proposed in 
the literature, such as excessive softening, loss of texture features, 
reduction in image quality and excessive computation time. 

In this study, a novel method based on the Wiener filter is proposed 
for denoising the Poisson noise in X-Ray images. This study is within the 
scope of reducing the poisson noise of x-ray images in the medical field. 
In the proposed method, a 2D finite impulse response (FIR) filter was 
designed that works within the classical Wiener algorithm. Optimum 
local mean and optimum local variance values were obtained using FIR 
filter coefficients and they were transmitted to Wiener algorithm as 
parameter inputs. FIR filter coefficients were obtained using an artificial 
intelligence search algorithm called Atom search. The performance of 
the proposed method in terms of various metrics, was compared with 
classical filters and different approaches in the literature. The results 
show that the proposed method has better performance than both 
classical filters and the other approaches in the literature. 

The paper is organized as follows. In Section 2, the common methods 
in the literature were summarized. In Section 3, the software platform 
and dataset were introduced first. Then the details of the method were 
given with the mathematical background. In Section 4, the performance 
of the proposed method was compared with the literature; numerical 
and graphical results were provided. Section 5 is the conclusion and 
discussion session. 

2. 2.Literature review 

In the literature, there are several approaches to remove Poisson 
noise from X-ray images, such as filters, wavelet-based methods, hibrit 
(spatial domain and transform domain), machine learning and deep 
learning. Kırti et al. aimed to remove the Poisson noise from X-Ray 
images by using Harris detector and responsive median filter in spatial 
domain. Besides, they compared the Peak signal-to-noise ratio (PSNR) 
performance of their work with moving average filter, Non-Local Mean 
(NLM) and Block Matching and 3D filtering (BM3D) techniques docu-
ment[7]. Subbuthai et al. mentioned that the median filter had per-
formed better than Gaussian filter for filtering the Poisson noise in 
medical X-Ray images [30]. However, in this approach the subtle texture 

details can not be distinguished from the noise and filtered [11]. The 
bilateral filter introduced by Tomasi and Manduchi, uses the photo-
metric and geometric similarities of the near neighborhood pixels to 
estimate pixel values [31]. However, the bilateral filter causes gradient 
inverse artifact that generates unstable weighted average in the neigh-
borhood of similar pixels [11]. Thakur et al. applied Poisson noise 
filtering on medical X-Ray images in their study which depends on 
bilateral filter approach [12]. Asim et al. compared the Poisson noise 
filtering performances of Dual-tree Complex Wavelet Transform 
(DCWT), Non-Local Mean (NLM) and Wiener filter together with bilat-
eral filter [32]. In Non-Local Mean (NLM) filtering method introduced 
by Buades, the weighted average of the pixels in the image is calculated 
according to the similarity to the target pixel [33]. Irreta et al. had an 
approach using the adaptive NLM method to reduce the Poisson noise in 
the medical X-Ray images [34]. 

The Guided filter, based on a local linear model, was presented by He 
et al. [35]. In this technique, filtering is done by referencing the content 
of a guide image. Zhang and He performed image filtering studies using 
Guide filter on non-medical images [36]. In the study of Chandra and 
Verma, poisson noise was filtered from medical X-Ray images using 
different filter structures. They compared their results using metrics 
such as MSE and PSNR. According to this study, The Guided filter and 
the Bilateral filter had very close performance [11]. 

The Bayes shring method proposed by Chang et al. uses wavelet soft- 
thresholding technique. The threshold that is used in the wavelet co-
efficients is constructed via Bayesian Framework and has an adaptive 
structure [37]. However, the image quality decreases in methods with 
thresholding because the texture information can not be preserved 
appropriately. Soft-thresholding generates more errors than hard- 
thresholding [38]. Thus, in this study the Bayes shring method was 
compared with the method that contains hard thresholding. Ling Wang 
et al. used Bayes shrink filtering technique and adaptive median filter to 
reduce Poisson noise at medical X-Ray images [39]. Ling Want et al. 
used X-Ray images with different doses and applied Bayes shring 
method with Wiener filter to reduce Poisson noise [8]. 

Du et al. showed that the performance of the dual tree complex 
wavelet transform (DTCWT) was better than wavelet transform for 
reducing the Poisson noise in X-Ray images [40]. 

Ferrari and Winsor applied a method that contains DTCWT to 
remove the Poisson noise from digital radiographic images. They filtered 
the medical X-Ray images and compared the performance of the pro-
posed method with Gaussian filter method in terms of PSNR metric [41]. 

Luisier et al. proposed PURE-LET (Poisson Unbiased Risk Estimation 
– Linear Expansion of Thresholds) method to reduce the Poisson noise. 
This method is based on minimizing the Poisson unbiased risk estimate 
and uses the linear expansion of thresholds [42]. The disadvantage of 
this method is that it causes artifacts [43]. 

A hybrid method in the literature is the state-of-the-art method called 
‘‘block matching and 3D filtering” (BM3D) that was proposed by Dabov 
et al [44]. The disadvantage of this method is to modify the texture 
information significantly by heavily softening the image [45]. The 
preservation of texture features affects the classification performance of 
disease detection systems [11]. Lee and Kang used a method like BM3D 
to reduce the Poisson noise in X-Ray images. Furthermore, they evalu-
ated the Poisson noise reduction performance of PURE-LET method in 
the medical X-Ray images in terms of peak signal-to-noise ratio (PSNR) 
metric [46]. 

Dual-tree Complex Wavelet Transform (DTCWT) which was intro-
duced by Kingsburry, is a method that depends on wavelet trans-
formation. In this method, two trees are used in which the imaginary and 
real parts of the wavelet coefficients are generated [47]. 

In some of the approaches in the literature, initially the noise is 
transformed into an approximately Gaussian distribution. This trans-
formation is realized by applying variance stabilization transform (VST) 
[48]. After the transformation, a filtering method for Gaussian noise is 
applied to the image. The final image is obtained using an inverse 
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transformation. Additionally, in the case of low signal-to-noise ratio, the 
performance of the methods based on VST is lower than the methods 
that deal with the Poisson noise directly [49]. Hai et al. introduced an 
algorithm using VST method to filter the Poisson noise in medical X-Ray 
images [50]. 

Spars-based methods, which is a machine learning technique, were 
used in the field of image filtering [51]].The origin of the Sparse rep-
resentation is based on the compressed sensing technique proposed by 
Donoho [52]. According to this technique, the original signal can be 
reconstructed using several measured sampling values [53]. The sparse 
representation has been used in computer vision, face recognition, ac-
tion recognition, object tracking and image denoising studies in recent 
years [54]. Elad and Aharon used the sparse representation technique to 
remove Gaussian noise in non-medical images [55]. Giryes and Elad 
presented a sparsity-based method to remove the Poisson noise from 
non-medical images [56]. Although sparse-based methods have good 
filtering performance, they can involve a complex and iterative opti-
mization problem. This problem causes the filtering process to be pro-
longed and reduces its practical applicability. 

A locally adaptive regression kernel image denoising (LARK) filter 
technique was presented by Takeda et al. to remove Gaussian noise from 
the image. The technique they present is an extension of the bilateral 
filter [57]. According to the study of Zhu and Yu, LARK technique 
showed a lower performance than NLM technique in removing Gaussian 
noise [58]. 

Image filtering studies using deep neural network were first per-
formed by Liang and Liu in 2015 [59]. Mao et al. designed a deep 
network-based framework for image filtering [60]. Zang et al. proposed 
a deep convolutional neural network structure to remove Gaussian noise 
[61]. Jia et al. proposed a deep convolutional neural network structure 
for image filtering [62]. Lyu et al. performed a Gaussian noise removal 
study by integrating the nonsubsampled shearlet transform structure 
into the convolutional neural network structure [63].Song et al used 
cascaded multi-supervision convolutional neural networks to remove 
noise from Magnetic resonance and Computed Tomography images 
[64]. 

Although deep neural networks are successful in removing noise, 
they also have some important disadvantages. Deep neural networks 
require a lot of memory resources and computational costs. Training the 
network for real noisy images is not a stable solution. Deep neural net-
works have difficulty solving the problem of unsupervised noise 
removal. [51]. 

3. Material and method 

In this study, a novel method was introduced to filter the Poisson 
noise from medical X-Ray images where a 2D FIR filter was nested in the 
standard Wiener algorithm. Optimization algorithms, an artificial in-
telligence application, were used for 2D FIR filter design. In the current 
study of Chandra et al., filtered images were classified using different 
filter structures by the ANN classifier [11]. Taking this study as a 
reference, the Wiener filter, which is the most successful on average, was 
used in this study. 

The synthetic images generated by computer were used to develop 
the proposed method. The performance of the proposed method was 
initially compared with the standard filters that use synthetic images. 
Then it was compared with the methods in the literature in terms of 
various metrics using many medical X-Ray images. The system design 
and performance evaluation processes were implemented as a software 
in MATLAB 2016a IDE environment. 

The URLs of the medical X-Ray images that were used in the study 
are as follows. 

For chest X-Ray images: https://www.kaggle.com/tawsifurrahman/ 
covid19-radiography-database For hand and breast images: https:// 
www.imageprocessingplace.com/DIP-3E/dip3e_book_images_down-
loads.htm. 

https://www.kaggle.com/prashant268/chest-xray-covid19- 
pneumonia. 

3.1. Mathematical background 

The Wiener filter is used to estimate the pixel value using the local 
pixel average and standard deviation of the neighboring pixels. 
Although it is a classical approach for denoising, it is accepted as an 
optimum filter for minimum mean squared error (MSE) [65]. For the 
standard Wiener filter, the local mean value μ and the local standard 
deviation value σ for the pixel at the location (i,j) of the image P are 
given in Equation 1 and Equation 2 respectively where the dimensions of 
filter kernel are (2 M + 1)×(2 N + 1) [66]. P’ represents the filtered 
image matrix and the mathematical equation of the pixel value at the 
location (i,j) is given in Equation 3. Here σn is the variance of the noise. If 
the variance of the noise is not given, Wiener uses the average of all the 
local estimates of the variances. 

μ(i, j) =
1

((2M + 1) × (2N + 1))
∑M

m=− M

∑N

n=− N
P(i+m, j+ n) (1)  

σ(i, j)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
((2M+1)×(2N +1))

∑M

m=− M

∑N

n=− N
P2(i+m, j+n) − μ2(i+m, j+n)

√
√
√
√

(2)  

P’(i, j) = μ(i, j)+
σ(i, j)2

σ(i, j)2
+ σ2

n

(P(i, j) − μ(i, j) ) (3) 

In this study, instead of classical local mean and local standard de-
viation, a calculation method for optimum local mean and optimum 
local standard deviation was given. In the proposed method, Cmn rep-
resents the kernel matrix that contains the optimization coefficients. The 
equations for calculating optimum local mean and optimum local vari-
ance can be rearranged as Equation 4 and Equation 5. 

μopt(i, j) =
1

((2M + 1) × (2N + 1))
∑M

m=− M

∑N

n=− N
Cmn(m, n)P(i+m, j+ n) (4)  

σopt(i, j)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
((2M+1)×(2N+1))

∑M

m=− M

∑N

n=− N
Cmn(m,n)P(i+m,j+n)2

− μopt
2

√
√
√
√

(5) 

As an example, for an optimization kernel of size 3 × 3, Cmn is rep-
resented with a matrix given in Equation 6. Equation 6 is a mathematical 
notation that denotes the filter kernel [65]. In Equation 6, the C values 
represent the FIR filter coefficients to be obtained using the optimization 
algorithm. m, n indicates the pixel location of these coefficients [65]. 
Here m, n ∈ {− 1,0,1}. 

Cmn =

⎡

⎣
C− 1,− 1C− 1,0C− 1,1

C0,− 1C0,0C0,1
C1,− 1C1,0C1,1

⎤

⎦ (6) 

In linear spatial filtering operations, there are two closely related 
concepts called correlation and convolution. Convolution operation is 
achieved by rotating the filter matrix of the correlation operation 180 
degrees [67]. Commonly convolution is used in the literature. Therefore, 
the convolution method was preferred in this study. 

The mathematical equivalent of 
∑M

m=− M
∑N

n=− NCmn(m, n)P(i+m, j+n)
in Equation 4 corresponds to the correlation operation [68]. The corre-
lation operation corresponds to the convolution if the Cmn matrix is 
rotated 180 degrees [67]. Thus, Equation 4 and Equation 5 can be given as 
Equation 7 and Equation 8. 

μopt =
1

((2M + 1) × (2N + 1))
(C’

mn*P) (7) 

V. Göreke                                                                                                                                                                                                                                         



Biomedical Signal Processing and Control 79 (2023) 104031

4

σopt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

((2M + 1) × (2N + 1))
(
C’

mn*P2
)
− μ2

opt

√

(8) 

In Equation 7 and Equation 8 μopt and σopt represent the matrices that 
contain the optimum mean and optimum standard deviation values of 
image matrix P at location (i,j). 

Using the proposed method, the value of the pixel at the filtered 
location (i,j) can be rearranged as Equation 9. 

P’
opt(i, j) = μopt(i, j)+

σopt(i, j)2

σopt(i, j)2
+ σ2

n

(
P(i, j) − μopt(i, j)

)
(9) 

Here Cmn’ matrix is the 180 rotated version of Cmn’ matrix. 
(Cmn’*p) represents the 2D convolution between Cmn’ matrix and P 

matrix. In this study, a two-dimensional filter application was realized 
by applying the convolution operation and linear shift invariant tech-
nique to the image matrix [69]. The optimization matrix was obtained 
by calculating the suitable coefficients (the elements of Cmn’ matrix) for 
the system zeros of the designed FIR filter. 

3.2. The proposed filter architecture and adaptive 2D FIR filter design 

In the requirements analysis stage for FIR filter, usually the fre-
quency domain is preferred. The system response is determined using 
the zeros of the transfer function. Usage of optimization algorithms to 
calculate the suitable coefficients for the system zeros, takes part in the 
literature [13]. 

The suitable coefficients for the system zeros of the FIR filter 
designed in this study (the elements of Cmn’ matrix) were obtained with 
an experimental study where the popular optimization algorithms were 
individually tested. 

The algorithms were structured as they would search for suitable 
solutions which would minimize the fitness function in the problem 
space. For each algorithm, the mean square error (MSE) given in 
Equation 18 was used as the fitness function. The mean square of the 

difference between the density values of the original images and the 
denoised images is called the MSE where the low MSE is a measure of 
high performance [70]. In the experimental study, every algorithm was 
run for twenty times and the best, the worst, mean and standard devi-
ation values were shown in Table 1. 

The algorithms used in this study can be summary as follows. 
Particle Swarm Optimization (PSO) [71], Harmony Search Algo-

rithm (Harmony) [72], Genetic Algorithm [73], Artificial Bee Colony 
(ABC)[74], Atom Search Optimization (ASO)[75], Equilibrium Optimi-
zation Algorithm (EOA) [76], Grasshopper Optimisation Algorithm 
(GOA) [77], Marine Predators Algorithm (MPA) [78], Crow Search Al-
gorithm (CSA) [79]. 

The best performance was obtained by Atom Search Optimization 
(ASO) in the experimental study. ASO was introduced by Zhao et al. in 
2019 where the molecular dynamics were referenced. ASO mathemati-
cally models the atomic motion resulting from the interaction of the 
atoms in the nature with the effect of two forces. The forces that affect 
the atoms are the interaction forces resulting from Lennard-Jones po-
tential and constraint forces resulting from bond-length potential [75]. 
The pseudocode for ASO algorithm is shown in Fig. 1. 

Equation 10 and Equation 11 are used to calculate the mass of the ith 
atom. 

Mi(t) = e−
Fiti (t) − Fitbest (t)

Fitworst (t) − Fitbest (t) (10)  

mi(t) =
Mi(t)

∑N
j=1Mj(t)

(11) 

K refers to the neighbors with higher fitness values with which each 
atom interacts. Its mathematical expression is given by the Equation 12. 

K(t) = N − (N − 2) ×
( t

T

)0,5
(12) 

F is the total effect on the ith atom of random weights originating 
from other atoms. 

Its mathematical expression is given by the Equation 13. 

Fd
i (t) =

∑

j∈Kbest
randjFd

ij(t) (13) 

G is the constraint force and is defined by Equation 14. 
λ(t) is the Lagrangian multiplier. 

Gd
i (t) = λ(t)

(
xt

best(t) − xd
i (t)

)
(14) 

The acceleration of the atom ith at time t is calculated by Equation 
15. 

ad
i (t) =

Fd
i (t) + Gd

i (t)
md

i (t)
(15) 

In the (t + 1)th iteration, the velocity and position of the ith atom are 
calculated using Equation 16 and Equation 17. 

vd
i (t + 1) = randd

i vd
i (t) + ad

i (16)  

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (17) 

In the ASO algorithm shown in Fig. 1, X atoms represent the elements 

Table 1 
Minimization performances of popular optimization algorithms.  

Algorithms PSO [69] HARMONY [70] GA [71] ABC [72] CSA [77] EOA [74] GOA [75] MPA [76] ASO [73] 

Best 21,67116 24,42495 24,41835 25,97930 24,21835 18,81200 18,8700 19,9474 18,70384 
Worst 22,69576 25,19169 25,21512 26,94662 25,14212 19,98700 20,7977 20,6534 19,66099 
Mean 22,26023 24,77300 24,78945 26,37040 24,10945 19,70960 19,8259 19,9814 19,26286 
Std 0,246907 0,247609 0,243547 0,242320 0,242545 0,242230 0,24750 0,28360 0,242115  

Fig. 1. Pseudo code for ASO.  
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of the optimization matrix Cmn’ which will be searched in the problem 
space. The X atoms (elements of the Cmn’ matrix) are initially randomly 
generated by the algorithm. The Fit variable represents the fitness 
function. In the proposed method, the MSE value between the noisy 
image and the filtered image is used as the Fitniss function. This function 
was expressed as errMSE in Fig. 2. 

For the experimental study, noisy synthetic image P was obtained by 
adding the Poisson noise to the synthetic image Porg that was generated 
in the computer. All optimization algorithms used in this study searched 
for the optimization matrix that would minimize the fitness function. 
The filter architecture proposed in this study is shown in Fig. 2. The 
Wiener algorithm is given with Algorithm 1 [14].  

Algorithm 1. The Wiener filter algorithm 

For each pixel in the image Do 
Step 1. Determine filter kernel, M (row size) and N (column size) 
Step 2. Calculate local mean around each pixel using Equation 1 
Step 3. Calculate standard deviation around each pixel using Equation 2 
Step 4. Calculate filter output using Equation 3 

End Do  

MSE =
1

M × N

∑M

i=1

∑N

j=1

(
Porg(i, j) − P’(i, j)

)2 (18) 

Here Porg and P’ represent the original and the filtered images 
respectively. 

An experimental study was conducted to determine the most per-
formant filter window sizes frequently encountered in the literature 
[13]. In the experimental study, noise suppression and preservation of 
visual details were taken into account. 

In the experimental study, various sizes of optimization kernels such 
as 3 × 3, 5 × 5, 7 × 7, and 11 × 11 were used and the kernel with size 3 
× 3 had the best performance. Steps of the proposed method are given in 
Algorithm 2. 

In the literature, non-parametric tests were used to compare the 
performances of algorithms [24]. In this study, the performances of the 
algorithms were tested using the Wilcoxon rank-sum, and the results are 
given in the Table 2. Since the results (p values) given in the Table 2 are 
less than 0.05, the results are statistically significant. 

In the proposed method, the performance of the optimization algo-
rithm directly affects the performance of the filter to be designed. 
because the coefficients of the FIR filter embedded to the Wiener algo-
rithm are obtained by using the optimization algorithm. 

Each of these algorithms was run twenty times to determine the most 
successful algorithm. The best and worst values in Table 1 are the MSE 
values obtained by each algorithm in 20 runs. The mean value is the 
average of 20 study results. According to these values, the lowest MSE 

Fig. 2. The block diagram of the filter architecture for the proposed method.  

Table 2 
P-values from Wilcoxon rank-sum.  

Compared Algorithms P-values 

ASO-PSO 6,2918E-8 
ASO-HARMONY 6,2816E-8 
ASO-GA 6,2818E-8 
ASO-ABC 6,2718E-8 
ASO-CS 6,2715E-8 
ASO-EOA 1,4215E-6 
ASO-GOA 1,4212E-6 
ASO-MPA 1,4232E-6  

Table 3 
PSNR (dB) performance comparison of synthetic image standard filtering 
techniques.  

Peakvalue Noisy 
Image 

Moving 
Average 
[78] 

Median 
[79] 

Wiener 
[14] 

Proposed 
Method 

255  27.5507  30.7184  34.5801  35.1794  35.4014 
100  17.4199  18.5876  26.5283  27.1262  27.1584 
50  11.3993  12.5670  20.4500  21.0697  21.0947  

Table 4 
MSE-SSIM performance comparison of standard filtering techniques for syn-
thetic images.  

Metric Noisy 
Image 

Moving 
Average  
[78] 

Median  
[79] 

Wiener  
[14] 

Proposed 
Method 

MSE  114.4201  34.4319  22.6503  19.2815 18,70384 
SSIM  0.4434  0.8078  0.8159  0.8498 0.8577  
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Fig. 3. a) Original synthetic image, b) Image with noise, c) Image filtered with the proposed method, d) Image filtered with the median filter, e) Image filtered with 
the Wiener filter, f) Image filtered with the moving average. 

Table 5 
PSNR (dB) filtering performances for various noisy medical X-Ray images.  

Metric 
PSNR 

Noisy 
Image 

Bilateral Filter [29] NLM [31] BM3D [42] PURE-LET [40] DTCWT [45] Bayes Shrıng [35] Proposed 
Method 

Cheast  27.2467  33.5003  33.6004  34.1189  34.0800  32.9706  32.0383  34.2000 
Hand  31.1240  33.7576  34.8036  35.9825  35.5588  34.3313  35.4180  36.0162 
Breast  29.9476  32.4013  34.0639  35.1333  35.5660  34.8995  34.3624  35.5727  

Table 6 
MSE filtering performances for various noisy medical X-Ray images.  

Metric 
MSE 

Noisy Image Bilateral Filter [29] NLM [31] BM3D [42] PURE-LET [40] DTCWT [45] Bayes Shrıng [35] Proposed 
Method 

Cheast  122.2845  51.7459  31.5039  25.2736  28.9301  26.0430  40.3845  25.0455 
Hand  50.1973  27.3727  21.6819  16.3996  18.0802  17.4190  18.9381  16.3202 
Breast  65.8142  37.4066  25.5912  20.0064  18.0500  21.5954  23.8146  18.0379  

Table 7 
SSIM filtering performances for various noisy medical X-Ray images.  

Metric 
SSIM 

Noisy Image Bilateral Filter [29] NLM [31] BM3D [42] PURE-LET [40] DTCWT [45] Bayes Shring [35] Proposed 
Method 

Cheast  0.6061  0.8266  0.8722  0.9057  0.8409  0.8696  0.8193  0.9004 
Hand  0.7337  0.8336  0.9177  0.9245  0.9104  0.9249  0.8977  0.9219 
Breast  0.6336  0.7749  0.8498  0.8751  0.9037  0.8973  0.8420  0.8965  
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was obtained by the ASO algorithm. In addition, ASO can produce 
values closer to the mean (low standard deviation).  

Algorithm 2. Steps of the proposed method 

Begin 
1. Read image Porg 
2. Add poisson noise to Porg generate noisy image P 
3. Apply zero padding [67] to P image 
4. Apply ASO optimization: 

a. Define population size N, N = 30 
b. Define lower limit Lower_L, upper limit Upper_L vector 

n = row_size(optimization kernel) × column_size(optimization kernel); 
Lower_L = [LL1,…,LLn ], ∀LL∈ {0.9} 
Upper_L = [UL1,…,ULn], ∀ UL ∈ {1.2} 
Define stopping criteria Max iteration, Max_iteration = 300 

c. Define fitness function using Equation 18 
d. Find μopt, σopt matrix using Equation 7, Equation 8 

5. Calculate σn2 

6. For i = 1 to size(P(row_size)) Do 
For j = 1 to size(P(column_size)) Do 

Calculate Popt’(i,j) using Equation 9 
End For 

End For 
End Begin  

The optimization matrix obtained with the proposed method is given in 
Equation 19. Equation 19 denotes the FIR filter coefficients (elements of 

the Cmn’ matrix) designed using the ASO optimization algorithm (Starts 
at step 4 in the Algorithm 2). In the optimization process, the ASO al-
gorithm searches FIR filter coefficients that minimize the MSE error. 
These coefficients obtained at the end of the optimization process 
represent the elements of the Cmn’ matrix. 

C’
mn =

⎡

⎣
1.0012 1.0018 1.0021
0.9994 1.0011 1.0014
1.0090 0.9894 0.9991

⎤

⎦ (19)  

3.3. Performance comparison with standard techniques 

Peak Signal-to-Noise ratio calculates the ratio of the peak signal to 
noise between two images in terms of decibels. This ratio is used as a 
measure of quality between the original and reconstructed image. As 
PSNR increases, the quality of the reconstructed image increases too 
[70]. The mathematical representation of PSNR metric is given in 
Equation 12. In the literature, Poisson noise was used with different 
peak intensity values to measure the performances of the methods for 
filtering the noise [12]. The performances of the proposed method and 
the methods in the literature used for Poisson noise filtering were 
measured with various peak intensity values and the results were given 
in Table 3. The standard filters used in this study are Moving Average 
[80], Median [81] and Wiener [14] filter techniques. 

Fig. 4. Chest X-Ray filtered with various methods in the literature.  
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Additionally, in this study performances were also compared using 
MSE and SSIM metrics and the results were given in Table 4. Structural 
similarity index (SSIM) is a measure of the similarity between two im-
ages. High SSIM indicates high performance in image filtering applica-
tions.[82]. Mathematical representation of SSIM is given in Equation 13. 

PSNR =
10 × log

(
Ig2)

MSE
(12) 

Here Ig represents the grey level in the image. 

SSIM =

(
2μxμy + C1

)(
2σxy + C2

)

(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (13) 

Here μ is the mean, σ is the variance and σxy is the covariance.C1 and 
C2 Are constants. 

Visual outputs for application of noise reduction using standard 
filtering techniques and the proposed method are given in Fig. 3. 

Considering the Table 3, the proposed method produced a superior 
result (high PSNR value) in suppressing noise for different peak values 
than standard filters. As seen in the Table 4, the proposed method pro-
vides lower filtering error (MSE) and higher structural similarity (SSIM). 
Table 3 and Table 4 show that the proposed method is more successful 
than the classical methods on the synthetic image in terms of the given 
performance metrics. 

3.4. Limitations of the proposed method 

The performance of the proposed method is closely related to the 
optimization algorithm used in the study. The limitation of the proposed 
method is that it has a fixed size kernel (Equation 19). This limitation 
creates a disadvantage against other methods. Equation 19 is a fixed 
matrix for all situations. 

4. Clinical results 

4.1. Performance comparison with different techniques in the literature 

The performances of the proposed method and the approaches given 
in Section 2 for filtering the Poisson noise from the medical X-Ray im-
ages were compared using various X-Ray images and the results were 
given in Table 5, Table 6, and Table 7. The visual results of the X-Ray 
images filtered with the proposed method and various methods in the 
literature were given in Fig. 4, Fig. 5, and Fig. 6. 

According to the results given in Table 5, Table 6 the proposed 
method had a better performance than all the other methods in the 
literature, in terms of PSNR and MSE metrics. The highest PSNR values 
and the lowest MSE values for three different x-ray images were ob-
tained with the proposed method. 

According to the results given in Table 7, In terms of the SSIM metric, 
it had very similar performances with BM3D, PURE-LET and DTCWT 

Fig. 5. Breast X-Ray image filtered with various methods in the literature.  
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methods in various medical X-Ray images. When these results were 
considered, it was demonstrated that the Poisson noise filtering per-
formance of the proposed method in the medical images is superior to 
the methods in the literature. 

There are also different metrics included in current studies in the 
literature for the measurement of image quality [24].In addition, the 
performance of the proposed method in this study was evaluated using 
four different metrics.These are Average luminous intensity (ALI), 
Contrast index, Entropy and Sharpness, respectively.For the test applied 
at this stage, 200 images from the open access X-ray medical dataset 
were used (Dataset link: https://www.kaggle.com/prashant268/chest- 
xray-covid19-pneumonia). The results obtained are given in Table 8. 

According to the results in Table 8, better quality images were ob-
tained by the proposed method. For example, images obtained by other 
methods produced images with lower contrast than the proposed 
method. 

The computer processing time required by the proposed method is 
given in Table 9 by comparing it with other methods. 

As seen in the Table 9, the proposed method requires much less 

Fig. 6. Hand X-Ray image filtered with various methods in the literature.  

Table 8 
Performance comparison in terms of different metrics.  

Method  ALI CONTRAST ENTROPY SHARPNESS 

Biliteral Filter  
[29] 

Mean 0,5053 0,1451 7,5503 0,0234  

Std 0,0545 0,0242 0,1358 0,0026 
NLM [31] Mean 0,5056 0,0917 7,4540 0,0140  

Std 0,0548 0,0131 0,1358 0,0017 
BM3D [42] Mean 0,5052 0,1047 7,4618 0,0161  

Std 0,0547 0,0132 0,1391 0,0018 
PURE-LET [40] Mean 0,5060 0,1572 7,4348 0,0175  

Std 0,0552 0,0138 0,1336 0,0022 
DTCWT [45] Mean 0,5057 0,1550 7,5275 0,0232  

Std 0,0545 0,0530 0,1347 0,0046 
Bayes Shiring  

[35] 
Mean 0,5056 0,1416 7,4594 0,0224  

Std 0,0549 0,0134 0,1383 0,0020 
Proposed Mean 0,5105 0,1585 7,5072 0,0241  

Std 0,0539 0,0129 0,1373 0,0018  

Table 9 
Time consumption comparison of the proposed method with other methods.  

Method Bileteral [29] NLM [31] BM3D [42] PURE-LET [40] DTCWT [45] Bayes Shrıng [35] Proposed 

Time consuption (sn) 0,1348 5,7639  5.1796 0,3000  0.4317 0,8000  0.0627  
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computer processing time compared to other methods. 

5. Discussion and conclusion 

Reduction of Poisson noise is an image pre-processing stage and has a 
significant role on the diagnosis of the disease. In this study, a novel 
method was proposed for denoising the Poisson noise from medical X- 
Ray images. The proposed method contains the calculation of the opti-
mum local mean and the optimum local standard deviation parameters 
instead of the local mean and local standard deviation parameters of 
Wiener algorithm. A software architecture was designed to be able to 
implement the proposed method where the standard Wiener algorithm 
and 2D FIR filtering algorithms were run nested. The matrix that con-
tains the 2D FIR coefficients was named as the optimization matrix and 
was used in the calculation of optimum local mean and optimum stan-
dard deviation. The popular optimization algorithms were run for 20 
times with kernels of size 3x3, 5x5, 7x7, and 11x11, and the ASO al-
gorithm was chosen which had the best performance in terms of MSE 
metric. The performance of the system which was designed using syn-
thetic images was compared with the classical filter structures in the 
literature in terms of MSE, PSNR and SSIM metrics and it had a better 
performance. The numerical results were given in Table 3 and Table 4. 
The visual results were given in Fig. 3. 

The performance of the proposed method was compared with 
various approaches in the literature used for reducing the Poisson noise 
from medical X-Ray images in terms of MSE, PSNR and SSIM metrics, 
and the numerical results were given in Table 5, Table 6, and Table 7. 
The visual results of the medical images were given in Fig. 4, Fig. 5, and 
Fig. 6. The proposed method was able to reduce the Poisson noise in 
various types of medical X-Ray images in a superior way. 

Although BM3D and NLM filters gave good results in Poisson noise 
suppression, they caused intense softening in the image. This softening 
effect is clearly seen in the visual results. Excessive softening causes 
texture features in the image to be lost [45]. Loss of the texture features 
adversely affects the classification performance of disease diagnostic 
systems [11]. 

The PURE-LET filter caused much less blur in the images. Consid-
ering this situation, PURE-LET filter showed the closest performance to 
the proposed method according to Bilateral, Bayes Shiring and DTCWT 
in noise suppression (PSNR value). 

According to the results in Table 8, the proposed method in this study 
has higher ALI, Contrast, Entropy and Sharpness values. According to 
the results given in Table 8, our proposed method produces higher 
quality images. 

Considering the Table 9, the computer processing time required by 
our proposed method is considerably less than other methods. In ap-
plications where a large number of images need to be filtered (for 
example, in deep learning-based classification problems), the proposed 
method provides a significant time advantage over other methods. 

In addition, the use of the filter proposed in this study in the pre-
processing stage of nodule detection and segmentation studies may 
contribute to these studies in a positive way. 

It is considered that if the proposed method was applied to the 
clinical fields, the doctors would be able to diagnose the disease more 
accurately by interpreting the X-Ray images. The proposed method can 
transfer more accurate image information into the inputs of the CAD 
systems because it eliminates the noise more successfully. Thus, more 
accurate feature information can be obtained from the image informa-
tion, and this may contribute to the performance of the system’s decision 
support process. 

As a future work, it is aimed to adapt the proposed method for 
different types of noises. 
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