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moment matrix elements. These separations are responsible for the resonant peak shifts. It is shown that
the varied structure parameters and external electric field cause red or blue shifts in the resonant peak
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1. Introduction

Recent growth technologies have made it possible to produce
different low-dimensional semiconductor quantum systems. The
quantum-based semiconductors have found broad usage in the
study and application of light-emitting or detecting devices (op-
toelectronic electronic devices) [1-5].

[lI-V semiconductor materials have been investigated because
of their integration into semiconductor devices [6-8]. Optimization
of the structure parameters and the applied external fields mod-
ify the intersubband transitions because of the large quantum con-
finement effect [9-13]. Nonlinear optical properties such as second
harmonic generation (SHG) and third harmonic generation (THG)
as well as the absorption coefficients and relative refractive index
changes have attracted a lot of interest because it gives detailed
information about the behavior of the structure under the applied
structure parameters and the external fields.

The nonlinear optical properties in different asymmetric struc-
ture shapes have been studied such as single quantum wells (QWSs)
[14, 15], multiple QWs [16, 17], and semi-parabolic QWSs [18-20].
The investigation of these structures by controlling the structure
parameters and applying external fields adjusts the amplitude and
the position of the nonlinear optical properties. Yuan et al. inves-
tigated the SHG in the asymmetric Gaussian potential [21]. SHG in
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the symmetric and asymmetric Gaussian potentials has been stud-
ied, and it found that the resonant SHG peak depends on the ap-
plied electric field and the structure parameters [22]. Liu et al. ex-
plored the impact of temperature, magnetic field, and hydrostatic
pressure on the SHG coefficients [23].

The investigation of low dimensional structure is the main in-
terest since they find possible applications in technological devices.
The shape of the QW profile affects the physical properties of the
systems. For this reason, theoretical and experimental research has
been carried out to obtain linear and nonlinear properties of this
structure at different structure parameters and the applied exter-
nal fields [24-33]. Some of the main studies are as follows: the ef-
fect of the electric field on the nonlinear optical properties of QWs
[34], the optical absorption in symmetric double parabolic QWs
[35], total optical absorption coefficients with Rosen-Morse con-
finement potential [36], the effect of impurities and optical intensi-
ties on the linear and nonlinear absorption coefficients, the relative
refractive index changes in low dimensional systems [37], and the
optical absorption coefficients and the refractive index changes of
the superlattice [38]. Moreover, the optical properties of quantum
dots (QDs) [39, 40], the effect of ILF [41], the electric field [42],
and hydrostatic pressure [43] have been investigated. Understand-
ing the linear and nonlinear optical properties of the low dimen-
sional systems is critical because these optical properties of the
structure are strongly affected by the structure parameters and the
applied external fields.
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Fig. 1. Schematic representation of the triple GaAs/InGaAs quantum well. The index
of structure parameters are as follows: z,-z; = Lwy for left QW width, z3-z, = Lby
for left barrier thickness, z4-z3 = Lw, for center QW width, zs-z4 = Lbg for right
barrier thickness, zg-zs = Lwy for right QW width.

In this paper, the nonlinear optical properties such as the total
optical absorption coefficients and relative refractive index changes
of InGaAs/GaAs triple QW were investigated. The effect of struc-
ture parameters and applied external electric fields on these op-
tical properties is discussed in detail. To perform the numerical
simulations, firstly, the time-independent Schrédinger equation is
numerically solved to obtain the subband energy values and their
electronic wave functions of an electron confined in the conduction
band of the structure. After that, using these electronic states ob-
tained about the structure, the total optical absorption coefficients
and relative refractive index changes of the system are calcu-
lated by using the compact-density matrix approach and iterative
method. The organization of the paper is that Section 2 gives the
theoretical background of the numerical calculations. Section 3 dis-
cusses the simulation result and compares the obtained results. Fi-
nally, a conclusion of the physical results obtained in the paper is
given in Section 4.

2. Theoretical background

In this study, the effects of static electric field and structure pa-
rameters on the nonlinear optical properties of the InGaAs/GaAs
triple quantum well, whose schematic representation is given in
Fig. 1, are theoretically investigated. The static electric field along
the z direction is applied to the structure. The quantum well struc-
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Fig. 3. Variation of total optical absorption coefficients as a function of incident
photon energy for different values of Lwg.

ture with different confining potentials is investigated by control-
ling the structure parameters. The total Hamiltonian of an electron
in this structure under the external applied electric field is given
by [41, 44, 45]

P
2m*

H= +V(z) —eFZ (1)
where m* is the electron effective mass, Pe is the electron momen-
tum, F is the magnitude of the applied external electric field, and
the z-axis is the growth direction of the structure.

The confinement potential (V(z)) for the electron in the z-

direction is given by

WO0<z<2z
(V]—V()) 21 <2<y
Vo 20 <z<2z3
0z3<z2<2z4
Voz4<z<2z5
(V]*VO) 5 < Z<Zg
Vo zs6<z<z7

V() ={

where Vj and V; are the potential depths between GaAs/InyGa;_xAs
for x=0.2 and 0.25 in concentration.

The solution of Eq. 1 under different structure parameters and
external fields produces the variation of the subband energy states
and the corresponding wave functions by using the diagonalization
method [46]. In this method, the calculation of the single-electron
wave function ¥ (z) is performed for infinite quantum well width
L, which is large compared to the triple QW widths. The wave
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Fig. 2. Confining potential and first three excited state wavefunctions and corresponding energy levels at different Lwg.
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Table 1
The variation of the subband energy difference and dipole moment
matrix elements for different Lwg values.

Lwg (nm)  Ejo (meV) oo (nm)  py (nm)  pyo (nm)

5 50.3393 24,5023 20.3460 3.3451

10 47.0126 24.5250 245233 3.0711

15 43.2408 24.5304 27.8556 2.9375
Table 2

The variation of the energy difference and dipole moment matrix
elements for different Lby values.

Lbg (nm)  Eyo (meV)  woo (nm)  py (nm)  wyo (nm)
2 48.7126 24.5250 24.5233 3.3711
5 50.2489 24.4072 19.2335 3.170
7 52.3601 24.4037 18.8294  3.0593
6x10°
= Lw,=5nm Lw,=10nm
5. o i
s
c 4x10 . Lw,=15nm
(] (o}
5 Lb.=2nm
s 2)(103 V0=188meV
E V,=234meV
(0] F=0kV/cm
= 0
©
©
&
o 3
X -2x10
S
(o)
l_ 3
-4x10
-3
6x10°55 30 40 50 60 70 80

Photon Energy (meV)

Fig. 4. Change in the relative refractive index changes as a function of the incident
photon energy for three different Lwg.

function describing the structure consists of the complete set is
given

Y(z) = /Li Cn sin(mn[%—k%]) 3)
00 m=1 00

where Cp is the coefficients. After the energies and their corre-
sponding wave functions are obtained, the linear, third-order non-
linear, total optical absorption coefficients (TOACs), and relative re-
fractive index changes (RRICs) for transition for the electron states
are analytically expressed under the compact density matrix ap-
proach and iterative method.

The system is excited by an electromagnetic field w

E(t) = Ege™" + Ege™" (4)
The time evolution of one electron density operator p is written
[47, 48]

0 1
a*f = = [Ho — gxE(t). p] =T'(p — p*) (3)

where Hy is the Hamiltonian for the system without the elec-
tromagnetic field (E(t)), and q is the electron charge. p(®) is the
unperturbed density matrix operator and I'is responsible for the
electron-phonon interaction and collisions among electrons. I" is a
diagonal matrix element that equals the inverse of relaxation time
T. Equation 5 is solved by using the iterative approach [49]

pt) =Y p™ (),

n
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with (6)
o0 4 ;
git = = [Ho. p™ D] - Fij/oi(jnJr]) - lax. P IHE()

To simplify the analytical solution, we consider two-level elec-
tronic systems for electronic transitions. The electronic polarization
P(t) and susceptibility y (t) are given by dipole operator M; and
density matrixo:

P() = 20X (@)Eoe™ + o) (~)E3e™ = o Tr(pM) )

where ¢ is the permittivity of free space and Tr (trace)
means the summation over the diagonal matrix elements. The
analytical forms of the linearyMand the third-order nonlin-
ear 3 susceptibility coefficients are obtained from Egs. 6, 7.

The absorption coefficient and refractive index changes are re-
lated to susceptibility [50].

B(w) = w\/zlm[&)x (w)] (8)
R
An(w) X ()
ny - e[ 211? } (9)

Now we can give the analytical formula for the linear and third-
order nonlinear absorption coefficients and relative refractive index
changes. These expressions are defined as follows [42, 51]

2
B (@) = o [P 1Mol rzfuhl“m . (10)
&r (Eyp — hw)* + (hTyp)
AR (@) _ oy|Mio|* Evo — hw (11)
n, 2ntey | (Eyp — hw)? + (hT)?

[Mio| 0T
2
(Exo — hw)? + (AT0)°]
|:1 My = Moo|? o (Eo— hw)® — (WT10)* + 2(E0) (Exo — hco)]

&\ gonyC

,3(3)(50,1):—260 ﬁ( I )[

|2M1o|? (Er0)? + (hT1p)°
(12)
An® @) _ _ pcMl® ol _ 2
T AR [(Eg—he)+(hT0)] x [4(Er0 — h) Mol
(M11—Mgo)? 2
[—W{(Ew — hw) x [ (Eo) (Ero — hw) — (AT10)"]
— (hT10)* 2(Ero) — hew) }]
(13)

where w presents the angular frequency and I' is relaxation time
for intersubband transitions. n and &, are magnetic permeability
and the real part of the electrical permittivity. o, is the carrier
density, h is the Planck constant and n is the refractive index. E;;
is the ih and j™ energy state of the electron. Mj; corresponds to
transition dipole element.

The total TOACs and RRICs equal the sum of the linear and
third-order nonlinear terms and are given by the following equa-
tion:

Bw.l)= BV (w)+ B (w,]) (14)

and

An(w.])  AnD(w) = An®(w.])
n o n + ny

(15)
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Fig. 6. The total optical absorption coefficients as a function of incident photon en-
ergy at different Lby values.

where the relative refractive index of the system is n, = /&, and
the real part of the permittivity is e = n2ey . &9 and g are vac-
uum permittivity and vacuum permeability, respectively. o, is the
carrier density of the system. w is the angular frequency of the
incident photon, I is the optical intensity of the incident photon,
Ejp is the energy difference between the two lowest energy lev-
els and I'yg is defined as the relaxation rate for states 1 and O.
M;j = (¥i(2)|ez|;(2)) (here i, j=0, 1) represents the dipole mo-
ment matrix element for the transitions.
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@
k)

Photon Energy (meV)

Fig. 7. The relative refractive index changes for three different Lbg values.

3. Result and discussion

The physical values of simulation input parameters are listed
as [52-55]: m* =0.059m, (mg is the free electron mass), ¢ =
3x108my/s, e=1.602x10""° C, h=1.056x 10735, o, =3 x
102m=3, pu=4m x 10’Hm-1, ¢ =12.58, &7 =8.854x 10712, | =
0.01%, 712 = 0.14 ps and n; = 3.9. Discontinuity of conduction
band of InyGa; xAs/GaAs is given as V,"CoAs=%G0(EgCs-E,InGaAs)
[56], where EgnCo4s—(E,CaAs_1619x-555x%)meV and E,“4S=1424meV.
Therefore, the potential depths for the center well (V;) and side
wells (Vp) are 234meV (x=0.25) and 188meV (x=0.20), respectively.
We first examine the structure parameters’ effects and the applied
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Fig. 9. Total absorption coefficients as a function of incident photon energy at three
different Lw, values.
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Table 3
The variation of the energy difference and dipole moment matrix
elements for different Lw, values.

Lwe (nm)  Ey (meV) oo (nm)  py (nm)  pigo (NnmM)
10 42.4407 22.0250 220126  2.3734
15 48.7126 24.5250 24.5233 3.3711
20 34.5556 27.025 27.025 4.4428

electric field on the energy level and the dipole moment matrix
elements of the structure. Then, the effects of the external field
and the structural parameters on total optical absorption coeffi-
cients (TOACs) and the relative refractive index changes (RRIC) of
the system were investigated. The simulation is performed in two
steps. The first step is that the single parabolic band and effec-
tive mass approaches are applied to obtain energy eigenvalues and
eigenfunctions of the electron. In the second step, TOACs and RRICs
for transition for the electron states are analytically expressed un-
der the compact density matrix approach and iterative method.
The applied static electric field results in the red/blue shifts of the
TOACs and RRIC peak position. The applied external field brings ad-
ditional freedom to control the physical properties of the system.
The effects of the structure parameters and the applied external
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Table 4
The variation of the energy difference and dipole moment matrix
elements for different applied external electric fields.

FkViem  Ey (meV) oo (nm)  py (nm) g0 (nm)
0 48.7126 24.5250 24.5233 3.3711
60 46.2567 24.2095 224747 29419
120 40.3311 23.8842 22,5546  2.4356

electric field on the TOACs and RRIC of the InGaAs/GaAs QW struc-
ture are detailed and investigated in each subsection below.

3.1. Effect of right-well width (Lwg)

The triple QW is conceptualized by inserting the InGaAs QW
surrounded by GaAs barriers, Fig.Fig. 2. The structure is sub-
jected to variation of the right QW width (Lwg) for 5nm, 10nm,
and 15nm. The structure parameters (except Lwg) are kept con-
stant as well as the applied electric field: the left well width
(Lw;=10nm), the left barrier thickness (Lb;=2nm), the center well
width (Lw,=15nm), and right barrier thickness (Lbg=2nm). The po-
tential depths are V; = 188 meV for the left and right QW and
V; = 234 meV for the center QW. In addition, there are no applied
external fields on the structure (F = 0). The shape of the poten-
tial profile is controlled by considering the above parameters. The
variation of Lwyg results in the change of the ground state and ex-
cited state wavefunctions. The ground state wavefunction is con-
fined in the deepest InGaAs QW. However, the first and second
excited wavefunction is mostly confined in InGaAs well and with
penetration in GaAs barrier.

Table 1 gives the energy difference between the ground state
and the first excited state energy difference (Eig) as well as the
dipole moment matrix elements. By using the simulated values
presented in Table 1, the TOACs as a function of the incident pho-
ton energy for three values of the Lwg are numerically calculated,
Fig.Fig. 3. The amplitude of the TOACs decreases with Lwg, and the
peak position of that moves towards the lower energies (red-shift).
The physical explanation of this trend is that dipole moment ma-
trix elements (Myg) decrease with the increment of the Lwg, and
so the ground and first excited state energy difference decreases.

Fig.Fig. 4 displays the change in the RRICs for three different
Lwg values. The changes in the RRICs trend to redshifts. Further-
more, the amplitude of the change in RRICs decreases with the
variation of Lwy These trends arise since the energy separation
(Eqp) decreases and results in the red-shift of the RRIC peak posi-
tion and the dipole moment matrix element (M;o) decreases with
the increment of Lwg.

3.2. Effect of right barrier thickness (Lbg)

In this section, we propose a structure composed of triple
QWs for different right barrier thicknesses (Lbg). The TOACs and
RRICs are examined as a function of the incident photon energy,
Fig.Fig. 5. The variation of Lbg causes the variation of the ground
state and excited state wavefunctions. Effects of the right bar-
rier thickness (Lbg) on the wave function and energy eigenvalues
of the structure are investigated. Lbg is set to 2 nm, 5 nm, and
7 nm, respectively. The constant structure parameters are as fol-
lows: the left well width (Lw; = 10nm), the left barrier thick-
ness (Lb; = 2nm), the center well width (Lw. = 15nm), and the
right QW width (Lwg = 10nm). The left and right QW depths are
Vo = 188meV and the center QW depth is V; = 234meV. In ad-
dition, there are no applied external fields on the structure (F=0).
The shape of the QW structure is monitored by considering the
above parameters.
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Fig. 11. InGaAs/GaAs potential shape for applied external electric fields and corresponding wavefunctions.

Table 2 exhibits the ground and first excited state energy dif-
ference and the dipole moment matrix elements. These parameters
have direct control of the amplitude and the peak position of the
TOACs and RRICs.

The numerical values in Table 2, TOAC as a function of the inci-
dent photon energy for different right barrier thickness values are
numerically obtained in Fig. 6. The amplitude of TOAC gradually
decreases while the peak position of that shifts to higher energy
values (blue-shift). The control of the TOAC for different Lbg val-
ues is due to the ground and first excited states’ energy difference
increasing with the increment of Lbg. The dipole moment matrix
elements decrease so the amplitude of TOAC decreases.

Fig. 7 exhibits RRIC for three different Lbg values. The peak
position of the refractive indices trends the blue shifts. Further-
more, the amplitude of the RRIC decreases with the variation of
Lbg. These trends arise since the energy separation between the
ground state and the first excited state increases and results in the
blue shift of the RRIC peak position. The amplitude of the RRIC is
governed by the dipole moment matrix elements which decrease
with the increment of Lbg.

3.3. Effect of center barrier width (Lw)

In this part, we examine GaAs/InGaAs structure for different
triple QWs for different center QW widths (Lwc). The nonlin-
ear optical coefficients as a function of incident photon energy
are investigated for different Lw, values, Fig. 8. The center bar-
rier width (Lw() is changed from 10nm to 20nm with a step of
5nm while the other parameters are kept constant; the left well
width (Lw;=10nm), the left and right barrier thickness (Lb;=2nm,
Lbgr=2nm), and the right QW width (Lwg=10nm). The left and right
QW depths are set to Vy,=188meV, and the center QW depth is
V;=234meV. In addition, there are no applied external fields on
the structure (F=0kV/cm). The shape of the potential profile is only
controlled by considering the center barrier width (Lw).

Table 3 presents the calculated values of energy difference and
dipole moment matrix elements. These values numerically depict
the TOAC coefficients as a function of incident photon energy,
Fig. 9. The ground and first excited state energy difference in-
creases when the Lw. increase from 10 nm to 15 nm. Then, the
increment of Lw. to 20 nm brings a noticeable decrease in the en-
ergy difference. These energy difference variations cause the initial
blueshift and then cause the redshift to the peak position. The am-
plitude of the TOAC coefficient is controlled by the variation of the
dipole moment matrix elements, which increases with the incre-
ment of the center quantum barrier width.

Fig. 10 exhibits RRIC for three different Lw, values. The resonant
peak position of the refractive indices initially shifts the higher en-
ergy (blue shift) and shifts the lower energy (red shift). This effect
is due to variation of the ground state and first excited state energy

soxre| LWS10NM ——F=0kV/cm
O Lb,=2nm —— F=60kV/cm
Lw,=15nm —— F=120kV/cm
6.0x10° Lb.=2nm
Lw,=10nm
V,=188meV

4.0x10'| V,=234meV

2.0x10*

Total Absorption coefficient (cm”

20 30 40 50 60 70 80
Photon Energy (meV)

Fig. 12. Total optical absorption coefficients as a function of incident photon energy
at three different applied electric fields.

difference, Table 3. In addition, the amplitude of the RRIC increases
with the variation of the quantum well width of Lw,. RRIC yield is
controlled by the dipole moment matrix elements.

3.4. Effect of applied external electric field (F)

After examining the effects of the structure parameters on
the TOAC and RRIC coefficients, the applied electric field (F) on
the GaAs/InGaAs QW structure is examined. In this part, we in-
vestigated the effects of the applied external electric field on
the structure profile. The F field is adjusted to 0, 60, and 120
kV/cm. The QW potential parameters are set as: the left well
width (Lw;=10nm), the left and right barrier thickness (Lb;=2nm,
Lbg=2nm), the center QW width (Lw,=15nm), and the right QW
width (Lwg=10nm). The left and right QW depths are V,=188meV
and the center QW depth is V;=234meV. The applied electric field
tilts the QW potential, i.e. electron feels tilted QW structure, and
they occupy different energy levels and different wavefunctions,
Fig. 11. The TOACs and RRICs are investigated at three different ap-
plied electric field values.

The obtained numerical values for the energy difference and
the dipole moment matrix elements for different external electric
fields are given in Table 4. By using these numerical values, TOACs
are presented for different F values, Fig. 12. The increment of F val-
ues results in the decrease of the energy difference values. This
energy variation causes the redshift of the TOAC peak, Fig. 12. The
dipole moment matrix elements decrease with the applied exter-
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Fig. 13. The relative refractive index changes at different applied external fields.

nal electric field, and these variations cause the amplitude drop of
the TOAC peak.

Fig. 13 presents the RRICs as a function of the incident pho-
ton energy. The RRIC peak position shifts to a lower energy region
(redshift) with the applied external electric field since the energy
difference decreases with the increment of the external field. The
amplitude of the RRIC peaks is governed by the dipole moment
matrix elements, which decrease with the applied external electric
field.

4. Conclusion

In general, the total optical absorption coefficient and relative
refractive index changes of the InxGa;xAs/GaAs triple quantum
well, which is favorable for the design and fabrication of new pho-
todetectors, have been extensively studied under the influence of
structure parameters and applied electric field. The variation of
these parameters gives us additional freedom to monitor the peak
position and peak amplitude of TOACs and RRICs of the structure.
The obtained numerical results show that the optical absorption
coefficients and refractive index changes of the structure can be
shifted to higher or lower energy regions by controlling the struc-
ture parameters and external fields. These numerical simulations
and analyzes have shown that these materials have the potential
to develop new photodetectors and optoelectronic devices that op-
erate especially in the infrared and far-infrared regions of the elec-
tromagnetic spectrum.
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