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A B S T R A C T

We study the linear and nonlinear optical properties of a spherical GaAs quantum dot with screened modified
Kratzer potential (SMKP) by solving the time-independent Schrödinger wave equation using the diagonalization
method. The obtained electronic properties of the system alongside the compact density formalism are used to
evaluate the linear, third-order nonlinear and total optical absorption coefficients and change in the relative
refractive index of the system. We show that the confinement potential parameters and optical intensity
significantly affects the behaviour of absorption coefficients and refractive index changes. It is important to
note that the findings of this study will find application in optoelectronics and related areas.
Introduction

Due to the massive increase in research focusing on the physics
of low-dimensional semiconductor nanostructures in the last three
decades, there have been remarkable developments in this area [1–
5]. Such studies have been inspired by the urgent need for advanced
nano-fabricated technologies. Semiconductor nanostructures are man-
ufactured using sophisticated growth methods like chemical lithography
and molecular-beam epitaxy [6–8]. Examples of these structures are su-
perlattices, quantum wires, single and multiple quantum wells, pseudo
dot and quantum dots (QDs), antidots, antiwells, etc. [9–15]. The
aforementioned structures have received unprecedented attention from
both theorists and experimentalists [16–19]. These structures have
great potential in device applications such as laser, optical modulation
technology, etc.[20,21]. Several researchers have studied the properties
of these structures via the experimental approach [22,23]. Further-
more, numerous theoretical investigations have been carried out with
these structures such as band structure calculations, optical properties,
transport properties and polaron effects, etc [24–28].

Research on optical properties of low-dimensional structures, finds
direct applications in design of electronic devices such as laser diodes.
Consequently, optical properties of semiconductor heterostructures
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have attracted significant attention [29–31]. The confinement geometry
in low-dimensional structures hinders the flow of charge carriers in
space, and as a result of the discrete electronic energy distribution,
the behaviour in the electrical and optical properties of such systems
changes. Because of the above-mentioned, energy levels and wave
functions are two of the major electronic properties that can be used
theoretically to determine the optical properties of zero-dimensional
structures [29–31]. In the past decade, several studies have been
carried out on the electronic, thermal and optical properties of quantum
wires with various cross-sections [25,26,31,32]. The attention of the
researchers was attracted by the fact that these electronic properties
provide information about the optical properties of the system, such as
the optical absorption coefficient and refractive index [33–40]. Conse-
quently, many optical properties of semiconductor QDs such as dipole
transition [24,25], oscillator strength [26,27], photoionization cross-
sections [28], optical absorption coefficients (OACs) [31] and refractive
index changes (RICs) [26] have appealed the interest of scholars in
experimental and theoretical studies in recent years [28,33–35].

The electronic and optical properties of QDs have been investigated
using various models such as Tietz [36], Gaussian [37], modified
Gaussian [38], modified Kratzer [39], Rosen–Morse [40], Manning–
Rosen [41] and inversely quadratic Hellmann potential [31]. However,
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to the best of our knowledge, the optical properties of QDs have not
been studied using the screened modified Kratzer potential (SMKP),
which is given as [42–44]:

𝑉𝑆 (𝑟) = 𝐷𝑒

(

𝑞 −
𝑟𝑒
𝑟
𝑒−𝛼𝑟

)2
, (1)

where 𝐷𝑒 is the dissociation energy, 𝑟𝑒 is the equilibrium bond length,
𝛼 is the screening parameter, 𝑞 is the control parameter and 𝑟 is
the internuclear distance. This SMKP has been applied by several
authors to study diatomic molecules and other physical systems [45–
51]. Moreover, our choice is inspired by the fact that potential models
with many fitting parameters tend to study physical systems and/or fit
experimental data better than ones with fewer parameters.

In view of the details highlighted above, it is clear that the relevant
motive for the present study is established. Being relevant to the field of
device applications, the QDs are systems that exhibit remarkable optical
and electronic properties. These can be properly tuned by suitably
modifying the composition, structural parameters, and the application
of external probes. Here, the linear and nonlinear optical properties of
a spherical GaAs QD structure with SMKP confinement potential have
been investigated. Thereafter, the effects of the multiple confinement
potential parameters on the coefficients of linear and nonlinear optical
absorption and refractive index change will be separately scrutinized.
The organization of the article is as follows: in section ‘‘Theory’’,
the formulation and theoretical solution of the problem are given,
theoretical details of optical properties is presented in Section ‘‘Optical
properties: theoretical details’’, numerical results and their discussions
are presented in Section ‘‘Results and Discussions’’ and our conclusions
are given in Section ‘‘Conclusion’’.

Theory

In the framework of the effective mass approach, the Schrödinger
equation in spherical coordinates for a spherical QD can be expressed
as
[

𝑝 2

2𝑚∗ + 𝑉𝑆 (𝑟)
]

𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝐸𝑛𝑙𝑚𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙), (2)

where, 𝑝 and 𝑚∗ are the linear momentum vector and the effective
mass of the electron, 𝑛, 𝑙 and 𝑚 are principal, orbital and magnetic
quantum numbers, and 𝑉𝑆 (𝑟) is the screened modified Kratzer potential.
The wavefunction-𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) in the Eq. (2) can be found by a series
xpansion using well-known wavefunctions as a basis [31]:

𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) =
∑

𝑗
𝑐𝑛𝑗 𝑙𝑗𝑚𝜓

(0)
𝑛𝑗 𝑙𝑗𝑚

(𝑟, 𝜃, 𝜙). (3)

where 𝑐𝑛𝑙𝑚 are the expansion coefficients, 𝜓 (0)
𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) is the total wave

function describing the motion of the electron and the exact solution
for an electron in a spherical QD with infinite potential is [31]

𝜓 (0)
𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝜑(0)

𝑛𝑙 (𝑟)𝑌𝑙𝑚(𝜃, 𝜙), (4)

here the radial wavefunction-𝜑(0)
𝑛𝑙 (𝑟) is given as

(0)
𝑛𝑙 (𝑟) =

{

𝑁𝑗𝑙(𝑘𝑛𝑙𝑟), 𝑟 < 𝑎
0, 𝑟 ≥ 𝑎

, (5)

here 𝑁 is the normalization constant, 𝑘𝑛𝑙 is the n𝑡ℎ root of the
pherical Bessel function-𝑗𝑙 and 𝑎 = 55 nm is the radius of the infinite
pherical QD. It should be noted that we do the series expansion only
or 𝑚 = 0 states.

ptical properties: theoretical details

This section focuses on the application of the well-known compact
ensity matrix formalism to compute the variations in absorption co-
fficients and refractive index-linked to optical transitions involving
wo sub-bands [31,32,36,37]. The ground and first excited state energy
evels of the QD used in the calculations represent the subbands 𝐸
2

1

and 𝐸2. Optical absorption occurs when the incident photon energy-
ℏ𝜔 equals the energy difference between the subbands (ℏ𝜔 = 𝐸21 =
𝐸2 − 𝐸1) [40]. In this case, with the absorption of the photon, an
electron transitions from the ground to the excited states. This process,
called photoabsorption, is highly dependent on the photon’s energy and
QD parameters. The incident photons is created by an electromagnetic
(EM) radiation which is polarized in the 𝑧-direction. Incident photons
are generated by electromagnetic (EM) radiation that is polarized in
the 𝑧-direction [31]. This EM field is considered as 𝐸(𝑡) = 𝐸0 cos(𝜔𝑡) =
�̄�𝑒𝑖𝜔𝑡 + �̄�∗𝑒−𝑖𝜔𝑡, where �̄� and 𝜔 are the amplitude and the angular
frequency of the electric field, respectively [34,35]. The time evolution
of the matrix elements is evaluated in the case of one-electron density
operator 𝜌 [31,32,36–39],
𝜕𝜌
𝜕𝑡

= 1
𝑖ℏ

[𝐻0 − 𝑒𝑧𝐸(𝑡), 𝜌] − 𝛤 (𝜌 − 𝜌(0)), (6)

where 𝐻0 is the unperturbed Hamiltonian devoid of EM, 𝐸(𝑡) is the
term containing perturbations, 𝑒 is the charge of the electron, 𝜌(0) is
the density matrix operator devoid of EM perturbations and 𝛤 is a
damping operator due to processes of collision [34]. 𝛤 is adopted to be
the diagonal matrix with elements equal to the inverse of the relaxation
time 𝜏 [31,32]. The master Eq. (6) can be solved using an iterative
procedure [31,32,36–41]: 𝜌(𝑡) = ∑∞

𝑛=0 𝜌
(𝑛)(𝑡), where

𝜕𝜌(𝑛+1)𝑖𝑗

𝜕𝑡
= 1
𝑖ℏ

[𝐻0, 𝜌
(𝑛+1)]𝑖𝑗 −

1
𝑖ℏ

[𝑒𝑧, 𝜌(𝑛)]𝑖𝑗𝐸(𝑡) − 𝛤𝑖𝑗𝜌
(𝑛+1)
𝑖𝑗 . (7)

Owing to the presence of the electric field, the electronic polariza-
tion is written in the form 𝑃 (𝑡) = 𝜀0𝜒(𝜔)�̄�𝑒−𝑖𝜔𝑡 + 𝜀0𝜒(−𝜔)�̄�∗𝑒𝑖𝜔𝑡 and
can be obtained from Eq. (6) as 𝑃 (𝑡) = 𝑇 𝑟(𝜌𝑀)∕𝑉 , where M is the
dipole operator, 𝜒(𝜔) is the susceptibility, 𝑉 is the volume and 𝜀0 is
the permittivity of vacuum of the QD. In the serial expansion of the
susceptibility 𝜒(𝜔) and taking into consideration the coefficients up to
the third-order, the even orders of the susceptibility will be eliminated,
by reason of the inversion symmetry of the QD [34]. After these
calculations, the mathematical expressions of the linear 𝜒 (1)(𝜔) and the
third-order nonlinear 𝜒 (3)(𝜔) susceptibility coefficients are presented as
follows [31,32,36,37,39–41]:

𝜒 (1)(𝜔) =
𝜎𝜈 |𝑀21|

2

𝜀0𝛶
, (8)

𝜒 (3)(𝜔) = − 𝜒 (1)(𝜔)|�̄�|2
[

4|𝑀21|
2

|𝛶 |2
−

4|𝑀22 −𝑀21|
2

(𝐸21 − 𝑖ℏ𝛤12)𝛶

]

, (9)

where 𝛶 = 𝐸21 − ℏ𝜔 − 𝑖ℏ𝛤12, 𝑀𝑖𝑗 = ⟨𝜓𝑛𝑖𝑙𝑖𝑚𝑖 |𝑒𝑧|𝜓𝑛𝑗 𝑙𝑗𝑚𝑗 ⟩ are the matrix
elements of the electric dipole moment (𝑚 is the magnetic momentum
quantum number), 𝐸𝑖𝑗 = 𝐸𝑖 − 𝐸𝑗 is the energy difference between the
two electronic states, ℏ𝜔 is the incident photon energy and 𝜎𝑣 is the
carrier density. The matrix elements of the electric dipole moment can
be evaluated by:

𝑀𝑖𝑗 = 𝑒∫ 𝑟3|𝜓𝑛𝑖𝑙𝑖𝑚𝑖 (𝑟, 𝜃, 𝜙)|
2𝑑𝑟 cos(𝜃) sin(𝜃)𝑑𝜃𝑑𝜙, (10)

where the 𝜓𝑛𝑖𝑙𝑖𝑚𝑖 (𝑟, 𝜃, 𝜙) is the wave function.
The intersubband optical transition probability amplitude between

the two electronic states, such as the lowest (initial) and the first
excited (final), is proportional to the matrix element of electric dipole
moment. Because the electric dipole moment is unaffected by spin,
optical transitions can only occur between states with the same spin.
When the selection rules 𝛥𝑙 = ±1 and 𝛥𝑚 = 0 are satisfied, the matrix
elements of the electric dipole moment are non-vanishing [31,32]. The
OAC-𝛼(𝜔) is gotten from the susceptibility-𝜒(𝜔) using the relation given
as 𝛼(𝜔) = 𝜔

√

𝜇0∕𝜀ℑ𝑚[𝜀0𝜒(𝜔)] [31,32,36–41], where 𝜇0 is the vacuum
ermeability and 𝜀 = 𝑛2𝑟𝜀0 (where 𝜀0 and 𝑛𝑟 are the permittivity and
efractive index of the material, respectively). Then the linear and
hird-order nonlinear OACs can be expressed as

(1)(𝜔) = 𝜔
√

𝜇0 ℏ𝜎𝑣𝛤12|𝑀21|
2
, (11)
𝜖
|𝛶 |2
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Fig. 1. The confining SMKP as a function of 𝑟 for several values of the 𝐷𝑒, 𝑟𝑒, 𝛼 and 𝑞.
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(3)(𝜔, 𝐼) = −𝜔𝐼
√

𝜇0
𝜖
ℏ𝜎𝑣𝛤12|𝑀21|

2

2𝜀0𝑛𝑟𝑐

[ 4|𝑀21|
2

(

|𝛶 |2 − 2ℏ2𝛤 2
12
)2

−
|𝑀22 −𝑀11|

2 (2𝐸21(𝐸21 − ℏ𝜔) + |𝛶 |2 − 2ℏ2𝛤 2
12
)

(

𝐸2
21 + ℏ

2𝛤 2
12
) (

|𝛶 |2 − 2ℏ2𝛤 2
12
)2

]

, (12)

where 𝑐 is the speed of light in vacuum and 𝐼 = 2𝜀0𝑛𝑟𝑐|�̄�|
2 represents

the incident optical intensity. The third-order nonlinear OAC- 𝛼3(𝜔, 𝐼)
is negative and also it is proportional to the incident optical intensity-𝐼 .
The total OAC is given by 𝛼(𝜔, 𝐼) = 𝛼(1)(𝜔) + 𝛼(3)(𝜔, 𝐼) [31,32,36–41].
The susceptibility is linked to the RICs as 𝛥𝑛(𝜔)∕𝑛𝑟 = ℜ𝑒[𝜒(𝜔)∕2𝑛2𝑟 ] [32,
41]. Then, the linear and third-order nonlinear RICs can be computed
by using Eqs. (8) and (9):

𝛥𝑛(1)(𝜔)
𝑛𝑟

=
𝜎𝑣|𝑀21|

2

2𝑛2𝑟𝜀0

𝐸21 − ℏ𝜔
|𝛶 |2

, (13)

𝐼
𝛥𝑛(3)(𝜔, 𝐼)

𝑛𝑟
=
𝜎𝑣|𝑀21|

2𝜇0𝑐𝐼
4𝑛2𝑟𝜀0

{

4(𝐸21 − ℏ𝜔)|𝑀21|
2

(𝐸21 − ℏ𝜔)2 − ℏ2𝛤 2
12

−
|𝑀22 −𝑀11|

2 [𝐸21(|𝛶 |
2 − 4ℏ2𝛤 2

12) + 2ℏ𝜔𝛤 2
12
]

(

|𝛶 |2 − 2ℏ2𝛤 2
12
)

|𝛶12|
2

}

. (14)

From above equations it is clear that the third-order nonlinear RIC-
𝛥𝑛(3)(𝜔, 𝐼)∕𝑛𝑟 has the opposite sign with the sign of 𝛥𝑛(1)(𝜔)∕𝑛𝑟 and it
s proportionate to the incident optical intensity-𝐼 . Using Eqs. (13) and
14), the total RIC is given by 𝛥𝑛(𝜔)∕𝑛𝑟 = 𝛥𝑛(1)(𝜔)∕𝑛𝑟 + 𝛥𝑛(3)(𝜔, 𝐼)∕𝑛𝑟.
herefore, it is clear form set of Eqs. (11)–(12) and Eqs. (13)–(14), the
ACs and RICs, respectively, depends only on the matrix element 𝑀21
f the dipole moment. Once a photon with ℏ𝜔 energy is released into
he system, the matrix element-𝑀21 provides the probability amplitude
f an optical transition between the states |1⟩ and |2⟩ described by the
ave functions 𝜓𝑛1𝑙1𝑚1

and 𝜓𝑛2𝑙2𝑚2
, respectively.

esults and discussions

This study presents the optical properties of the GaAs QD struc-
ure with SMKP. Numerical computations are carried out for this QD
3

tructure. The fitting parameters used to achieve our set objectives O
re presented as follows: 𝜇 = 0.067𝑚𝑒, 𝜎𝜈 = 2 × 1022 m−3, 𝑛𝑟 = 3.2,
0 = 8.854 × 10−12 𝐹∕𝑚, 𝜇0 = 4𝜋 × 10−7 𝐻∕𝑚 and 𝛤12 = 1∕𝜏12 where
12 = 0.14 ps. The experimental values for the depth of the potential
ell-𝐷𝑒 and radius of the dot-𝑅0 = 1∕𝛼 are selected in accordance
ith those obtained in the literature [31,39–41]. This dot radius helps

o control the width of the potential well. The QD considered in this
tudy was produced in a semiconductor heterostructure that comprises
2D electron gas with lithographically attained metallic gate electrodes
laced close to the QD. The energy levels and the size of the dot, e.g.
he radius of the dot, can be changed by tuning the electrodes of the
ate [39,40]. Computations are made in atomic units (ℏ = 𝑚𝑒 = 𝑒 = 1).
he SMKP which has finite depth and range is the confining potential
dopted for this study. This potential is a continuous function with four
arameters that can be adjustable at will to fit a physical system of
nterest. In this study, our goal is to study the optical properties of a
D with SMKP. Historically, it has been established that for a potential
odel to be used to study intersubband transition occurrences and

elated properties of QDs, the potential must be in a quadratic-like form
ust like the SMKP (see Fig. 1). Fig. 1(a–d) shows the confining SMKP
s a function of for several values of the 𝐷𝑒, 𝑟𝑒, 𝛼 and 𝑞. As can be seen
n these figures, an increase in the values of 𝐷𝑒, 𝛼 and 𝑞 parameters
auses an increase in the finite part of the potential, while an increase
n the 𝑟𝑒 causes a decrease. Also, increasing of 𝛼 and 𝑞 parameters shifts
he potential minimum to the smaller radial distance, while increasing
f 𝑟𝑒 shifts it to the larger radial distance. However, it is also seen that
he change in 𝐷𝑒 has no effect on the minimum of the potential. The
hape of this model is in agreement with the shape of other confinement
otentials previously adopted for such structures [32,36–41]. However,
ur model is an improvement to the aforementioned in the Ref. [39],
n the sense that our potential has more fitting parameters and it is a
eneral case of the Kratzer potential [39].

In Fig. 2 we show the OACs as a function of the photon energy
or several values of 𝐷𝑒, 𝑟𝑒, 𝛼, and 𝑞. To study the OACs of this
ystem, the incident optical intensity is fixed at 𝐼 = 400 MW∕m2. It
s observed from the Figs. 2 (a, b, c & d) that the linear and total

ACs first increase and then decrease as the photon energy increases
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Fig. 2. The OACs as a function of the photon energy for several values of 𝐷𝑒, 𝑟𝑒, 𝛼 and 𝑞. Dashed lines are for linear, dotted lines are for nonlinear and solid lines are for total
ACs.
Fig. 3. The RICs as a function of the photon energy for several values of 𝐷𝑒, 𝑟𝑒, 𝛼 and 𝑞. Dashed lines are for linear, dotted lines are for nonlinear and solid lines are for total
ICs.
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hile negative nonlinear OAC shows the opposite change. A quasi-
esonance peak is observed at a photon energy of ≈ 7.5 me V for total
AC. The increase in 𝐷𝑒, 𝛼 and 𝑞 parameters shifts the peak position
f linear and nonlinear OACs slightly towards blue (high energy) due
o the change in transition energy, while the increase in 𝑟𝑒 causes these
eaks to shift to red (low energy). In addition, the peak amplitudes of
inear and nonlinear OACs decrease with the increasing of 𝐷𝑒, 𝛼 and 𝑞
arameters due to less overlapping of the wavefunctions of the ground
4

l

nd first excited states and hence the decrease of the dipole matrix
lement. On the other hand, with the increasing of 𝑟𝑒, the associated
ave functions overlap more and accordingly, the peak amplitudes of

inear and nonlinear OACs increase with the increasing of the dipole
atrix element. However, there is no discernible difference on the total
AC with the variations of 𝐷𝑒, 𝛼 and 𝑞 except of 𝑟𝑒. As a result, we can
onclude that although these parameters cause an effective change on
inear and nonlinear OACs, their effect on the total OAC is very small.
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Fig. 4. (a) The total OAC as a function of the photon energy. (b) The total RICs as a
function of the photon energy. Both plots are for several values of 𝐼 and fixed 𝐷𝑒, 𝑟𝑒,

and 𝑞 parameters.

In Fig. 3, we plot the RICs as a function of the photon energy for
ifferent values of 𝐷𝑒, 𝑟𝑒, 𝛼 and 𝑞. With the rising of photon energy, the
eak amplitude of the total RICs firstly decreases and then increases.
n addition, as the 𝐷𝑒, 𝛼 and 𝑞 increase the peak position of the total
ICs moves to the greater energies as shown in Fig. 3(a, b and c).
his is attributed to the fact that the energy difference between the
wo electronic states increases as the 𝐷𝑒, 𝛼 and 𝑞 parameters increase.

Fig. 3(d) shows the same behaviour for total RICs as the photon energy
rises, but as the parameter 𝑟𝑒 increases, the peak position of total RICs
shifts to lower energies. This is because as the parameter 𝑟𝑒 increases,
the energy difference between the two electronic states decreases. Also,
when 𝐷𝑒, 𝛼 and 𝑞 increase, the dipole matrix element and hence the
peak amplitude of total RICs decrease, while the converse is seen as 𝑟𝑒
increases.

Fig. 4(a) and (b) display the variations in the total OAC and RICs
versus photon energy-ℏ𝜔 for seven different incident optical intensity
values with 𝛼 = 0.05, 𝑟𝑒 = 1.5, 𝑞 = 1 and 𝐷𝑒 = 224.46 me V. As
shown in Fig. 4(a), it is clearly seen that the amplitude of the total
OAC decreases as the incident photon intensity rises. The underlying
reason for this behaviour is that the third-order nonlinear OAC has
a linear dependence on 𝐼 , while the linear OAC is not dependent on
it. Thus, as the intensity 𝐼 increases, the peak amplitude of the total
OAC decreases due to the negative contribution from the nonlinear
OAC and the total OAC starts to quasi-saturate at the critical optical
intensity-𝐼 = 700 MW∕m2 in the low photon energy regime. At the point
where the magnitudes of the linear and nonlinear third-order OACs
equal each other (𝛼(1) = |𝛼(3)|), the optical intensity is approximately
𝐼 = 1000 MW∕m2, and at that point the OAC reaches zero. It is
pertinent to note that if the optical intensity is raised beyond this
point, this will produce negative values of the total OAC which is
physically acceptable. In addition, it is interesting to note that the
optical intensity does not affect the resonance peak position of the
total OAC. Similarly, as stated earlier and it is clearly seen in Eq. (13)
that there is no dependence of the linear RICs on the optical intensity.
In consequence, the dependence of total RICs on optical intensity is
gotten from the nonlinear third-order term which depends linearly on
the optical intensity-𝐼 . It is shown that when the intensity rises, the
amplitude of the total RICs alters. The linear term of RICs dominates
for low optical intensities, but with the raising of the intensity, the
impact of the nonlinear third-order term dominates. As a result, the
nature of the total RIC varies accordingly. The results presented in this
study agree excellently with earlier studies by other researchers using
other models [31,32,34]. However, ours is an improvement because
our model presents multiple parameters that can be utilized to tune
and manipulate the properties of QDs.
5

Conclusion

This study theoretically investigates the linear, third-order nonlin-
ear and total absorption coefficients and refractive index changes for
spherical quantum dots. In this context, the screened modified Kratzer
potential has been used. To derive the eigenvalues energies and wave
functions, the Schrödinger equation in spherical coordinate was solved
by applying the diagonalization method. The peak positions of the
absorption coefficients and refractive index changes shift to blue or red
upon the change of potential parameters. Furthermore, the resonance
positions of the absorption coefficients and refractive index changes do
not change by the optical intensity 𝐼 , while their amplitudes change
greatly. Our results are vital in the design of nano-scale electronic de-
vices such as quantum dot solar cells, quantum dot lasers, quantum dot
photodetectors, quantum dot infrared photodetectors, phototransistors,
and light-emitting diodes.

CRediT authorship contribution statement

C.O. Edet: Conception and design of study, Acquisition of data,
Analysis and/or interpretation of data, Handled the review. E.B. Al:
Handled the computational analysis. F. Ungan: Conception and design
of study, Acquisition of data, Analysis and/or interpretation of data,
Handled the review. N. Ali: Writing – review & editing, Contributed in
general recommendations and data interpretation. M.M. Ramli: Writ-
ng – review & editing, Contributed in general recommendations and
ata interpretation. M. Asjad: Writing – review & editing, Contributed
n general recommendations and data interpretation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgements

This research has been carried out under LRGS Grant LRGS/
/2020/UM/01/5/2 (9012-00009) Fault-tolerant Photonic Quantum
tates for Quantum Key Distribution provided by Ministry of Higher
ducation of Malaysia (MOHE).

eferences

[1] Sandoval MT, La Rocca GC, Silva EDA. Phys E Low Dimens Syst Nanostruct
2022;138:115061.

[2] Ullah K, Meng Y, Shi Y, Wang F. Adv Opt Mater 2022;2:101860.
[3] Roudbari MA, Jorshari TD, Lu C, Ansari R, Kouzani AZ, Amabili M. Thin-Walled

Struct 2022;170:108562.
[4] Yang M, Jin H, Sun Z, Gui R. J Mater Chem J Mater Chem A 2022;10:5111.
[5] Qi Y, Yang S, Wang J, Li L, Bai Z, Wang Y, et al. Mater Today Phys

2022;23:100622.
[6] Rotenberg E, Freelon BK, Koh H, Bostwick A, Rossnagel K, Schmid A, et al. New

J Phys 2005;7:114.
[7] Gil AM, Rota A, Maroutian T, Bartenlian B, Beauvillain P, Moyen E, et al.

Superlattices Microstruct 2004;36:235.
[8] Axelsson S, Campbell EEB, Jonsson LM, Kinaret J, Lee SW, Park YW, et al. New

J Phys 2005;7:245.
[9] Cetin A. Phys Lett A 2008;372:3852.

[10] Aquino N, Castano E, Ley-Koo E. Chin J Physiol 2003;41:276.
[11] Bogachek EN, Landman U. Phys Rev B 1995;52:14067.
[12] Chepelianskii AD, Shepelyansky DL. Phys Rev B 2001;63:165310.
[13] Matulis A, Pyragiene T. Phys Rev B 2003;67:045318.
[14] Ikhdair S, Sever R. J Mol Struct 2007;806:155.
[15] Reijniers J, Peeters FM, Matilus A. Phys Rev B 1998;59:2817.

[16] Niley F, Nakamura K. Phys B 1993;184:398.

http://refhub.elsevier.com/S2211-3797(22)00803-8/sb1
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb1
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb1
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb2
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb3
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb3
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb3
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb4
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb5
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb5
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb5
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb6
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb6
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb6
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb7
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb7
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb7
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb8
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb8
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb8
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb9
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb10
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb11
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb12
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb13
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb14
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb15
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb16


Results in Physics 44 (2023) 106182C.O. Edet et al.
[17] Weiss D, Richiter K, Manschig A, Bergman R, Schweizer H, von Klitzing K. Phys
Rev Lett 1993;70:4118.

[18] Chayanika B. J Appl Phys 1998;6:3089.
[19] Lisa K, Bednareka S, Szafrana B, Adamowski J. Phys E Low Dimens Syst

Nanostruct 2003;17:494.
[20] Ijima S. Nature 1991;54:56.
[21] Kroto HW, O’Brein SR, Curl RF, Smalley RE. Nature 1985;318:162.
[22] Tanaka M, Yamada H, Maruyama T, Akimoto K. Phys Rev B 2003;67:045305.
[23] Rasanen E, Saarikoski H, Stavrou VN, Harju A, Puska MJ, Nieminen RM. Phys

Rev B 2003;67:235307.
[24] Hasanirokh K, Asgari A, Rokhi MM. Optik 2019;188:99.
[25] Naimi Y. Chem Phys Lett 2021;767:138380.
[26] Shi L, Yan Z-W, Meng M-W. Superlattice Microst 2021;150:106818.
[27] Al EB, Kasapoglu E, Sari H, SoAl21kmen I. Phys B 2021;613:412874.
[28] Mgidlana S, P. Şen P, Nyokong T. J Mol Struct 2020;1220:128729.
[29] Perez-Conde J, Bhattacharjee AK. Solid State Commun 2005;135:496.
[30] Yakar Y, Çakır B, Özmen A. Superlattice Microst 2013;60:389.
[31] Al EB. Cumhuriyet Sci J 2021;42:694.
[32] Mathe L, Onyenegecha CP, Farcaş A-A, Pioraş-Ţimbolmaş L-M, Solaimani M,

Hassanabadi H. Phys Lett 2021;397:127262.
[33] Mzerd S, El Haouari M, Talbi A, Feddi E, Mora-Ramos ME. J Alloy Comp

2018;753:68.
[34] Feddi E, Talbi A, Mora-Ramos ME, El Haouari M, Dujardin F, Duque CA. Phys

B 2017;524:64.
[35] El Haouari M, Talbi A, Feddi E, El HG, Oukerroum A, Dujardin F. Opt Commun

2017;383:231.
6

[36] Khordad R, Mirhosseini B. Pramana 2015;85:723.
[37] Xie W. 48 (2010) 239.
[38] Gharaati A, Khordad R. 48 (2010) 276.
[39] Khordad R. Indian J Phys 2013;87:623, (2014).
[40] Khordad R, Mirhosseini B. Opt Spectrosc 2017;117:434.
[41] Onyeaju MC, Idiodi JOA, Ikot AN, Solaimani M, Hassanabadi H. J Opt 46:254.
[42] Edet CO, Al EB, Ungan F, Ali N, Rusli N, Aljunid SA, et al. Nanomaterials

2022;12:2741.
[43] Edet CO, Mahmoud S, Inyang EP, Ali N, Aljunid SA, Endut R, et al. Mathematics

2022;10:2824.
[44] Edet CO, Ikot AN. J Low Temp Phys 2021;203:84.
[45] Edet CO, Ettah EB, Aljunid SA, Endut R, Ali N, Ikot AN, et al. Symmetry

2022;14:976.
[46] Edet CO, Nwbabuzor PO, Ettah EB, Duque CA, Ali N, Ikot AN, et al. Results

Phys 2022;39:105749.
[47] Edet CO, Amadi PO, Ettah EB, Ali N, Asjad M, Ikot AN. Mol Phys

2022;120:e2059025.
[48] Edet CO, Lima FCE, Almeida CAS, Ali N, Asjad M. Entropy 2022;24:1059.
[49] Edet CO, Osang JE, Ali N, Agbo EP, Aljunid SA, Endut R, et al. Quantum Rep

2022;4:238.
[50] Edet CO, Al EB, Ungan F, Ali N, Rusli N, Aljunid SA, et al. Nanomaterials

2022;12:2741.
[51] Edet CO, Khordad R, Ettah EB, Aljunid SA, Endut R, Ali N, et al. Sci Rep

2002;12:1.

http://refhub.elsevier.com/S2211-3797(22)00803-8/sb17
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb17
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb17
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb18
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb19
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb19
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb19
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb20
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb21
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb22
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb23
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb23
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb23
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb24
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb25
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb26
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb27
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb28
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb29
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb30
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb31
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb32
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb32
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb32
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb33
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb33
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb33
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb34
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb34
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb34
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb35
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb35
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb35
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb36
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb39
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb40
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb41
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb42
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb42
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb42
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb43
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb43
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb43
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb44
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb45
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb45
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb45
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb46
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb46
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb46
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb47
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb47
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb47
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb48
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb49
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb49
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb49
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb50
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb50
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb50
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb51
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb51
http://refhub.elsevier.com/S2211-3797(22)00803-8/sb51

	Effects of the confinement potential parameters and optical intensity on the linear and nonlinear optical properties of spherical quantum dots
	Introduction
	Theory
	Optical properties: theoretical details
	Results and Discussions
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


