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Abstract
The aim of this paper was to develop the summability literature by introducing the concept of Ip-convergence in the partial
metric space (X , p). First, we give some properties of Ip-convergence. Also, we introduce the concept of I∗

p-convergence
in the partial metric space (X , p) and examine relations between newly defined concepts. Then, we present the concepts
of Ip-Cauchy and I∗

p-Cauchy sequence in the partial metric space (X , p) and investigate relations between these Cauchy
sequences.

Keywords Ideal convergence · Statistical convergence · Partial metric space

1 Introduction

In mathematical analysis, especially in summability theory,
the concept of convergence provides many applications and
extensions that shed light on researchers. Therefore, over
the years, many mathematicians have studied the concept of
convergence and developed it in different areas such as statis-
tical convergence, ideal convergence, fuzzy convergence and
power-series summability (Fast 1951; Kostyrko et al. 2000;
Baxhaku et al. 2022; Shukla et al. 2022).

Fast (1951) and Steinhaus (1951), independently, pre-
sented the idea of statistical convergence which is primarily
based on the concept of the natural density. This concept has
attracted the attention of many researchers, and many studies
have been done on this concept (see, Schoenberg 1959; Šalát
1980; Fridy 1985). Then, the definition of I-convergence,
generalizing the concept of statistical convergence, was pre-
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sented by Kostyrko et al. (2000). Also, this concept was
developed and explained in detail with examples byKostyrko
et al. (2005).Besides,Nabiev et al. (2007) introduced the con-
cepts of I-Cauchy and I∗-Cauchy sequences. The concept of
I-convergence was studied from different perspectives such
as for sequences of fuzzy numbers by Kumar and Kumar
(2008) and in 2-normed spaces byArslan andDündar (2018).

The concept of partial metric space was introduced by
Matthews (1994) as a generalization of the usual concept of
metric space. In this study, Matthews presented the concept
of partial metric space and gave some basic properties of
this concept. Also, the concepts of convergence and Cauchy
sequence were defined in this study. Recently, this concept
has become the focus of researchers, and many studies have
been done (see, Bukatin et al. 2009; Samet et al. 2013). In one
of these studies, Aldemir et al. (2020) investigated the rela-
tionships of partial metric space and fuzzy metric space with
partial fuzzymetric spaces. Also, Nuray (2022) presented the
concept of statistical convergence in the partial metric space.

In this paper, we discuss the concept of I-convergence in
partial metric spaces.

2 Preliminaries

In this part, we remind some basic definitions, notations and
properties which form the background for this paper (see,
Matthews 1994; Kostyrko et al. 2000; Nabiev et al. 2007;
Nuray 2022).
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13790 E. Gülle et al.

Let S be a set of positive integers. The natural density of
S is defined by

δ(S) = lim
n→∞

1

n

∣
∣ {k ∈ S : k ≤ n} ∣

∣.

A sequence (xn) is said to be statistically convergent to
L if for every ε > 0, the set S(ε) = {n ∈ N : |xn − L| ≥ ε}
has natural density zero.

If (xn) is a sequence, which satisfies a property P for all
n except a set of natural density zero, then we say that (xn)
satisfies P for “almost all n”, and we abbreviate this by “a.a.
n”.

A family of sets I ⊆ 2N is called an ideal if and only if

I1. ∅ ∈ I,
I2. E1 ∪ E2 ∈ I for each E1, E2 ∈ I,

I3. for each E1 ∈ I and each E2 ⊆ E1, we have E2 ∈ I.

An ideal is called non-trivial if N /∈ I and a non-trivial
ideal is called admissible if {n} ∈ I for each n ∈ N.

All ideals in this paper are assumed to be admissible.
An admissible ideal I ⊂ 2N is said to satisfy the property

(AP) if for every countable family of mutually disjoint sets
{E1, E2, ...}belonging toI, there exists a countable family of
sets {F1, F2, ...} such that the symmetric difference E j�Fj

is a finite set for j ∈ N and F =
(

⋃∞
j=1 Fj

)

∈ I.
A family of sets F ⊆ 2N is called a filter if and only if

F1. ∅ /∈ F ,
F2. E1 ∩ E2 ∈ F for each E1, E2 ∈ F ,

F3. for each E1 ∈ F and each E2 ⊇ E1, we have E2 ∈ F .

For any ideal I, there is a corresponding filter F(I)

defined by

F(I) = {

M ⊂ N : (∃E ∈ I)(M = N\E)
}

.

A sequence (xn) is said to be I-convergent to L if for
every ε > 0, the set Aε = {

n ∈ N : |xn − L| ≥ ε
}

belongs
to I. It is denoted by I − lim xn = L .

A sequence (xn) is said to be I∗-convergent to L if there
exists a set M = {m1 < m2 < ...} ∈ F(I) such that
lim
k→∞ xmk = L. It is denoted by I∗ − lim xn = L .

Now,we recall the concept of partial metric and its proper-
ties. Then, we give the concepts of convergence and Cauchy
sequence in the partial metric space.

Let X be a non-empty set. A function p : X × X → R is
said to be a partial metric provided that for each x, y, z ∈ X

PM1. If p(x, x) = p(x, y) = p(y, y) then x = y
PM2. 0 ≤ p(x, x) ≤ p(x, y)

PM3. p(x, y) = p(y, x)
PM4. p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

A partial metric space is a pair (X , p) where X is a non-
empty set and p is a partial metric on X .

It can be easily seen that if p(x, y) = 0, then from the
conditions PM1 and PM2, x = y. But if x = y, p(x, y)
may not be 0.

Every partial metric space forms a metric space: A func-
tion p∗ : X × X → R is a metric on X such that p∗(x, y) =
2p(x, y)− p(x, x)− p(y, y), where p is a partial metric on
same space. So, a pair (X , p∗) is a metric space.

For the partial metric p : X × X → R, ◦p ⊆ X × X is
a binary relation provided that for each x, y ∈ X , x ◦p y ⇔
p(x, x) = p(x, y).

A sequence (xn) is said to be convergent to x in the partial
metric space (X , p) if lim

n→∞ p(xn, x) = p(x, x).

A sequence (xn) is said to be Cauchy sequence in the
partial metric space (X , p) if lim

n,m→∞ p(xn, xm) exists.

Finally, we give the concepts of statistical convergence
and statistical Cauchy sequence in the partial metric space.

A sequence (xn) is said to be statistically convergent to x
in the partial metric space (X , p) if for every ε > 0,

lim
n→∞

1

n

∣
∣{k ≤ n : |p(xk, x) − p(x, x)| ≥ ε}∣∣ = 0.

Asequence (xn) is said to be statisticallyCauchy sequence
in the partial metric space (X , p) if for every ε > 0, there
exists a non-negative integer N and L ≥ 0 such that

lim
n→∞

1

n

∣
∣{k ≤ n : |p(xk, xN ) − L| ≥ ε}∣∣ = 0.

A point a ∈ X is said to be proper statistical limit of a
sequence (xn) if this sequence is statistically convergent to
a in the metric space (X , p∗).

3 Main results

In this study, we introduce the concepts of Ip-convergence
andI∗

p-convergence in apartialmetric space (X , p).Also,we
present the concepts of Ip-Cauchy and I∗

p-Cauchy sequence
in the partial metric space (X , p). Moreover, we investigate
relations between these concepts.

Definition 1 Let (X , p) be a partial metric space and (xn) be
a sequence in X .

i. The sequence (xn) is said to be Ip-convergent to x ∈ X
if for every ε > 0

Ap(ε) = {

n ∈ N : |p(xn, x) − p(x, x)| ≥ ε
} ∈ I.
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Ideal convergence in partial metric spaces 13791

The notation Ip − lim p(xn, x) = p(x, x) or xn
Ip−→ x

is used.
ii. We say that x ∈ X is a proper Ip-limit of the sequence

(xn) if I − lim xn = x in (X , p∗). The notation Ip −
lim xn = x (properly) is used. If a sequence has a proper
Ip-limit, then the sequence is said to be properly Ip-
convergent.

Theorem 1 Let (X , p) be a partial metric space and (xn)
be a sequence in X. Ip − lim xn = x (properly) iff Ip −
lim p(xn, x) = Ip − lim p(xn, xn) = p(x, x).

Proof

Ip − lim xn = x (properly)

⇔ p∗(xn, x) < ε, for a.a. n

⇔ |2p(xn, x) − p(xn, xn) − p(x, x)| < ε, for a.a. n

⇔ |p(xn, x) − p(x, x)| <
ε

2

and |p(xn, xn) − p(x, x)| <
ε

2
, for a.a. n

⇔ Ip − lim p(xn, x) = Ip − lim p(xn, xn) = p(x, x).

��
Theorem 2 Let (X , p) be a partial metric space and (xn) be
a sequence in X. If the sequence (xn) is Ip-convergent to x
and there exists an element x ′ ∈ X such that x ′ ◦p x, then
this sequence is Ip-convergent to x ′.

Proof To prove this theorem, it is sufficient to show that

A′
p(ε) = {

n ∈ N : |p (

xn, x
′) − p

(

x ′, x ′) | ≥ ε
} ∈ I.

Since the sequence (xn) is Ip-convergent to x , for every
ε > 0

Ap(ε) = {

n ∈ N : |p (xn, x) − p (x, x) | ≥ ε
} ∈ I.

Also, using the fact that

x ′ ◦p x ⇒ p
(

x ′, x ′) = p
(

x ′, x
)

,

we have

|p (

xn, x
′) − p

(

x ′, x ′) |
≤ |p (xn, x) + p

(

x, x ′) − p(x, x) − p
(

x ′, x ′) |
= |p (xn, x) − p(x, x)|

and so,

A′
p(ε) ⊂ Ap(ε).

Thus, from the condition I3, we get that

A′
p(ε) ∈ I,

that is, xn
Ip−→ x ′. ��

Theorem 3 Let (X , p) be a partial metric space and (xn) be
a sequence in X. If the sequence (xn) convergent to x, then
this sequence is Ip-convergent to same point.

Proof Assume that the sequence (xn) convergent to x in the
partial metric space (X , p). Then, for every ε > 0, there
exists a positive integer n0 = n0(ε) such that for all n > n0

|p(xn, x) − p(x, x)| < ε.

Hence, we get

Ap(ε) = {

n ∈ N : |p(xn, x)− p(x, x)| ≥ ε
}

⊂{1, 2, · · · , n0}.

Since I is an admissible ideal and I f = {A ⊂ N :
A is finite} ⊂ I, {1, 2, · · · , n0} ∈ I. So, Ap(ε) ∈ I. Con-
sequently, we get that Ip − lim p(xn, x) = p(x, x), that is,

xn
Ip−→ x . ��

Remark 1 In the partial metric space (X , p), the sequence
(xn) is Ip-convergent, but it not necessarily convergent. We
can explain this with the following example:

Example 1 Let us take I = Iδ = {A ⊂ N : δ(A) = 0}. The
function p : R− ×R

− → R
+, p(x, y) = −min{x, y} is the

partial metric and the pair (R−, p) is the partial metric space.
In this partial metric space (R−, p), let us take the sequence
(xn) as following:

xn :=
{−n; if n = k2

−1; if not.

Since

Ip − lim p(xn,−1) = Ip − lim (−min{xn,−1})
= Ip − lim 1

= 1 = p(−1,−1),

this sequence Ip-convergent to−1. But, it is not convergent.

Theorem 4 Let (X , p) be a partial metric space and (xn),
(yn) and (zn) be three sequences in X. If the following con-
ditions

i. (xn) ≤ (yn) ≤ (zn) for every n ∈ H where H ∈ F(I)

and
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13792 E. Gülle et al.

ii. xn
Ip−→ x and zn

Ip−→ x

are provided, then yn
Ip−→ x.

Proof Assume that (xn) ≤ (yn) ≤ (zn) for every n ∈ H

where N ⊃ H ∈ F(I) and xn
Ip−→ x and zn

Ip−→ x . Since

xn
Ip−→ x and zn

Ip−→ x , for every ε > 0, we have

{

n ∈ N : |p(xn, x) − p(x, x)| ≥ ε
} ∈ I

and
{

n ∈ N : |p(zn, x) − p(x, x)| ≥ ε
} ∈ I.

This implies that the sets

G = {

n ∈ N : |p(xn, x) − p(x, x)| < ε
}

and K = {

n ∈ N : |p(zn, x) − p(x, x)| < ε
}

belong to F(I). Let

L = {

n ∈ N : |p(yn, x) − p(x, x)| < ε
}

.

It is clear thatG∩K ∩H ⊂ L . SinceG∩K ∩H ∈ F(I) and
G ∩ K ∩ H ⊂ L , from the condition F3, we have L ∈ F(I)

and so

{

n ∈ N : |p(yn, x) − p(x, x)| ≥ ε
} ∈ I.

Therefore, we get that yn
Ip−→ x . ��

Definition 2 Let (X , p) be a partial metric space and (xn)
be a sequence in X . The sequence (xn) is said to be I∗

p-
convergent to x ∈ X if there exist a set M = {m1 < m2 <

· · · < mk < · · · } ⊂ N and M ∈ F(I) such that

lim
k→∞ p(xmk , x) = p(x, x).

The notation I∗
p − lim p(x, xn) = p(x, x) or xn

I∗
p−→ x is

used.

Theorem 5 Let (X , p) be a partial metric space and (xn) be

a sequence in X. Then, xn
I∗
p−→ x implies that xn

Ip−→ x.

Proof Assume that the sequence (xn) isI∗
p-convergent to x in

the partialmetric space (X , p). Then, there exists a set K ∈ I
such that for M = N\K = {m1 < m2 < · · · < mk < · · · },
we have

lim
k

p(xmk , x) = p(x, x).

Thus, for every ε > 0, there exists a positive integer k0 =
k0(ε) such that for all k > k0

|p(xmk , x) − p(x, x)| < ε,

for all k ∈ M . So, we have

Ap(ε) = {

n ∈ N : |p(xn, x) − p(x, x)| ≥ ε
}

⊂ K ∪ {m1 < m2 < · · · < mk0}.

Since I is an admissible ideal, we have K ∪ {m1 < m2 <

· · · < mk0} ∈ I and so, Ap(ε) ∈ I. Consequently, we get

that xn
Ip−→ x . ��

Theorem 6 Let (X , p) be a partial metric space, (xn) be
a sequence in X and I be an admissible ideal having the

property (AP). Then, xn
Ip−→ x implies that xn

I∗
p−→ x.

Proof Assume that the sequence (xn) is Ip-convergent to x
in the partial metric space (X , p). Then, for every ε > 0,

Ap(ε) = {

n ∈ N : |p(xn, x) − p(x, x)| ≥ ε
} ∈ I.

Now, let us take

A1
p = {

n ∈ N : |p(xn, x) − p(x, x)| ≥ 1
}

and

An
p =

{

n ∈ N : 1
n

≤ |p(xn, x) − p(x, x)| <
1

n − 1

}

for n ≥ 2. It is clear that As
p ∩ At

p �= ∅ for s �= t and
As
p ∈ I for each s ∈ N. By the property (AP), there exists

a sequence of sets {Bn}n∈N such that As
p � Bs are finite sets

and B = ∪∞
s=1Bs ∈ I. It is sufficient to prove that

lim
n→∞
n∈M

p(xn, x) = p(x, x)

for M ∈ N \ B. Let δ > 0. Choose m ∈ N such that
1

m
< δ.

Then, we have

{

n ∈ N : |p(xn, x) − p(x, x)| ≥ δ
} ⊂

m
⋃

s=1

As
p.

Since As
p�Bs are finite sets for s = 1, 2, · · · ,m, there exists

an n0 such that

( m
⋃

s=1

Bs

)

∪{n∈N : n≥n0}=
( m

⋃

s=1

As
p

)

∪{n∈N : n≥n0}.

If n > n0 and n /∈ B, then

n /∈
m
⋃

s=1

Bs ⇒ n /∈
m
⋃

s=1

As
p.
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Ideal convergence in partial metric spaces 13793

Hence, we have

|p(xn, x) − p(x, x)| <
1

n
< δ

that is,

lim
n→∞
n∈M

p(xn, x) = p(x, x).

Therefore, we get that xn
I∗
p−→ x . ��

Theorem 7 Let (X , p) be a partial metric space, (xn) be a
sequence in X and I be an admissible ideal having the prop-
erty (AP). Then, the following conditions are equivalent:

i. xn
Ip−→ x

ii. There exist two sequences (yn)and (zn) in the partialmet-
ric space (X , p) such that xn = yn+zn, lim

n→∞ p(yn, x) =
p(x, x) and suppz ∈ I, where suppz = {n ∈ N : zn �=
0}.

Proof (i) ⇒ (i i)

Let xn
Ip−→ x . Then, by Theorem (6), there exists a set

M = {m1 < m2 < · · · < mk < · · · } ∈ F(I) such that

lim
k

p(xmk , x) = p(x, x).

Let us define a sequence (yn) as following:

yn :=
{

xn; if n ∈ M
x; if n ∈ N \ M .

(1)

It is clear that lim
n→∞ p(yn, x) = p(x, x). Also, let

zn = xn − yn, n ∈ N. (2)

Since

{n ∈ N : xn �= yn} ⊂ N \ M ∈ I,

we have

{n ∈ N : zn �= 0} ∈ I.

So, suppz ∈ I and by (1) and (2), we get that xn = yn + zn .
(i i) ⇒ (i)Assume that there exist the sequences (yn) and

(zn) in the partial metric space (X , p) such that

xn = yn + zn, lim
n→∞ p(yn, x) = p(x, x) and suppz ∈ I.

Define a set M = {mk} ⊂ N such that

M = {m ∈ N : zm = 0} = N \ suppz.

Since suppz ∈ I, we have M ∈ F(I), hence xn = yn if
n ∈ M . Thus, we conclude that there exists the set M =
{m1 < m2 < · · · < mk < · · · } ∈ F(I) such that

lim
k

p(xmk , x) = p(x, x).

So, we get that xn
I∗
p−→ x , and by Theorem (6), xn

Ip−→ x . ��

Definition 3 Let (X , p) be a partial metric space and (xn) be
a sequence in X .

i. The sequence (xn) is said to be Ip-Cauchy sequence if
for every ε > 0, there exists a positive integer N = N (ε)

and L ≥ 0 such that

{

n ∈ N : |p(xn, xN ) − L| ≥ ε
} ∈ I.

ii. The sequence (xn) is said to be I∗
p-Cauchy sequence if

there exists a set M = {m1 < m2 < · · · < mk <

· · · } ⊂ N and M ∈ F(I) such that the subsequence
(xM ) = (xmk ) is Cauchy sequence, that is,

lim p(xmk , xm j )

exists.

Remark 2 Unlike themetric space, in the partial metric space
(X , p), the sequence (xn), which is Ip-convergent, need not
be Ip-Cauchy sequence. We can explain this with the fol-
lowing example.

Example 2 Let take I = Iδ = {A ⊂ N : δ(A) = 0}. The
function p : R+ × R

+ → R
+, p(x, y) = max{x, y} is the

partial metric and the pair (R+, p) is the partial metric space.
In this partial metric space (R+, p), let us take the sequence
(xn) as following:

xn :=
⎧

⎨

⎩

n; if n = k2

0; if n �= k2 and n is an even integer
1; if n �= k2 and n is an odd integer.

Since

Ip − lim p(xn, 1) = Ip − lim (max{xn, 1})
= Ip − lim 1

= 1 = p(1, 1),

123



13794 E. Gülle et al.

this sequence is Ip-convergent to 1. But, since xn = 0 or
xn = 1 for n �= k2, I − lim p(xn, xm) does not exist. Con-
sequently, the sequence (xn) is Ip-convergent, but it is not
Ip-Cauchy sequence.

Theorem 8 Let (X , p) be a partial metric space and (xn) be
a sequence in X. If the sequence (xn) is I∗

p-Cauchy sequence,
then it is Ip-Cauchy sequence.

Proof Assume that the sequence (xn) is an I∗
p-Cauchy

sequence in the partial metric space (X , p). Then, from the
definition, there exists a set M = {m1 < m2 < · · · < mk <

· · · } ⊂ N and M ∈ F(I) such that for every ε > 0 and
k, j > k0

|p(xmk , xm j ) − L| < ε.

Let N = N (ε) = mk0 + 1. Then, for every ε > 0, we have

|p(xmk , xN ) − L| < ε

for k > k0. Now, take the set K as K = N \ M . It is clear
that K ∈ I and

Ap(ε) = {

n ∈ N : |p(xn, xN ) − L|
≥ ε

} ⊂ K ∪ {m1 < m2 < · · · < mk0}.

Since I is an admissible ideal, we get

K ∪ {m1 < m2 < · · · < mk0} ∈ I

and so, Ap(ε) ∈ I. Hence, the sequence (xn) is Ip-Cauchy
sequence. ��

Theorem 9 Let (X , p) be a partial metric space, (xn) be
a sequence in X and I be an admissible ideal having the
property (AP). If the sequence (xn) is Ip-Cauchy sequence,
then it is I∗

p-Cauchy sequence.

Proof Assume that the sequence (xn) is Ip-Cauchy sequence
in the partial metric space (X , p). Then, for every ε > 0,
there is a positive number N = N (ε) such that

{

n ∈ N : |p(xn, xN ) − L| ≥ ε
} ∈ I.

Let us take

Pi =
{

n ∈ N : |p(xn, xmi ) − L| <
1

i

}

,

wheremi = s
(1

i

)

for i = 1, 2, . . .. It is clear that Pi ∈ F(I).

Since the admissible ideal I has the property (AP), there

exists a set P ⊂ N such that P ∈ F(I) and P \ Pi are finite
for all i . It is sufficient to prove that following limit

lim
m,n→∞
m,n∈P

p(xm, xn)

exists. To prove this, let ε > 0 and j ∈ N be such that j >
3

ε
.

If m, n ∈ P , since P \ Pi are finite sets, there exists k = k j
such that m ∈ Pj and n ∈ Pj for all m, n > k j . Hence,

|p(xm, xm j ) − L| <
1

j
and |p(xn, xm j ) − L| <

1

j

for all m, n > k j . Therefore, using the conditions of PM1

and PM4, we write

|p(xm, xn) − L| ≤ |p(xm, xm j ) + p(xn, xm j )

− p(xm j , xm j ) − L| <
3

j
< ε.

Thus, for every ε > 0, there exists k = kε such that for
m, n > kε and m, n ∈ P ∈ F(I)

|p(xm, xn) − L| < ε.

This shows that the sequence (xn) is an I∗
p-Cauchy sequence.

��

4 Conclusion

The number of studies on the concepts of convergence and
summability in the partial metric spaces, which has been
studied in many fields since its definition, is very few. To
fill this gap in the literature, in this study, we introduced and
studied the concepts of Ip and I∗

p-convergence, Ip-Cauchy
and I∗

p-Cauchy sequence in the partial metric space (X , p).
Also, we investigated some relations between these. This
work can shed many future study on the concepts of conver-
gence and summability in the partial metric spaces that will
be extended and developed by using the concepts of lacu-
nary sequence, invariant mean, deferred Cesàro mean and
asymptotical equivalence.
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Aldemir B, Güner E, Aydoǧdu E, Aygün H (2020) Some fixed point
theorems in partial fuzzymetric spaces. J Inst SciTech10(4):2889–
2900

ArslanM,DündarE (2018)OnI-convergence of sequences of functions
in 2-normed spaces. Southesat Asian Bull Math 42:491–502

Baxhaku B, Agrawal PN, Shukla R (2022) Some fuzzy Korovkin type
approximation theorems via power series summability method.
Soft Comput 26:11373–11379

Bukatin M, Kopperman R, Matthews S, Pajoohesh H (2009) Partial
metric spaces. Am Math Month 116:708–718

Fast H (1951) Sur la convergence statistique. Colloq Math 2:241–244
Fridy JA (1985) On statistical convergence. Analysis 5:301–313
Kostyrko P, Šalát T, Wilczyñski W (2000) I-convergence. Real Anal

Exchange 26(2):669–686
Kostyrko P, Mac̆aj M, Šalát T, Sleziak M (2005) I-convergence and

extremal I-limit points. Math Slovaca 55:443–464
Kumar V, Kumar V (2008) On the ideal convergence of sequences of

fuzzy numbers. Inform Sci 178(24):4670–4678
Matthews SG (1994) Partial metric topology. Ann N Y Acad Sci

728:183–197

NabievA, PehlivanS,GürdalM (2007)OnI-cauchy sequences. Taiwan
J Math 11(2):569–576

Nuray F (2022) Statistical convergence in partial metric spaces. Korean
J Math 30(1):155–160

Šalát T (1980) On statistically convergent sequences of real numbers.
Math Slovaca 30:139–150

Samet B, Vetro C, Vetro F (2013) From metric spaces to partial metric
spaces. Fixed Point Theory Appl 5:11

Schoenberg IJ (1959) The integrability of certain functions and related
summability methods. Am Math Month 66:361–375

Shukla R, Agrawal PN, Baxhaku B (2022) P-summability method
applied to multivariate (p, q)-Lagrange polynomial operators.
Anal Math Phys. https://doi.org/10.1007/s13324-022-00757-8

Steinhaus H (1951) Sur la convergence ordinaire et la convergence
asymptotique. Colloq Math 2:73–74

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1007/s13324-022-00757-8

	Ideal convergence in partial metric spaces
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	4 Conclusion
	References




