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A B S T R A C T

This research investigates the discrete prey–predator model by including harvesting on the predator population,
in the sense of Caputo fractional derivative. We define the topological categories of the model fixed points. We
demonstrate mathematically that, under certain parametric conditions, a fractional order prey-predator model
undergoes both a Neimark–Sacker (NS) and a Period-doubling (PD) bifurcations. Using the central manifold
and bifurcation theory, we present proof for NS and PD bifurcations. It has been discovered that the fractional
order prey-predator model’s dynamical behavior is significantly influenced by the parameter values and the
initial conditions. Two chaos control techniques have been used to eliminate the chaos in the model. In order
to support our theoretical and analytical results and to illustrate complex and chaotic behavior, numerical
simulations have been shown.
1. Introduction

Studying the relationship between different ecological phenom-
ena, predator and prey interactions have become very popular in
ecological science. The two most prominent types of mathematical
frameworks in population dynamics are continuous and discrete-time
models. The prey-predator paradigm is a fundamental model in pop-
ulation dynamics that is used to analyze the dynamics of interacting
groups [1]. Population dynamics have used continuous-time population
models, such as the Lotka–Volterra model [2,3], to understand the
interaction between ecological organisms [4,5]. Since it ignores many
real-world events and complexity, many researchers have changed
this model over time to provide a more realistic explanation and im-
prove comprehension. However, discrete-time population models have
also received attention recently [6,7] because they can produce more
intricate and fascinating dynamical behaviors than continuous-time
models and are more appropriate for modeling populations with non-
overlapping generations. For instance, a 1-dimensional discrete-time
autonomous system can display chaos, whereas a continuous-time setup
necessitates at least a 3-dimensional autonomous system [8].

Each population in an ecological system uses a different strategy,
such as refuging, grouping, etc to find food sources and protect itself.
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To create more realistic mathematical models, a variety of ecological
factors and components are used. Every prey-predator encounter must
take into account the functional response in population dynamics,
which is the quantity of prey consumed by a predator in relation to
the density of the prey per unit of time. For the majority of arthropod
predators, the functional response of the Holling type II [9] is better
than those from the Holling types I, III, and IV. Ivlev [10] developed
a new functional response, known as the Ivlev functional response,
to investigate the dynamical interaction between prey and predator
species:

𝑝(𝑥) = 𝜂(1 − exp(−𝑎𝑥))𝑦,

where the positive constants 𝜂 and 𝑎 stand for the greatest rate of
predation and the lowest desire to hunt, respectively. There have
been numerous studies of predator–prey interaction with Ivlev-type
functional reactions. The results have suggested that Ivlev-type rela-
tionships between the species have several models in ecological applica-
tions, including dynamics in host-parasite models [11], predator–prey
models [12], and animal coat patterns [13]. Some authors also used
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different functional responses in the prey-predator model [14] and the
phytoplankton-zooplankton model [15].

The following mechanism is always present in the traditional preda-
tor–prey relationship:

̇ = 𝑥𝛶̃ (𝑥, 𝑘) − 𝑦𝛩̃(𝑥)

𝑦̇ = 𝑦(−𝛿 + 𝛺̃(𝑥))

with

𝑥(0), 𝑦(0) > 0.

where the time-dependent functions 𝑥(𝑡) and 𝑦(𝑡) stand in for the
prey and predator population densities, respectively. Every constant
is assumed to be positive. The carrying capacity is indicated by the
parameter 𝑘. The predator’s mortality rate is represented by the con-
stant 𝛿. 𝛩̃(𝑥) represents the functional response, while 𝛺̃(𝑥) represents
the uptake functions. The following predator–prey system with logistic
growth on prey will be taken into consideration when accounting for
the Ivlev functional response [16]:

̇ = 𝑟𝑥
(

1 − 𝑥
𝑘

)

− 𝜂(1 − 𝑒−𝑎𝑥)𝑦

𝑦̇ = 𝛽(1 − 𝑒−𝑎𝑥)𝑦 − 𝑑𝑦
(1)

The prey’s growth rate is indicated by the parameter 𝑟, and the rate
at which the prey becomes a predator after being digested is indicated
by the parameter 𝛽.

The coexistence of interacting populations depends critically on
their dynamical behaviours. Knowing the population density, growth
patterns, etc., in particular places is crucial in many situations. Chaos’s
emergence is extremely detrimental to population expansion. Over
generations, it causes complex, erratic variations in population den-
sity. Therefore, the management of chaos is crucial for the peaceful
cohabitation of communities. Chaos is unusual in populations in the
real world, though. Harvesting is the process of removing a subset of
a population. It is a characteristic shared by numerous populations.
Additionally, it is a popular and simple method for handling naturally
occurring chaos. Authors in [17] thoroughly examined several organ-
ised structures of two logistic maps that were linearly coupled but had
distinct harvesting methods. New organised structures in bi-parameter
space for a nonlinear discrete predator–prey model with cooperative
hunting are reported by N.C. Pati et al. [18]. Many ecological concepts,
such as diffusion, functional responses, the Allee effect, and harvesting
have been added to the predator–prey models to facilitate a more
accurate description. It is known to all that one of the important
modifications to the system is harvesting. Researching the predator–
prey phenomena makes it practical to assess the effects of harvesting.
Population harvesting [19] is a common practice in the administration
of fisheries, forests, and wildlife. Incorporating harvesting on predator
population, the above model (1) becomes:

̇ = 𝑟𝑥
(

1 − 𝑥
𝑘

)

− 𝜂(1 − 𝑒−𝑎𝑥)𝑦

𝑦̇ = 𝛽(1 − 𝑒−𝑎𝑥)𝑦 − 𝑑𝑦 − 𝛾𝑦
(2)

where 𝛾 denotes the harvesting effect. This manuscript aims to ana-
lyze the complex dynamical behaviors of the discrete fractional-order
version of the system (2).

It is known that an extension of traditional differentiation and
integration to any extent is fractional calculus. Its widespread use in
many disciplines like biology, fluid dynamics, and medicine, among
others, piques the interest of researchers. Fractional order calculus
has attracted the interest of scholars due to its use in a variety of
fields [20,21] over the past 20 years. Many authors have lately in-
vestigated biological models [22,23] using fractional order. The main
reason is that memory-based systems, which are common in most living
systems [24,25], are inextricably linked to fractional order models.
Memory effects, or the impact of previous states on the current dy-
2

namics, can naturally exist in a variety of prey-predator populations in m
biological systems. Memory effects are crucial in some instances: migra-
tory prey, predators with learning, delayed growth response, prey with
reproduction delays, evolutionary adaptations, prey with hibernation
or diapause, predator learning and forgetting and so on. A fractional-
order prey-predator model was presented by Javidi et al. [26] and its
biological behaviors were explored. Because it functions in the same
way as regular derivatives, the prey-predator paradigm is compatible
with fractional derivatives. The population’s rate of change may be
slower as a result, which could lead to a more precise mathematical
estimate.

There are various definitions for fractional derivatives. One of the
most popular definitions is Caputo’s definition of fractional deriva-
tives, which is commonly applied in real-world settings. The Ca-
puto derivative offers a powerful and practical approach for modeling
fractional-order predator–prey interactions, ensuring the preservation
of equilibrium states, and facilitating the application of standard initial
and boundary conditions for accurate and insightful ecological predic-
tions. Its versatility and ability to capture memory effects make it a
valuable tool for investigating complex ecological dynamics in various
real-world problems [27].

Definition 1. Consider

𝐷𝛼𝑓 (𝑡) = 𝐽 𝑙−𝛼𝑓 (𝑙)(𝑡), 𝛼 > 0

here 𝑓 𝑙 denotes the derivative of 𝑓 (𝑡) in the 𝑙−order, 𝑙 = [𝛼] is the
value of 𝛼 rounded up to the nearest integer, and 𝐽 𝑞 is the operator for
the Riemann–Liouville integral of 𝑞− order.

𝐽 𝑞ℎ(𝑡) =
∫ 𝑡
0 (𝑡 − 𝜏𝑒)𝑞−1ℎ(𝜏𝑒)𝑑𝜏𝑒

𝛤 (𝑞)
, 𝑞 > 0

where 𝛤 (.) is the gamma function of Euler. The operator 𝐷𝛼 is also
known as the ‘‘𝛼–order Caputo differential operator’’.

Now we apply the Caputo fractional derivatives to the continuous
system (2) and provide a theoretical explanation of the bifurcation
occurrences:

𝐷𝛼𝑥 (𝑡) = 𝑟𝑥
(

1 − 𝑥
𝑘

)

− 𝜂(1 − 𝑒−𝑎𝑥)𝑦

𝛼𝑦 (𝑡) = 𝛽(1 − 𝑒−𝑎𝑥)𝑦 − 𝑑𝑦 − 𝛾𝑦
(3)

he following are the research’s main contributions:
1) The intended paradigm consists of two interdependent species.
e examined how harvesting impacted the model’s community of

redators and the community of prey.
2) Potential fixed points are looked after while evaluating the model’s
tability.
3) The ability of the suggested model to experience PD and NS bifur-
ations has been established.
4) The PD and NS bifurcations have made the model chaotic, so the
GY (Ott, Grebogi, and Yorke) and state feedback control methods have
een used to control it.
5) A few numerical examples have been offered to demonstrate the
alidity of our theoretical conclusions.

This paper is organized into the following sections: The fractional-
rder parameterized discretized-time prey-predator model is built in
ection 2. In Section 3, the topological classifications of the fixed
oints are investigated. The possibility of a PD or NS bifurcation
f the fractional-order model under a specific parametric condition
s mathematically investigated in Section 4. To back our analytical
indings, we numerically illustrate model dynamics in Section 5 along
ith bifurcation diagrams and phase portraits. The chaotic model’s

haos is stabilized in Section 6 by using the OGY and state feedback
anagement methods. Section 7 offers a succinct explanation.
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2. Discretization process

For the discretization of the system (3), we apply an approximation
given in [28]. Consider the model (3) with 𝑥 (0) = 𝑥0 and 𝑦 (0) = 𝑦0 are
as the initial conditions. By piecewise constant arguments system (3)
can be written as

𝐷𝛼𝑥 (𝑡) = 𝑟𝑥
([

𝑡
𝜌

]

𝜌
)

⎛

⎜

⎜

⎜

⎜

⎝

1 −
𝑥
([

𝑡
𝜌

]

𝜌
)

𝑘

⎞

⎟

⎟

⎟

⎟

⎠

− 𝜂

⎛

⎜

⎜

⎜

⎝

1 − 𝑒
−𝑎𝑥

([

𝑡
𝜌

]

𝜌

)

⎞

⎟

⎟

⎟

⎠

𝑦
([

𝑡
𝜌

]

𝜌
)

𝐷𝛼𝑦 (𝑡) = 𝛽

⎛

⎜

⎜

⎜

⎝

1 − 𝑒
−𝑎𝑥

([

𝑡
𝜌

]

𝜌

)

⎞

⎟

⎟

⎟

⎠

𝑦
([

𝑡
𝜌

]

𝜌
)

− 𝑑𝑦
([

𝑡
𝜌

]

𝜌
)

− 𝛾𝑦
([

𝑡
𝜌

]

𝜌
)

(4)

where [𝑡] stands for the number components of 𝑡 ∈ [0,+∞) with 𝑡 ≥ 0
and 𝜌 stands for discretization constant.

Let 𝑡 ∈ [0, 𝜌), then 𝑡
𝜌
∈ [0, 1). Thus, we obtain

𝐷𝛼𝑥 (𝑡) = 𝑟𝑥0
(

1 −
𝑥0
𝑘

)

− 𝜂 (1 − 𝑒−𝑎𝑥0 ) 𝑦0
𝛼𝑦 (𝑡) = 𝛽 (1 − 𝑒−𝑎𝑥0 ) 𝑦0 − 𝑑𝑦0 − 𝛾𝑦0

The answer to (4) is simplified to

1 (𝑡) = 𝑥0 + 𝐽 𝛼
(

𝑟𝑥0
(

1 −
𝑥0
𝑘

)

− 𝜂 (1 − 𝑒−𝑎𝑥0 ) 𝑦0
)

= 𝑥0 +
𝑡𝛼

𝛤 (𝛼 + 1)

(

𝑟𝑥0
(

1 −
𝑥0
𝑘

)

− 𝜂 (1 − 𝑒−𝑎𝑥0 ) 𝑦0
)

Similarly,

𝑦1 (𝑡) = 𝑦0 + 𝐽 𝛼 (𝛽 (1 − 𝑒−𝑎𝑥0 ) 𝑦0 − 𝑑𝑦0 − 𝛾𝑦0
)

= 𝑦0 +
𝑡𝛼

𝛤 (𝛼 + 1)
(

𝛽 (1 − 𝑒−𝑎𝑥0 ) 𝑦0 − 𝑑𝑦0 − 𝛾𝑦0
)

.

Secondly, let 𝑡 ∈ [𝜌, 2𝜌). So, 𝑡
𝜌
∈ [1, 2). Hence,

𝐷𝛼𝑥 (𝑡) = 𝑟𝑥1
(

1 −
𝑥1
𝑘

)

− 𝜂 (1 − 𝑒−𝑎𝑥1 ) 𝑦1
𝛼𝑦 (𝑡) = 𝛽 (1 − 𝑒−𝑎𝑥1 ) 𝑦1 − 𝑑𝑦1 − 𝛾𝑦1

.

We get the following solution

2 (𝑡) = 𝑥1 (𝜌) + 𝐽 𝛼
𝜌

(

𝑟𝑥1 (𝜌)
(

1 −
𝑥1 (𝜌)
𝑘

)

− 𝜂
(

1 − 𝑒−𝑎𝑥1(𝜌)
)

𝑦1 (𝜌)
)

= 𝑥1 (𝜌) +
(𝑡 − 𝜌)𝛼

𝛤 (𝛼 + 1)

(

𝑟𝑥1 (𝜌)
(

1 −
𝑥1 (𝜌)
𝑘

)

− 𝜂
(

1 − 𝑒−𝑎𝑥1(𝜌)
)

𝑦1 (𝜌)
),

𝑦2 (𝑡) = 𝑦1 (𝜌) + 𝐽 𝛼
𝜌
(

𝛽
(

1 − 𝑒−𝑎𝑥1(𝜌)
)

𝑦1 (𝜌) − 𝑑𝑦1 (𝜌) − 𝛾𝑦1 (𝜌)
)

= 𝑦1 (𝜌) +
(𝑡 − 𝜌)𝛼

𝛤 (𝛼 + 1)
(

𝛽
(

1 − 𝑒−𝑎𝑥1(𝜌)
)

𝑦1 (𝜌) − 𝑑𝑦1 (𝜌) − 𝛾𝑦1 (𝜌)
)

here 𝐽 𝛼
𝜌 ≡ 1

𝛤 (𝛼) ∫
𝑡
𝜌 (𝑡 − 𝜏𝑒)𝛼−1𝑑𝜏𝑒, 𝛼 > 0.

We can readily see that by performing the discretization process 𝑛
times.

𝑥𝑛+1 (𝑡) = 𝑥𝑛 (𝑛𝜌) +
(𝑡 − 𝑛𝜌)𝛼

𝛤 (𝛼 + 1)

(

𝑟𝑥𝑛 (𝑛𝜌)
(

1 −
𝑥𝑛 (𝑛𝜌)

𝑘

)

− 𝜂
(

1 − 𝑒−𝑎𝑥𝑛(𝑛𝜌)
)

𝑦𝑛 (𝑛𝜌)
)

𝑦𝑛+1 (𝑡) = 𝑦𝑛 (𝑛𝜌) +
(𝑡 − 𝑛𝜌)𝛼

𝛤 (𝛼 + 1)
(

𝛽
(

1 − 𝑒−𝑎𝑥𝑛(𝑛𝜌)
)

𝑦𝑛 (𝑛𝜌)
)

.

3

− 𝑑𝑦𝑛 (𝑛𝜌) − 𝛾𝑦𝑛 (𝑛𝜌)
here 𝑡 ∈ [𝑛𝜌, (𝑛 + 1) 𝜌). For 𝑡 → (𝑛 + 1) 𝜌, we get

𝑥𝑛+1 ((𝑛 + 1) 𝜌) = 𝑥𝑛 (𝑛𝜌) +
𝜌𝛼

𝛤 (𝛼 + 1)

(

𝑟𝑥𝑛 (𝑛𝜌)
(

1 −
𝑥𝑛 (𝑛𝜌)

𝑘

)

− 𝜂
(

1 − 𝑒−𝑎𝑥𝑛(𝑛𝜌)
)

𝑦𝑛 (𝑛𝜌)
)

𝑦𝑛+1 ((𝑛 + 1) 𝜌) = 𝑦𝑛 (𝑛𝜌) +
𝜌𝛼

𝛤 (𝛼 + 1)
(

𝛽
(

1 − 𝑒−𝑎𝑥𝑛(𝑛𝜌)
)

𝑦𝑛 (𝑛𝜌)

− 𝑑𝑦𝑛 (𝑛𝜌) − 𝛾𝑦𝑛 (𝑛𝜌)
)

he discretized form is then provided here using the Caputo fractional
erivative on the system (3):

𝑛+1 = 𝑥𝑛 +
𝜌𝛼

𝛤 (𝛼 + 1)

(

𝑟𝑥𝑛
(

1 −
𝑥𝑛
𝑘

)

− 𝜂 (1 − 𝑒−𝑎𝑥𝑛 ) 𝑦𝑛
)

𝑛+1 = 𝑦𝑛 +
𝜌𝛼

𝛤 (𝛼 + 1)
(

𝛽 (1 − 𝑒−𝑎𝑥𝑛 ) 𝑦𝑛 − 𝑑𝑦𝑛 − 𝛾𝑦𝑛
)

(5)

emark. If 𝛼 → 1 in (5), it is discovered that the predator–prey
odel with harvesting under the Euler discretization. Although the

ractional order discrete prey-predator model has several benefits over
ts classical version, it also has limitations. Due to the fractional order
iscrete prey-predator model’s recent development, there is a dearth
f empirical data to verify its precision and application to actual
ystems. Comparatively to traditional discrete models, fractional-order
ifference equation analysis and solution is more difficult. In compar-
son to conventional parameters, the determination of fractional order
arameters might be more difficult and unpredictable. Additionally in
discrete prey-predator system, taking a fractional order might result

n a number of restrictions and complications. Here are a few of the
ain restrictions: interpretability, non-standard difference equations,

ncreased computational complexity, lack of historical data, uncertain
arameter estimation and so on. Despite these drawbacks, fractional
rder models can shed light on complex systems that involve non-
ocal interactions and memory effects. Non-integer order derivatives
nd integrals are the focus of fractional calculus. Complex dynamics
an be captured using fractional-order differential equations, which is
ot possible with integer-order models.

. Existence conditions and fixed point’s stability analysis

.1. Fixed points and their existence

A quick algebraic calculation reveals that the system (5) has the
ollowing three fixed points for any value of the permitted parameters:

(i) The trivial fixed point 𝐸1(0, 0). There is no prey and predator
exist in the ecology.

(ii) The fixed point of the boundary 𝐸2(𝑘, 0). According to biol-
ogy, when there are no predators, the population of prey achieves its
carrying limit 𝑘.

(iii) If 𝑑 + 𝛾 < 𝛽(1 − 𝑒−𝑎𝑘), then the unique co-existence fixed point
𝐸3(𝑥∗, 𝑦∗) exists, where 𝑥∗ = − 1

𝑎 ln [
−(𝑑−𝛽+𝛾)

𝛽 ], 𝑦∗ = 𝑟𝛽𝑥∗(𝑘−𝑥∗)
𝑘𝜂(𝑑+𝛾) .

.2. Analysis of stability for fixed points

We examine the stability of the system (5) at fixed point 𝐸(𝑥, 𝑦).
he magnitude of the eigenvalues of the jacobian matrix calculated at
he fixed point 𝐸(𝑥, 𝑦), it should be noted, impacts the local stability of
hat fixed point. The jacobian matrix for the fixed point 𝐸(𝑥, 𝑦) in the
ystem (5) is given by

(𝑥, 𝑦) =
( ̃𝑗11 ̃𝑗12

)

(6)
̃𝑗21 ̃𝑗22
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where

̃𝑗11 = 1 +
(

𝑟(𝑘 − 2𝑥)
𝑘

− 𝑎𝑒−𝑎𝑥
)

𝜌𝛼

𝛤 (𝛼 + 1)
,

̃𝑗12 = (−1 + 𝑒−𝑎𝑥)
𝜌𝛼

𝛤 (𝛼 + 1)
,

̃𝑗21 = 𝑎𝛽𝑦𝑒−𝑎𝑥
𝜌𝛼

𝛤 (𝛼 + 1)
,

2̃2 = 1 + (−𝑑 + 𝛽 − 𝛾 − 𝑒−𝑎𝑥𝛽)
𝜌𝛼

𝛤 (𝛼 + 1)
.

The defining equation of the Jacobian matrix is denoted by

𝐹 (𝜆) ∶= 𝜆2 + 𝑝(𝑥, 𝑦)𝜆 + 𝑞(𝑥, 𝑦) = 0 (7)

here 𝑝(𝑥, 𝑦) = −( ̃𝑗11 + ̃𝑗22) and 𝑞(𝑥, 𝑦) = ̃𝑗11 ̃𝑗22 − ̃𝑗12 ̃𝑗21. The following
tability conditions of fixed points are stated using Jury’s criterion. The
acobian matrix at 𝐸1(0, 0) can be found as

(

𝐸1
)

=

(

1 + 𝑟 𝜌𝛼

𝛤 (𝛼+1) 0
0 1 − (𝑑 + 𝛾) 𝜌𝛼

𝛤 (𝛼+1)

)

The eigenvalues of 𝐽
(

𝐸1
)

are 𝜆1 = 1+𝑟 𝜌𝛼

𝛤 (𝛼+1) and 𝜆2 = 1−(𝑑 + 𝛾) 𝜌𝛼

𝛤 (𝛼+1)

Lemma 1. The following topological categorization is valid for the trivial
fixed point 𝐸1(0, 0):

(𝑖) source if 𝜌 >
(

2
𝑑+𝛾 𝛤 (1 + 𝛼)

)
1
𝛼 ,

(𝑖𝑖) sink if 𝜌 <
(

2
𝑑+𝛾 𝛤 (1 + 𝛼)

)
1
𝛼 ,

(𝑖𝑖𝑖) non-hyperbolic if 𝜌 =
(

2
𝑑+𝛾 𝛤 (1 + 𝛼)

)
1
𝛼 .

The jacobian matrix at 𝐸2(𝑘, 0) can be found as

𝐽
(

𝐸2
)

=

(

1 − 𝑟 𝜌𝛼

𝛤 (𝛼+1) (−1 + 𝑒−𝑎𝑘)𝜂 𝜌𝛼

𝛤 (𝛼+1)
0 1 +

(

−𝑑 − 𝛾 + 𝛽(1 − 𝑒−𝑎𝑘)
) 𝜌𝛼

𝛤 (𝛼+1)

)

.

The eigenvalues of 𝐽
(

𝐸1
)

are 𝜆1 = 1 − 𝑟 𝜌𝛼

𝛤 (𝛼+1) and 𝜆2 = 1 +
(

−𝑑 − 𝛾 + 𝛽(1 − 𝑒−𝑎𝑘)
) 𝜌𝛼

𝛤 (𝛼+1) .

Lemma 2. The following topological categorization is valid for the
predator-free fixed point 𝐸2(𝑘, 0):

(𝑖) if 𝑑 + 𝛾 > 𝛽(1 − 𝑒−𝑎𝑘) then the fixed point 𝐸2(𝑘, 0) is

(𝑖.𝑖) sink if 0 < 𝜌 < 𝑚𝑖𝑛{
(

2
𝑟𝛤 (1 + 𝛼)

)
1
𝛼 ,

(

2
𝑑+𝛾−𝛽(1−𝑒−𝑎𝑘)𝛤 (1 + 𝛼)

)
1
𝛼 },

(𝑖.𝑖𝑖) source if 𝜌 > 𝑚𝑎𝑥{
(

2
𝑟𝛤 (1 + 𝛼)

)
1
𝛼 ,

(

2
𝑑+𝛾−𝛽(1−𝑒−𝑎𝑘)𝛤 (1 + 𝛼)

)
1
𝛼 },

(𝑖.𝑖𝑖𝑖) non-hyperbolic if 𝜌 =
(

2
𝑟𝛤 (1 + 𝛼)

)
1
𝛼 or 𝜌 =

(

2
𝑑+𝛾−𝛽(1−𝑒−𝑎𝑘)𝛤 (1 + 𝛼)

)
1
𝛼 ,

(𝑖𝑖) if 𝑑 + 𝛾 < 𝛽(1 − 𝑒−𝑎𝑘) then the fixed point 𝐸2(𝑘, 0) is

(𝑖𝑖.𝑖) source if 𝜌 >
(

2
𝑟𝛤 (1 + 𝛼)

)
1
𝛼 ,

(𝑖𝑖.𝑖𝑖) saddle if 𝜌 <
(

2
𝑟𝛤 (1 + 𝛼)

)
1
𝛼 ,

(𝑖𝑖.𝑖𝑖𝑖) non-hyperbolic if 𝜌 =
(

2
𝑟𝛤 (1 + 𝛼)

)
1
𝛼 ,

(𝑖𝑖𝑖) if 𝑑+𝛾 = 𝛽(1−𝑒−𝑎𝑘) then the fixed point 𝐸2(𝑘, 0) is non-hyperbolic.

Naturally, one of the eigenvalues of 𝐽
(

𝐸2
)

is −1 and the other is not

equal to ±1 when 𝜌 =
(

2
𝑟𝛤 (1 + 𝛼)

)
1
𝛼 or 𝜌 =

(

2
𝑑+𝛾−𝛽(1−𝑒−𝑎𝑘)𝛤 (1 + 𝛼)

)
1
𝛼 .

herefore, if parameters change in a limited area around 𝐹𝐵
1
𝐸1 or

𝐵̂
2
𝐸1, a PD bifurcation may happen.

𝐵̂
1
𝐸1 =

⎧

⎪

⎨

⎪

(𝑟, 𝑎, 𝑘, 𝑑, 𝜂, 𝛽, 𝛾, 𝜌, 𝛼) ∈ (0,+∞) ∶
4

⎩

p

𝜌 =
( 2
𝑟
𝛤 (1 + 𝛼)

)

1
𝛼 , 𝜌 ≠

(

2
𝑑 + 𝛾 − 𝛽(1 − 𝑒−𝑎𝑘)

𝛤 (1 + 𝛼)
)

1
𝛼
⎫

⎪

⎬

⎪

⎭

,

or

𝐹𝐵
2
𝐸1 =

⎧

⎪

⎨

⎪

⎩

(𝑟, 𝑎, 𝑘, 𝑑, 𝜂, 𝛽, 𝛾, 𝜌, 𝛼) ∈ (0,+∞) ∶

𝜌 =
(

2
𝑑 + 𝛾 − 𝛽(1 − 𝑒−𝑎𝑘)

𝛤 (1 + 𝛼)
)

1
𝛼
, 𝜌 ≠

( 2
𝑟
𝛤 (1 + 𝛼)

)

1
𝛼

⎫

⎪

⎬

⎪

⎭

.

At 𝐸3(𝑥∗, 𝑦∗), the characterizing equation looks like this:

𝑒𝑒(𝜆) ∶= 𝜆2 − (2 + 𝛥𝜇𝑒)𝜆 + (1 + 𝛥𝜇𝑒 + 𝛺̃𝜇𝑒
2) = 0 (8)

here

𝑒̃ =
𝜌𝛼

𝛤 (𝛼 + 1)
,

𝛥 = −𝑑 + 𝑟 − 2𝑟𝑥∗
𝑘

+ 𝛽 − 𝑒−𝑎𝑥
∗
𝛽 − 𝛾 − 𝑎𝑒−𝑎𝑥

∗
𝑦∗𝜂

𝛺̃ = 1
𝑘
𝑒−𝑎𝑥

∗
(

−2𝑟𝑥∗((−1 + 𝑒𝑎𝑥
∗
)𝛽 − 𝑒𝑎𝑥

∗
𝛾) + 𝑑(𝑒𝑎𝑥

∗
𝑟(−𝑘 + 2𝑥∗) + 𝑎𝑘𝑦∗𝜂)

)

+ 1
𝑘
𝑒−𝑎𝑥

∗
(

𝑘(𝑟((−1 + 𝑒𝑎𝑥
∗
)𝛽 − 𝑒𝑎𝑥

∗
𝛾) + 𝑎𝑦∗𝛾𝜂)

)

So 𝐹𝑒𝑒(1) = 𝛺̃𝜇𝑒2 > 0 and 𝐹𝑒𝑒(−1) = 4 + 2𝛥𝜇𝑒 + 𝛺̃𝜇𝑒2. We give the
ollowing lemma regarding the stability criteria of 𝐸3.

emma 3. The following topological categorization is valid for the
o-existence fixed point 𝐸3(𝑥∗, 𝑦∗):

(𝑖) source if
(𝑖.𝑖) 𝛥2 − 4𝛺̃ ≥ 0 and 𝜇𝑒 >

−𝛥+
√

𝛥2−4𝛺̃
𝛺̃

(𝑖.𝑖𝑖) 𝛥2 − 4𝛺̃ < 0 and 𝜇𝑒 >
−𝛥
𝛺̃

(𝑖𝑖) sink if
(𝑖𝑖.𝑖) 𝛥2 − 4𝛺̃ ≥ 0 and 𝜇𝑒 <

−𝛥−
√

𝛥2−4𝛺̃
𝛺̃

(𝑖𝑖.𝑖𝑖) 𝛥2 − 4𝛺̃ < 0 and 𝜇𝑒 <
−𝛥
𝛺̃

(𝑖𝑖𝑖) non-hyperbolic if
(𝑖𝑖𝑖.𝑖) 𝛥2 − 4𝛺̃ ≥ 0 and 𝜇𝑒 =

−𝛥±
√

𝛥2−4𝛺̃
𝛺̃ ;𝜇𝑒 ≠

−2
𝛥 , −4𝛥

(𝑖𝑖𝑖.𝑖𝑖) 𝛥2 − 4𝛺̃ < 0 and 𝜇𝑒 =
−4
𝛥 .

(𝑖𝑣) saddle if otherwise

Let,

𝐵̂
1,2
𝐸3 =

⎧

⎪

⎨

⎪

⎩

(𝑟, 𝑎, 𝑘, 𝑑, 𝜂, 𝛽, 𝛾, 𝜌, 𝛼) ∶ 𝜌 =

(

−𝛥 ±
√

𝛥2 − 4𝛺̃
𝛺̃

𝛤 (1 + 𝛼)

)
1
𝛼

= 𝜌±, 𝛥
2 − 4𝛺̃ ≥ 0, 𝜇𝑒 ≠

−2
𝛥

, −4
𝛥

⎫

⎪

⎬

⎪

⎭

.

The system (2) at 𝐸3 undergoes a PD bifurcation, when the param-
ters (𝑟, 𝑎, 𝑘, 𝑑, 𝜂, 𝛽, 𝛾, 𝜌, 𝛼) fluctuate within a narrow region of 𝐹𝐵𝐸1,2

3
.

Also, let

𝑆̂𝐸3
=

{

(𝑟, 𝑎, 𝑘, 𝑑, 𝜂, 𝛽, 𝛾, 𝜌, 𝛼) ∶ 𝜌 =
(

𝛤 (1 + 𝛼) −𝛥
𝛺̃

)
1
𝛼

= 𝜌𝑁𝑆 , 𝛥
2 − 4𝛺̃ < 0

}

.

If the parameters (𝑟, 𝑎, 𝑘, 𝑑, 𝜂, 𝛽, 𝛾, 𝜌, 𝛼) vary around the set 𝑁𝑆𝐸3
,

ystem (2) will suffer an NS bifurcation at that point.
The model(5)’s positive fixed point’s topological categorization for

= 2.25, 𝑘 = 3.5, 𝛽 = 1.05, 𝑑 = 0.1, 𝛼 = 0.75, 𝜂 = 0.5, and with
∈ [0.1, 0.96], 𝛾 ∈ [0.25, 0.85] and 𝜌 ∈ [0.1, 1.5] is depicted in Fig. 1(a).
he 2D projection is displayed in Fig. 1(b) for 𝛾 = 0.5. Fig. 11 shows
he highest Lyapunov exponents and the bifurcation diagram in 2D
arametric space.
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Fig. 1. (a)3D topological categorization of the model(5)’s positive fixed point (b) Stability region (2D) of positive fixed point of the model (5).
.

4. Analysis of bifurcation

This section introduces a study that will look at the NS and PD
bifurcations at the fixed point 𝐸3(𝑥∗, 𝑦∗) of the model by using the
parameter 𝜌 as a bifurcation parameter.

4.1. Neimark-Sacker bifurcation

The Neimark-Sacker bifurcation surrounding the system (5)’s only
positive stable state is examined in this subsection. We have used the
traditional theory of bifurcation for the direction and presence of this
form of bifurcation. The Neimark-Sacker bifurcation related to various
discrete-time mathematical systems [7,29] has lately received attention
from a number of mathematicians. For the analysis of NS bifurcation
for the positive co-existence fixed point 𝐸3(𝑥∗, 𝑦∗), we consider the
following study. Assume 𝜌∗ is the small perturbation of 𝜌 where |𝜌∗| ⋘
1. Therefore, the model becomes using perturbation

𝑥𝑛+1 = 𝑥𝑛 +
(𝜌 + 𝜌∗)𝛼

𝛤 (𝛼 + 1)

(

𝑟𝑥𝑛
(

1 −
𝑥𝑛
𝑘

)

− 𝜂(1 − 𝑒−𝑎𝑥𝑛 )𝑦𝑛
)

≡ 𝑓 (𝑥𝑛, 𝑦𝑛, 𝜌∗) (9)

𝑦𝑛+1 = 𝑦𝑛 +
(𝜌 + 𝜌∗)𝛼

𝛤 (𝛼 + 1)
(

𝛽(1 − 𝑒−𝑎𝑥𝑛 )𝑦𝑛 − 𝑑𝑦𝑛 − 𝛾𝑦𝑛
)

≡ 𝑔(𝑥𝑛, 𝑦𝑛, 𝜌∗)

If 𝑢𝑛 = 𝑥𝑛 − 𝑥∗, 𝑣𝑛 = 𝑦𝑛 − 𝑦∗, then equilibrium is 𝐸3(𝑥∗, 𝑦∗) becomes
the origin, and by using Taylor series at (𝑢𝑛, 𝑣𝑛) = (0, 0) expanding 𝑓
and 𝑔 to the third order, the model (9) becomes

𝑢𝑛+1 =𝛼𝑥1𝑢𝑛 + 𝛼𝑥2𝑣𝑛 + 𝛼𝑥11𝑢
2
𝑛 + 𝛼𝑥12𝑢𝑛𝑣𝑛 + 𝛼𝑥22𝑣

2
𝑛 + 𝛼𝑥111𝑢

3
𝑛 + 𝛼𝑥112𝑢

2
𝑛𝑣𝑛 +

(10)
𝛼𝑥122𝑢𝑛𝑣

2
𝑛 + 𝛼𝑥222𝑣

3
𝑛 + 𝑂((|

|

𝑢𝑛|| + |

|

𝑣𝑛||)
4)

𝑣𝑛+1 =𝛽𝑦1𝑢𝑛 + 𝛽𝑦2𝑣𝑛 + 𝛽𝑦11𝑢
2
𝑛 + 𝛽𝑦12𝑢𝑛𝑣𝑛 + 𝛽𝑦22𝑣

2
𝑛 + 𝛽𝑦111𝑢

3
𝑛 + 𝛽𝑦112𝑢

2
𝑛𝑣𝑛+

𝛽𝑦122𝑢𝑛𝑣
2
𝑛 + 𝛽𝑦222𝑣

3
𝑛 + 𝑂((|

|

𝑢𝑛|| + |

|

𝑣𝑛||)
4)

where

𝛼𝑥1 = 1 + 𝑟
(

1 − 2𝑥∗
𝑘

+
𝑎𝑒−𝑎𝑥∗𝑥∗(−𝑘 + 𝑥∗)𝛽

𝑘(𝑑 + 𝛾)

)

𝜌𝛼

𝛤 (𝛼 + 1)
,

𝛼𝑥2 =
(

−1 + 𝑒−𝑎𝑥
∗
)

𝜂
𝜌𝛼

𝛤 (𝛼 + 1)
,

𝛼 =
𝑟
(

−2 + 𝑎2𝑒−𝑎𝑥∗ (𝑘−𝑥∗)𝑥∗𝛽
𝛾+𝑑

)

𝜌𝛼

𝛤 (𝛼+1)
,

5

𝑥11 𝑘
𝛼𝑥12 = −𝑎𝑒−𝑎𝑥
∗
𝜂

𝜌𝛼

𝛤 (𝛼 + 1)
,

𝛼𝑥22 = 0,

𝛼𝑥111 =
𝑎3𝑒−𝑎𝑥∗ (𝑟𝑥∗2 − 𝑘𝑟𝑥∗)𝛽 𝜌𝛼

𝛤 (𝛼+1)

𝑘(𝛾 + 𝑑)
,

𝛼𝑥112 = 𝑎2𝑒−𝑎𝑥
∗
𝜂

𝜌𝛼

𝛤 (𝛼 + 1)
,

𝛼𝑥122 = 0,

𝛼𝑥222 = 0,

𝛽𝑦1 =
𝑎𝑒−𝑎𝑥∗ (−𝑟𝑥∗2 + 𝑘𝑟𝑥∗)𝛽2 𝜌𝛼

𝛤 (𝛼+1)

𝑘(𝛾 + 𝑑)𝜂
,

𝛽𝑦2 = 1 +
(

𝛽 − 𝑒−𝑎𝑥
∗
𝛽 − 𝛾 − 𝑑

) 𝜌𝛼

𝛤 (𝛼 + 1)
,

𝛽𝑦11 =
𝑎2𝑒−𝑎𝑥∗ (𝑟𝑥∗2 − 𝑘𝑟𝑥∗)𝛽2 𝜌𝛼

𝛤 (𝛼+1)

𝑘(𝛾 + 𝑑)𝜂
,

𝛽𝑦12 = 𝑎𝑒−𝑎𝑥
∗
𝛽

𝜌𝛼

𝛤 (𝛼 + 1)
,

𝛽𝑦22 = 0,

𝛽𝑦111 =
𝑎3𝑒−𝑎𝑥∗ (−𝑟𝑥∗2 + 𝑘𝑟𝑥∗)𝛽2 𝜌𝛼

𝛤 (𝛼+1)

𝑘(𝛾 + 𝑑)𝜂
,

𝛽𝑦112 = −𝑎2𝑒−𝑎𝑥
∗
𝛽

𝜌𝛼

𝛤 (𝛼 + 1)
,

𝛽𝑦122 = 0,

𝛽𝑦222 = 0. (11)

The characteristic equation of the model (10) is 𝜆2 + 𝑝(𝜌∗)𝜆+ 𝑞(𝜌∗) = 0,
where 𝑝(𝜌∗) = (2 + 𝛥𝜇𝑒) and 𝑞(𝜌∗) = (1 + 𝛥𝜇𝑒 + 𝛺̃𝜇𝑒2), with 𝜇𝑒 =

(𝜌+𝜌∗)𝛼
𝛤 (𝛼+1) .

The characteristic equation’s roots are 𝜆1,2(𝜌∗) =
−𝑝(𝜌∗)±𝑖

√

4𝑞(𝜌∗)−(𝑝(𝜌∗))2
2

From |

|

𝜆1,2(𝜌∗)|| = 1, and 𝜌∗ = 0, we have |

|

𝜆1,2(𝜌∗)|| = [𝑞(𝜌∗)]
1
2 and

𝑙 =
[ 𝑑|𝜆1,2(𝜌∗)|

𝑑𝜌∗

]

𝜌∗=0
≠ 0. Furthermore, it is imperative that when 𝜌∗ = 0,

𝜆𝑖1,2 ≠ 1, 𝑖 = 1, 2, 3, 4, which is equivalent to 𝑝(0) ≠ ±2, 0, 1.

To study the normal form, let 𝜙 = 𝐼𝑚(𝜆1,2) and 𝜑 = 𝑅𝑒(𝜆1,2). We

ascertain 𝑇 =
[

0 1
]

, and serving the transformation
[

𝑢𝑛
]

=

𝜙 𝜑 𝑣𝑛
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b

𝜉

W
c

T
a

𝑣

w

𝛼

u

t

m
{

𝑇
[

𝑥𝑛
𝑦𝑛

]

, the model (10) becomes

𝑥𝑛+1 = 𝜑𝑥𝑛 − 𝜙𝑦𝑛 + 𝑓𝑥11(𝑥𝑛, 𝑦𝑛) (12)
𝑦𝑛+1 = 𝜙𝑥𝑛 + 𝜑𝑦𝑛 + 𝑔𝑦11(𝑥𝑛, 𝑦𝑛),

where the variables (𝑥𝑛, 𝑦𝑛) with a rank of at least two are represented
y the functions 𝑓𝑥11 and 𝑔𝑦11, respectively, which denote the terms in

the model (12).
To transit through NSB, the following discriminating amount 𝛺

must be nonzero: 𝛺 = −𝑅𝑒
[

(1−2𝜆)𝜆
2

1−𝜆 𝜉11𝜉20

]

− 1
2
|

|

𝜉11||
2 − |

|

𝜉02||
2 +𝑅𝑒(𝜆𝜉21),

where

𝜉20 =
𝜑
8
(

2𝛽𝑦22 − 𝜑𝛼𝑥22 − 𝛼𝑥12 + 4𝜙𝛼𝑥22 + 𝑖
(

4𝜙𝛼𝑥22 − 2𝛼𝑥22 − 2𝜑𝛼𝑥22
))

+
𝜙
4
𝛼𝑥12 + 𝑖 1

8
(

4𝜙𝛽𝑦22 + 2𝜙2𝛼𝑥22 − 2𝛼𝑥11
)

+
𝛽𝑦12
8

+
𝜑𝛼𝑥11 − 2𝛽𝑦11 + 𝜑3𝛼𝑥22 − 𝜑2𝛽𝑦22 − 𝜑2𝛼𝑥12 + 𝜑𝛽𝑦12

4𝜙
,

𝜉11 =
𝜙
2
(𝛽𝑦22 − 𝜑𝛼𝑥22) + 𝑖 1

2
(𝜙2𝛼𝑥22 + 𝛼𝑦11 + 𝜑𝛼𝑥12 + 𝜑2𝛼𝑥22)

+
𝛽𝑦11 − 𝜑𝛼𝑥11 + 𝜑𝛽𝑦12 − 𝜑2𝛼𝑥12 − 2𝜑2𝛽𝑦22 + 2𝜑3𝛼𝑥22

2𝜙
,

𝜉02 =
1
4
𝜙(2𝜑𝛼𝑥22 + 𝛼𝑦12 + 𝛽𝑦22) + 𝑖 1

4
(𝛽𝑦12 + 2𝜑𝛽𝑦22 − 2𝜑𝛼𝑥12 − 𝛼𝑥11)

−
𝛽𝑦11 − 𝜑𝛼𝑥11 + 𝜑𝛽𝑦12 − 𝜑2𝛼𝑥12 + 𝜑2𝛽𝑦22 − 𝜑3𝛼𝑥22

4𝜙

+ 1
4
𝛼𝑥22𝑖(𝜙2 − 3𝜑2),

21 =
3
8
𝛽𝑦222(𝜙2 + 𝜑2) +

𝛽𝑦112
8

+
𝜑
4
𝛼𝑥112 +

𝜑
4
𝛽𝑦122 + 𝛼𝑥122(

𝜙2

8
+

3𝜑2

8
−

𝜑
4
)

+ 3
8
𝛼𝑥111 + 𝑖 3

8
𝛼𝑥222(𝜙2 + 2𝜑2) + 𝑖

3𝜙𝜑
8

𝛼𝑥122

− 1
8
𝛽𝑦122𝜙𝑖 − 𝑖

3𝜙𝜑
8

𝛽𝑦222 − 𝑖
3𝛽𝑦111 − 3𝜑𝛼𝑥111

8𝜙

− 𝑖
3𝜑𝛽𝑦112 − 3𝜑2𝛼𝑥112

8𝜙
− 𝑖

3𝜑2𝛽𝑦122 − 3𝜑3𝛼𝑥122
8𝜙

− 𝑖
3𝜑3𝛽𝑦222 − 3𝜑4𝛼𝑥222

8𝜙
.

e came to the following conclusion as a result of the analysis indi-
ated above.

heorem 1. }} If 𝛺 ≠ 0, the model proceeds through NS bifurcation
t 𝐸3(𝑥∗, 𝑦∗) for the parameter 𝜌 to vary in the vicinity of 𝑁𝑆𝐸3

. If
𝛺 < 0 (𝛺 > 0), therefore, a smooth closed invariant curve with a positive
fixed point 𝐸3(𝑥∗, 𝑦∗) can bifurcate and the bifurcation is sub-critical (resp.
super-critical).ε

4.2. Period-doubling bifurcation

This subsection focuses on the possibility of a period-doubling bi-
furcation at the system (5)’s positive equilibrium point. The center
manifold theorem is used to analyze it after normal forms are used
to demonstrate the existence and direction of this kind of bifurcation.
Numerous experts have recently conducted studies on period-doubling
bifurcation in discrete-time mathematical models [15]. The positive
fixed point 𝐸3(𝑥∗, 𝑦∗)’s one eigenvalue is 𝜆1 = −1, and the other one
is 𝜆2 neither 1 nor −1, if the systems’ parameters vary around the set
𝐹𝐵

1,2
𝐸3. The PD bifurcation is examined using the parameter 𝜌. Further

𝜌∗ (|𝜌∗| ⋘ 1,) is this model perturbation caused by the fluctuations of
𝜌.

𝑥𝑛+1 = 𝑥𝑛 +
(𝜌 + 𝜌∗)𝛼

𝛤 (𝛼 + 1)

(

𝑟𝑥𝑛
(

1 −
𝑥𝑛
𝑘

)

− 𝜂(1 − 𝑒−𝑎𝑥𝑛 )𝑦𝑛
)

≡ 𝑓 (𝑥𝑛, 𝑦𝑛, 𝜌∗)

(13)

𝑦𝑛+1 = 𝑦𝑛 +
(𝜌 + 𝜌∗)𝛼 (

𝜂(1 − 𝑒−𝑎𝑥𝑛 )𝑦𝑛 − 𝑑𝑦𝑛 − 𝛾𝑦𝑛
)

≡ 𝑔(𝑥𝑛, 𝑦𝑛, 𝜌∗)
6

𝛤 (𝛼 + 1) f
If 𝑢𝑛 = 𝑥𝑛 − 𝑥∗, 𝑣𝑛 = 𝑦𝑛 − 𝑦∗, then equilibrium 𝐸3(𝑥∗, 𝑦∗) becomes the
origin, and by using Taylor series about (𝑢𝑛, 𝑣𝑛) = (0, 0) expanding to
the third order of 𝑓 and 𝑔, the model (13) becomes

𝑢𝑛+1 =𝛼𝑥1𝑢𝑛 + 𝛼𝑥2𝑣𝑛 + 𝛼𝑥11𝑢
2
𝑛 + 𝛼𝑥12𝑢𝑛𝑣𝑛 + 𝛼𝑥13𝑢𝑛𝜌

∗ + 𝛼𝑥23𝑣𝑛𝜌
∗ + 𝛼𝑥111𝑢

3
𝑛 + (14)

𝛼𝑥112𝑢
2
𝑛𝑣𝑛 + 𝛼𝑥113𝑢

2
𝑛𝜌

∗ + 𝛼𝑥123𝑢𝑛𝑣𝑛𝜌
∗ + 𝑂((|

|

𝑢𝑛|| + |

|

𝑣𝑛|| + |𝜌∗|)4)

𝑛+1 =𝛽𝑦1𝑢𝑛 + 𝛽𝑦2𝑣𝑛 + 𝛽𝑦11𝑢
2
𝑛 + 𝛽𝑦12𝑢𝑛𝑣𝑛 + 𝛽𝑦22𝑣

2
𝑛 + 𝛽𝑦13𝑢𝑛𝜌

∗ + 𝛽𝑦23𝑣𝑛𝜌
∗ + 𝛽𝑦111𝑢

3
𝑛+

𝛽𝑦112𝑢
2
𝑛𝑣𝑛 + 𝛽𝑦113𝑢

2
𝑛𝜌

∗ + 𝛽𝑦123𝑢𝑛𝑣𝑛𝜌
∗ + 𝛽𝑦223𝑣

2
𝑛𝜌

∗ + 𝑂((|
|

𝑢𝑛|| + |

|

𝑣𝑛|| + |𝜌∗|)4),

here

𝛼𝑥13 = 𝑟
(

1 − 2𝑥∗
𝑘

+
𝑎𝑒−𝑎𝑥∗𝑥∗(−𝑘 + 𝑥∗)𝛽

𝑘(𝑑 + 𝛾)

)

𝛼𝜌𝛼−1

𝛤 (𝛼 + 1)
,

𝛼𝑥23 = −(1 − 𝑒−𝑎𝑥
∗
)

𝛼𝜌𝛼−1

𝛤 (𝛼 + 1)
,

𝛼𝑥113 = 𝑟
𝑘

(

−2 +
𝑎2𝑒−𝑎𝑥∗𝑥∗(𝑘 − 𝑥∗)𝛽

(𝑑 + 𝛾)

)

𝛼𝜌𝛼−1

𝛤 (𝛼 + 1)
,

𝑥123 = −𝑎𝑒−𝑎𝑥
∗
𝜂

𝛼𝜌𝛼−1

𝛤 (𝛼 + 1)
,

𝛽𝑦13 =
𝑎𝑒−𝑎𝑥∗ 𝑟𝑥∗(𝑘 − 𝑥∗)𝛽2

𝑘(𝑑 + 𝛾)𝜂
𝛼𝜌𝛼−1

𝛤 (𝛼 + 1)
,

𝛽𝑦23 =
(

−𝑑 + 𝛽 − 𝑒−𝑎𝑥
∗
𝛽 − 𝛾

) 𝛼𝜌𝛼−1

𝛤 (𝛼 + 1)
,

𝛽𝑦113 =
𝑎2𝑒−𝑎𝑥∗ 𝑟𝑥∗(−𝑘 + 𝑥∗)𝛽2

𝑘(𝑑 + 𝛾)
𝛼𝜌𝛼−1

𝛤 (𝛼 + 1)
,

𝛽𝑦123 = 𝑎𝑒−𝑎𝑥
∗
𝛽

𝛼𝜌𝛼−1

𝛤 (𝛼 + 1)
,

𝛽𝑦223 = 0. (15)

We assume 𝑇 =
[

𝛼𝑥2 𝛼𝑥2
−1 − 𝛼𝑥1 𝜆2 − 𝛼𝑥1

]

which is invertible. Now,

sing the transformation
[

𝑢𝑛
𝑣𝑛

]

= 𝑇
[

𝑥𝑛
𝑦𝑛

]

, the model (14) beco-
mes

𝑥𝑛+1 = −𝑥𝑛 + 𝑓𝑥11(𝑢𝑛, 𝑣𝑛, 𝜌∗) (16)
𝑦𝑛+1 = 𝜆2𝑦𝑛 + 𝑔𝑦11(𝑢𝑛, 𝑣𝑛, 𝜌∗),

where the variables (𝑥𝑛, 𝑦𝑛) with a rank of at least two are represented
by the functions 𝑓𝑥11 and 𝑔𝑦11, respectively, which denote the terms in
he model (16).

The system (16) has a center manifold 𝑊 𝑐 (0, 0, 0) at (0, 0) in a highly
closed neighborhood of 𝜌∗ = 0, which can be deduced using the center

anifold theorem and is essentially expressed as follows. 𝑊 𝑐 (0, 0, 0) =
(

𝑥𝑛, 𝑦𝑛, 𝜌∗
)

𝜖𝑅3 ∶ 𝑦𝑛+1 = 𝛼𝑥1𝑥
2
𝑛 + 𝛼𝑥2𝑥𝑛𝜌∗ + 𝑂((|

|

𝑥𝑛|| + |𝜌∗|)3)
}

where

𝛼𝑥1 =
𝛼𝑥2[(1 + 𝛼𝑥1)𝛼𝑥11 + 𝛼𝑥2𝛽𝑦11]

1 − 𝜆22
+

𝛽𝑦22(1 + 𝛼𝑥1)2

1 − 𝜆22

−
(1 + 𝛼𝑥1)[𝛼𝑥12(1 + 𝛼𝑥1) + 𝛼𝑥2𝛽𝑦12]

1 − 𝜆22
,

𝛼𝑥2 =
(1 + 𝛼𝑥1)[𝛼𝑥23(1 + 𝛼𝑥1) + 𝛼𝑥2𝛽𝑦23]

𝛼𝑥2(1 + 𝜆2)2
−

(1 + 𝛼𝑥1)[𝛼𝑥13 + 𝛼𝑥2𝛽𝑦13]

(1 + 𝜆2)2
.

The model(16)’s restrained center manifold, 𝑊 𝑐 (0, 0, 0), has the
ollowing form: 𝑥 = −𝑥 + ℎ 𝑥2 + ℎ 𝑥 𝜌∗ + ℎ 𝑥2𝜌∗ + ℎ 𝑥 𝜌∗2 + ℎ 𝑥3 +
𝑛+1 𝑛 1 𝑛 2 𝑛 3 𝑛 4 𝑛 5 𝑛
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Fig. 2. PD Bifurcation diagram, MLEs and FDs for varying parameter 𝜌.
𝑂((|
|

𝑥𝑛|| + |𝜌∗|)3) ≡ 𝐹 (𝑥𝑛, 𝜌∗) where

ℎ1 =
𝛼𝑥2[(𝜆2 − 𝛼𝑥1)𝛼𝑥11 − 𝛼𝑥2𝛽𝑦11]

1 + 𝜆2
−

𝛽𝑥22(1 + 𝛼𝑥1)2

1 + 𝜆2

−
(1 + 𝛼𝑥1)[(𝜆2 − 𝛼𝑥1)𝛼𝑥12 − 𝛼𝑥2𝛽𝑦12]

1 + 𝜆2
,

ℎ2 =
(𝜆2 − 𝛼𝑥1)𝛼𝑥13 − 𝛼𝑥2𝛽𝑦13

1 + 𝜆2
−

(1 + 𝛼𝑥1)[(𝜆2 − 𝛼𝑥1)𝛼𝑥23 − 𝛼𝑥2𝛽𝑦23]

𝛼𝑥2
(

1 + 𝜆2
) ,

ℎ3 =
(𝜆2 − 𝛼𝑥1)𝛼𝑥1𝛼𝑥13 − 𝛼𝑥2𝛽𝑦13

1 + 𝜆2
+

[(𝜆2 − 𝛼𝑥1)𝛼𝑥23 − 𝛼𝑥2𝛽𝑦23](𝜆2 − 𝛼𝑥1)𝛼𝑥1

𝛼𝑥2
(

1 + 𝜆2
)

−
(1 + 𝛼𝑥1)[(𝜆2 − 𝛼𝑥1)𝛼𝑥123 − 𝛼𝑥2𝛽𝑦123]

1 + 𝜆2
+

𝛼𝑥2[(𝜆2 − 𝛼𝑥1)𝛼𝑥113 − 𝛼𝑥2𝛽𝑦113]
1 + 𝜆2

,

−
𝛽𝑦223(1 + 𝛼𝑥1)2

1 + 𝜆2
+

2𝛼𝑥2𝛼𝑥2[(𝜆2 − 𝛼𝑥1)𝛼𝑥11 − 𝛼𝑥2𝛽𝑦11]
1 + 𝜆2

,

−
2𝛽𝑦22𝛼𝑥2(1 + 𝛼𝑥1)(𝜆2 − 𝛼𝑥1)

1 + 𝜆2

+
𝛼𝑥2[(𝜆2 − 𝛼𝑥1)𝛼𝑥12 − 𝛼𝑥2𝛽𝑦12](𝜆2 − 1 − 2𝛼𝑥1)

1 + 𝜆2
,

ℎ4 =
𝛼𝑥2[(𝜆2 − 𝛼𝑥1)𝛼𝑥13 − 𝛼𝑥2𝛽𝑦13]

1 + 𝜆2
+

[(𝜆2 − 𝛼𝑥1)𝛼𝑥23 − 𝛼2𝛽𝑥23](𝜆2 − 𝛼𝑥1)𝛼𝑥2

𝛼𝑥2
(

1 + 𝜆2
)

+
2𝛼𝑥2𝛼𝑥2[(𝜆2 − 𝛼𝑥1)𝛼𝑥11 − 𝛼𝑥2𝛽𝑦11]

1 + 𝜆2
,

+
2𝛽𝑦22𝛼𝑥2(1 + 𝛼𝑥1)(𝜆2 − 𝛼𝑥1)

1 + 𝜆2

+
𝛼𝑥2[(𝜆2 − 𝛼𝑥1)𝛼𝑥12 − 𝛼𝑥2𝛽𝑦12](𝜆2 − 1 − 2𝛼𝑥1) ,
7

1 + 𝜆2
ℎ5 =
2𝛼𝑥2𝛼𝑥1[(𝜆2 − 𝛼𝑥1)𝛼𝑥11 − 𝛼𝑥2𝛽𝑦11]

1 + 𝜆2

+
[(𝜆2 − 𝛼𝑥1)𝛼𝑥11 − 𝛼𝑥2𝛽𝑦11](𝜆2 − 1 − 2𝛼𝑥1)𝛼𝑥1

1 + 𝜆2
,

+
2𝛽𝑦22𝛼𝑥1(𝜆2 − 𝛼𝑥1)(1 + 𝛼𝑥1)

1 + 𝜆2
+

𝛼2
𝑥2[(𝜆2 − 𝛼𝑥1)𝛼𝑥111 − 𝛼𝑥2𝛽𝑦111]

1 + 𝜆2
,

−
𝛼𝑥2(1 + 𝛼𝑥1)[(𝜆2 − 𝛼𝑥1)𝛼𝑥112 − 𝛼𝑥2𝛽𝑦112]

1 + 𝜆2
.

In order for PD bifurcation to occur, the two differentiating quanti-
ties 𝜉1 and 𝜉2 must both be nonzero, 𝜉1 =

(

𝜕2𝐹
𝜕𝑥𝜕𝜌∗ + 1

2
𝜕𝐹
𝜕𝜌∗

𝜕2𝐹
𝜕𝑥2

)

∣(0,0) and

𝜉2 =
(

1
6
𝜕3𝐹
𝜕𝑥3

+
(

1
2
𝜕2𝐹
𝜕𝑥2

)2
)

∣(0,0).
Finally, the outcome of the analysis above is as follows.

Theorem 2. ‘‘The model experiences PD bifurcation at 𝐸3(𝑥∗, 𝑦∗) for
varying amounts of 𝜌 in a limited neighborhood of 𝐹𝐵

1,2
𝐸3 if 𝜉1 ≠ 0 and

𝜉2 ≠ 0. Further, for 𝜉2 > 0 (𝜉2 < 0) the period-two orbits that bifurcate from
𝐸3(𝑥∗, 𝑦∗) is stable (unstable)’’.

5. Numerical simulation

We illustrate some novel and intriguing complex dynamical behav-
iors in the discussed system (5) in this section, and we also provide
the system(5)’s bifurcation diagrams, phase portraits, and Lyapunov
exponents to support the earlier analytical results. Maximum Lyapunov
exponents, known for measuring the exponential divergence of orig-
inally similar state–space trajectories, are frequently used to detect

chaotic behavior. The initial condition (𝑥0, 𝑦0) located in the fixed
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Fig. 3. Visual representation of NS Bifurcation, MLEs and FDs of species for varying parameter 𝜌.
point’s basin of attraction can be taken into account to study the
PD and NS bifurcations, respectively, for the singular positive fixed
point. Based on the previous analysis, we select 𝜌 as the bifurcation
parameter. All other model parameters, unless otherwise specified, are
taken as fixed parameters. For the parameters values 𝑟 = 1.5, 𝑘 = 3.5,
𝛽 = 1.05, 𝑎 = 0.5, 𝛾 = 0.75, 𝑑 = 0.1, 𝜂 = 0.5, 𝛼 = 0.75, and
1.4 ≤ 𝜌 ≤ 2.2, a PD bifurcation point crucial value is calculated as
𝜌𝐹 = 1.5030 and system(5)’s co-existence fixed point has been assessed
as (3.316456152, 0.6445218958).

A chaotic attractor is shown to emerge from a PD bifurcation after
the model track has evolved from a fixed point to a PD bifurcation
displayed in Fig. 2. We also see that fixed point’s (𝐸3) stability occurs
for 𝜌 < 𝜌𝐹 , loses stability at 𝜌 > 𝜌𝐹 , and a period doubling phenomena
leads to chaos at 𝜌 = 𝜌𝐹 . Fig. (2; c–d) shows the calculated MLEs and
FDs for Fig. (2;a–b).

Next, we select the parameters values as 𝑟 = 2.25, 𝑘 = 3.5, 𝛽 = 1.05,
𝑎 = 0.638164, 𝛾 = 0.5, 𝑑 = 0.1, 𝛼 = 0.75, 𝜂 = 0.5, 0.1 ≤ 𝜌 ≤ 1.5 and initial
condition is (1.32, 6.5). For these values the co-existence fixed point of
the system (5) is (1.32771, 6.48939). The Neimark–Sacker bifurcation is
discovered by computation as 𝐸3 at 𝜌 = 𝜌𝑁𝑆 = 0.5. The trajectory’s
development from a fixed point to an NS bifurcation and then to a
chaotic attractor is shown in this Fig. 3. The phase picture, MLEs, and
FDs of Fig. 3 (a-b) are shown in Figs. 4 and 3 (c–d), respectively.
Each of the bifurcation mechanisms for both prey and predator has
three distinct periodic windows. It proves that the dynamics of the
system (5) are unexpected when the parameter 𝜌 is changed by modest
amounts. This analysis demonstrates the system’s many phases, from
chaos to the chaotic attractor, invariant closed curve, and stable fixed
point splitting. Additionally, we researched NS bifurcation, and the
corresponding NS bifurcation diagram, MLEs, and FDs are displayed in
8

Fig. 5. This was accomplished by fixing all other parameters indicated
above for Fig. 3 while altering the fractional order 𝛼 in the range
0.15 ≤ 𝛼 ≤ 0.95. The phase pictures corresponding to Fig. 5 are shown
in Fig. 6.

The prey–predator model in the NS bifurcation diagram may behave
more dynamically as other parameter values shift (for example, param-
eter 𝛾, 𝑎). The parameter values are set to 𝑟 = 2.25, 𝑘 = 3.5, 𝛽 = 1.05,
𝑎 = 0.638164, 𝜌 = 0.5, 𝑑 = 0.1, 𝛼 = 0.75, 𝜂 = 0.5, and 𝛾 fluctuate
between 0.25 ≤ 𝛾 ≤ 0.85 to produce a new Neimark–Sacker bifurcation
diagram as shown in Fig. 9(a–b). Neimark–Sacker bifurcation occurs
in the model at 𝛾 = 𝛾𝑁𝑆 = 0.5. As shown in Fig. 9(a–b), another NS
bifurcation diagram is created when the parameter values are set to
𝑟 = 2.25, 𝑘 = 3.5, 𝛽 = 1.05, 𝛾 = 0.5, 𝜌 = 0.5, 𝑑 = 0.1, 𝛼 = 0.75,
𝜂 = 0.5, and 𝑎 varies in 0.1 ≤ 𝑎 ≤ 0.96. Assume that the parameters
are those shown in Fig. 1. System (5) can display complicated dynamic
behavior when two more parameters change through their critical
levels. In the given parametric scenario, Fig. 11(a) displays the co-
dimension-2 bifurcation graphs in (𝜌, 𝑎, 𝑥)-space. The highest Lyapunov
exponents for two control parameters is plotted in Fig. 11(b) through
a 2D projection onto the (𝜌, 𝑎) plane in Fig. 11(c). The dynamics of
the system (5) can now be studied to understand how it transitions
from a non-chaotic state to a periodic or chaotic state by determining
the values of the bifurcation parameters. It is also noteworthy from
Fig. 11(a) that if 𝜌 > 0.763701 and parameter 𝑎 increases, the predator–
prey system (5) suffers PD bifurcation first and then NS bifurcation,
with a stable window forming in between which is compatible with in
Fig. 1(b). From a biological perspective, it illustrates how the predator
and prey cohabit in an oscillating equilibrium behavior (see Figs. 7 and

8).
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Fig. 4. Phase picture for changing input of 𝝆. Red ∗ represents positive fixed point. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
5.1. Fractal dimension

To identify a model’s chaotic attractors, the fractal dimensions (FD)
measurement is used, which is defined by [30]

𝐷̂𝑓𝑑 = 𝑘 +

∑𝑘
𝑗=1 tt𝑗

|

|

tt𝑘+1
|

|

(17)

where the biggest integer number is 𝑘 such that ∑𝑘
𝑗=1 tt𝑗 ≥ 0 and

∑𝑘+1
𝑗=1 tt𝑗 < 0 and t𝑗 ’s are Lyapunov exponents. Now, the structure of

the fractal dimensions of model(5) is as follows:

𝐷̂𝑓𝑑 = 2 +
tt1 (18)
9

|

|

tt2
|

|

Given that the chaotic dynamics of the model (5) (Fig. 4) are quantified
with the sign of FD (Fig. 3(d)), it is guaranteed that the dynamics of
the fractional order prey–predator model become unstable as the value
of the parameter 𝜌 rises.

5.2. 0–1 Chaos test algorithm

In dynamical systems, chaos refers to complex behavior character-
ized by sensitivity to initial conditions and aperiodic, unpredictable
trajectories. Chaos tests are used to determine whether a system ex-
hibits chaotic behavior. ‘‘0-1 chaos test’’ helps identify whether the
predator–prey model exhibits chaotic behavior. The presence of chaos
indicates that the system is complex and sensitive to initial conditions,
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𝑞

Fig. 5. Visual representation of NS Bifurcation, MLEs and FDs of species for varying parameter 𝛼.
𝑥

which can have significant ecological implications. The presence of
chaos in the predator–prey model can provide ecological insights. For
example, it may indicate that there are multiple attractors in the
system, representing different stable states of the ecosystem. However,
chaos tests require data or parameter values for the predator–prey
model. If accurate data is not available, or if the model parameters are
estimated with uncertainties, the results of the chaos test may be less
reliable. ‘‘0-1 chaos test’’ cannot guarantee the discovery of all possible
chaotic scenarios, as it is inherently impossible to test every potential
chaotic event.

Assume that 𝜃𝑏(𝑛) is a measured discrete set of data for the 0 − 1
chaos test technique [31–33], where 𝑛 = 1, 2, 3,… , 𝑁 , and the total
amount of the data is 𝑁 .

We generate new coordinates (𝑞𝑏̂(𝑛), 𝑟𝑏̂(𝑛)) by choosing a random
number 𝑏̂ ∈ (𝜋∕5, 4𝜋∕5) and doing the following:

̂̂𝑏(𝑛)(𝑛) =
𝑛
∑

𝑗=1
𝜃𝑏(𝑗) cos(𝜙𝑏(𝑗))

𝑟𝑏̂(𝑛) =
𝑛
∑

𝑗=1
𝜃𝑏(𝑗) sin(𝜙𝑏(𝑗))

(19)

where 𝜙𝑏(𝑗) = 𝑗𝑐 +
∑𝑗

𝑖=1 𝜃𝑏(𝑗), 𝑗 = 1, 2, 3,… , 𝑛.

The following definition applies to mean square displacement 𝐶𝑏̂(𝑛)
as of this moment:

𝐶𝑏̂(𝑛) = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1

(

𝑞𝑏̂(𝑗 + 𝑛) − 𝑞𝑏̂(𝑗)
)2 +

(

𝑟𝑏̂(𝑗 + 𝑛) − 𝑟𝑏̂(𝑗)
)2 , 𝑛 ∈

[

1, 𝑁
10

]

(20)
10
We also define 𝐶̆𝑏̂(𝑛) as the modified mean square displacement as
follows:

𝐶̆𝑏̂(𝑛) = 𝐶̆𝑏̂(𝑛) −

(

lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝜃𝑏(𝑗)

)2
1 − cos 𝑛𝑏̂
1 − cos 𝑏̂

The following description follows for the median correlation coeffi-
cient 𝐾 value:

𝐾 = median
(

𝐾𝑏̂

)

where

𝐾𝑏̂ =
cov(𝜉1, 𝜉2)

√

var(𝜉) var(𝜑)
∈ [−1, 1]

in which 𝜉1 = (1, 2, 3,… , 𝑛𝑐𝑢𝑡), 𝜉2 =
(

𝐶̆𝑏̂(1), 𝐶̆𝑏̂(2),… , 𝐶̆𝑏̂
(

𝑛𝑐𝑢𝑡
))

, 𝑛𝑐𝑢𝑡 =
round

(

𝑁
10

)

, and covariance and variance of vectors of length 𝑛̄ are
defined as follows:

cov(𝑥, 𝑦) = 1
𝑛̄

𝑛̄
∑

𝑗=1
(𝑥(𝑗) − 𝑥̄)(𝑦(𝑗) − 𝑦̄),

̄ = 1
𝑛̄

𝑛̄
∑

𝑗=1
𝑥(𝑗),

var(𝑥) = cov(𝑥, 𝑥).

The output can now be demonstrated as follows.
(i) The dynamics remain stable (i.e., periodic or quasi-periodic)

when 𝐾 ≈ 0, whereas 𝐾 ≈ 1 suggests that the dynamics are chaotic.
(ii) As opposed to Brownian-like (unbounded) trajectories, which

show chaotic dynamics, bounded trajectories on the (𝑞, 𝑟̂) plane show
regular dynamics (i.e., periodic or quasi-periodic dynamics).
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Fig. 6. Phase picture for changing input of 𝜶. Red ∗ represents positive fixed point. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Example. Select the parameter values so that 𝑟 = 2.25, 𝑘 = 3.5,
𝛽 = 1.05, 𝑎 = 0.638164, 𝛾 = 0.5, 𝑑 = 0.1, 𝛼 = 0.75, 𝜂 = 0.5, 𝜌 = 1.5
with 𝐾 = 0.91144, the Brownian-like (unbounded) trajectories in new
coordinates(𝑞, 𝑤̂)−plane displaying in Fig. 10(a) are compatible with a
chaotic system dynamics. The curve 𝐾 versus 𝜌 plotted in Fig. 10(b)
represents the correlation coefficient value. In terms of biology, it
means that the system is chaotic for parameter 𝑘 values where 𝐾 is
near to 1.

6. Chaos control

The four methodologies for studying chaos control in discrete-
time models that are most frequently cited when addressing the issue
of managing chaos are the state feedback method, pole-placement
methodology, OGY technique, and hybrid control approach. To control
chaos emerging from the Neimark–Sacker bifurcation, the OGY feed-
back control method strategy [34] and state feedback [35] are applied
to the system (5), and the parameter 𝜌 as a control parameter is used.
We write system (5) as:

𝑥𝑛+1 = 𝑥𝑛 +
𝛬𝛼

𝛤 (𝛼 + 1)

(

𝑟𝑥𝑛
(

1 −
𝑥𝑛
𝑘

)

− 𝜂 (1 − 𝑒−𝑎𝑥𝑛 ) 𝑦𝑛
)

= 𝑓 (𝑥𝑛, 𝑦𝑛, 𝜌𝑐 )

𝑦𝑛+1 = 𝑦𝑛 +
𝛬𝛼

𝛤 (𝛼 + 1)
(

𝛽 (1 − 𝑒−𝑎𝑥𝑛 ) 𝑦𝑛 − 𝑑𝑦𝑛 − 𝛾𝑦𝑛
)

= 𝑔(𝑥𝑛, 𝑦𝑛, 𝜌𝑐 ),

(21)

where the control force 𝛬 ∶= 𝜌− 𝑝1
(

𝑥𝑛 − 𝑥∗
)

− 𝑝2
(

𝑦𝑛 − 𝑦∗
)

, is specified
as the feedback gains 𝑝1 and 𝑝2, and (𝑥∗, 𝑦∗) is the interior fixed point
for the system(5). The specific number of 𝜌𝑐 indicates that the interval
is chaotic or bifurcating, that is, 𝜌 ≥ 𝜌 or 𝜌 ≥ 𝜌 . Additionally, 𝜌
11

𝑐 − 𝑐 𝑁𝑆
is constrained to exist in a small interval |
|

𝜌 − 𝜌0|| < 𝜇 with 𝜇 > 0 and
𝜌0 designating the nominal value belonging to chaotic area. To change
the trajectory and bring it closer to the intended orbit, we employ the
stabilizing feedback control strategy. In the chaotic region created by
the emergence of Neimark–Sacker bifurcation, we suppose that (𝑥∗, 𝑦∗)
is an unstable fixed point of the system (5). The system (21) can then
be approximated in the vicinity of the unstable fixed point (𝑥∗, 𝑦∗) by
the following linear map:
[

𝑥𝑛+1 − 𝑥∗

𝑦𝑛+1 − 𝑦∗

]

≈ 𝐴
[

𝑥𝑛 − 𝑥∗

𝑦𝑛 − 𝑦∗

]

+ 𝐵
[

𝜌 − 𝜌0
]

, (22)

where

𝐴(𝑥∗ ,𝑦∗ ,𝜌0) =
⎡

⎢

⎢

⎣

𝜕𝑓 (𝑥∗ ,𝑦∗ ,𝜌0)
𝜕𝑥

𝜕𝑓 (𝑥∗ ,𝑦∗ ,𝜌0)
𝜕𝑦

𝜕𝑔(𝑥∗ ,𝑦∗ ,𝜌0)
𝜕𝑥

𝜕𝑔(𝑥∗ ,𝑦∗ ,𝜌0)
𝜕𝑦

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝛽𝑎𝛽𝑎 − 𝜂𝜌0(𝑑+𝛾)
𝛽𝛤 (𝛼+1)

𝛽𝑟𝜌0(−𝛽+𝑑+𝛾)
𝑎𝑘𝜂(𝑑+𝛾)𝛤 (𝛼+1) ln(

𝛽−𝑑−𝛾
𝛽 )(𝑎𝑘 + ln( 𝛽−𝑑−𝛾𝛽 )) 1

⎤

⎥

⎥

⎦

,

where 𝛽𝑎𝛽𝑎 = 1+ 𝑟𝜌0
𝛤 (𝛼+1) +2 𝑟𝜌0

𝑎𝑘𝛤 (𝛼+1) ln(
𝛽−𝑑−𝛾

𝛽 )+ 𝑟𝜌0(−𝛽+𝑑+𝛾)
𝑎𝑘(𝑑+𝛾)𝛤 (𝛼+1) ln(

𝛽−𝑑−𝛾
𝛽 )(𝑎𝑘+

ln( 𝛽−𝑑−𝛾𝛽 )) and

𝐵(𝑥∗ ,𝑦∗ ,𝜌𝑐 ) =
⎡

⎢

⎢

⎣

𝜕𝑓 (𝑥∗ ,𝑦∗ ,𝜌𝑐 )
𝜕𝜌

𝜕𝑔(𝑥∗ ,𝑦∗ ,𝜌𝑐 )
𝜕𝜌

⎤

⎥

⎥

⎦

= 𝐷

[

−𝑎
(

𝑎𝑘 − 2 + (𝑎𝑘 + ln( 𝛽−𝑑−𝛾𝛽 )(𝑑 + 𝑧))
)

0

]

,
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Fig. 7. Visual representation of NS Bifurcation, MLEs and FDs of species for varying parameter 𝛾.
𝐷 ∶=
𝜌𝑐𝑟 ln(

𝛽−𝑑−𝛾
𝛽 )

𝛤 (𝛼 + 1)𝜌𝑐𝑎2𝑘
.

By arguing as in [?], it can be say that the system (21) is controllable
the following matrix 𝐶:

𝐶 =
[

𝐵(𝑥∗ ,𝑦∗ ,𝜌𝑐 ) ∶ 𝐴(𝑥∗ ,𝑦∗ ,𝜌𝑐 )𝐵(𝑥∗ ,𝑦∗ ,𝜌𝑐 )

]

Because, the controllable matrix 𝐶 is of rank 2. The fixed point (𝑥∗, 𝑦∗)
of Eq. (22) is then locally asymptotically stable if and only if both of
the eigenvalues of the matrix 𝐴−𝐵𝐾 are located in an open unit disk.

We suppose that
[

𝜌 − 𝜌
0

]

= −𝐾
[

𝑥𝑛 − 𝑥∗

𝑦𝑛 − 𝑦∗

]

, where 𝐾 =
[

𝑝1 𝑝2
]

, then

the system (22) can be written as follow:
[

𝑥𝑛+1 − 𝑥∗

𝑦𝑛+1 − 𝑦∗

]

≈ [𝐴 − 𝐵𝐾]
[

𝑥𝑛 − 𝑥∗

𝑦𝑛 − 𝑦∗

]

. (23)

The following is the jacobian matrix’s 𝐴 − 𝐵𝐾 characteristic equa-
tion:

𝑃 (𝜆) = 𝜆2 − (𝑡𝑟(𝐴 − 𝐵𝐾)) 𝜆 + det(𝐴 − 𝐵𝐾) = 0. (24)

Considering that 𝜆1 and 𝜆2 are the solutions of the characteristic
Eq. (24),

𝜆1 + 𝜆2 = 𝜇𝑒𝛼𝑟
𝜌𝑎 ln

(

𝛽−𝑑−𝛾
𝛽

)

[

1 +
ln
(

𝛽−𝑑−𝛾
𝛽

)

𝑎𝑘 +
𝛽
(

𝑘𝑎+ln
(

𝛽−𝑑−𝛾
𝛽

))

𝑎𝑘(𝑑+𝑧)

+
(

𝑘𝑎 + ln
(

𝛽−𝑑−𝛾
𝛽

))

(−𝛽+𝑑+𝛾)
𝑎𝑘(𝑑+𝑧)

]

𝑝1 + 2 + 𝜇𝑒𝑟

+ 𝜇𝑒𝑟
𝑘𝑎 ln

(

𝛽−𝑑−𝛾
𝛽

)

(

2 +
𝑘𝑎+ln

(

𝛽−𝑑−𝛾
𝛽

)

(𝑑+𝑧)

)

(−𝛽 + 𝑑 + 𝛾) ,
12
𝜆1𝜆2 = 2𝜇𝑒𝛼𝑟 ln
(

𝛽−𝑑−𝛾
𝛽

)(

𝑘𝑎+1
𝑘𝑎2𝜌

)

𝑝1

+ 2(𝜇𝑒𝑟)2𝛼𝛽
𝜂(𝑑+𝛾)𝑘2𝑎3𝜌

ln
(

𝛽−𝑑−𝛾
𝛽

)

(𝑑 + 𝛾 − 𝛽) (𝑎2𝑘2

+ ln
(

𝛽−𝑑−𝛾
𝛽

)(

2𝑘𝑎 + ln
(

𝛽−𝑑−𝛾
𝛽

))

)𝑝2

+1 + 𝜇𝑒𝑟 +
𝜇𝑒𝑟

𝑘𝑎(𝑑+𝛾) ln
(

𝛽−𝑑−𝛾
𝛽

)

(𝑘𝑎 (𝑑 + 𝛾 − 𝛽) + 2 (𝑑 + 𝛾) + 𝛾)

+ (𝜇𝑒)2𝑟
𝑘𝑎(𝑑+𝛾) ln

(

𝛽−𝑑−𝛾
𝛽

)

(

(𝑎𝑘 + 1)
(

𝛾𝛽 − 𝛾2 − 𝑑2
)

+ 𝑑𝑎𝑘 (𝛽 − 2𝛾)
)

+ 𝜇𝑒𝑟
𝑘𝑎(𝑑+𝛾)

(

ln
(

𝛽−𝑑−𝛾
𝛽

))2
(

(−𝑎𝛽 + 𝑑) + 𝜇𝑒𝑑𝑎 (𝛽 − 𝛾)
)

(25)

are obtained. Equations 𝜆1 = ±1 and 𝜆1𝜆2 = 1 must be solved to
determine the lines of marginal stability. These limitations ensure that
𝜆1 and 𝜆2 have precise values that are less than 1. If 𝜆1𝜆2 = 1, then the
second portion of Eq. (25) implies that

𝐿1 ∶=
2𝜇𝑒𝛼𝑟
𝑘𝑎2𝜌 (𝑘𝑎 + 2) ln

(

𝛽−𝑑−𝛾
𝛽

)

𝑝1

+ 4(𝜇𝑒)2𝛼𝛽𝑟2
𝜂𝑘2𝑎3𝜌(𝑑+𝛾) (−𝛽 + 𝑑 + 𝛾) (𝑘𝑎 + 2) (𝑘𝑎 + 1) ln

(

𝛽−𝑑−𝛾
𝛽

)

𝑝2

+𝜇𝑒𝑟 − 2 (𝛽 − 2𝑑 − 2𝛾)

+𝜇 𝑟 (𝛽 − 𝑑 − 𝛾) ln
(

𝛽−𝑑−𝛾
)

(

𝜇 (𝑘𝑎 + 2) (𝛾 + 𝑑) + 𝑘𝑎
)

= 0
𝑒 𝛽 𝑒
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Fig. 8. Phase picture for changing input of 𝜸. Red ∗ represents positive fixed point. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Moreover, we suppose that 𝜆1 = 1, then using the equations (25) yield
that

𝐿2 ∶=
2𝜇𝑒𝛼𝑟
𝑘𝑎2

ln
(

𝛽−𝑑−𝛾
𝛽

)

(

2 (𝑘𝑎 + 2) −
2(𝑘𝑎+1)+ln

(

𝛽−𝑑−𝛾
𝛽

)

𝜌

)

𝑝1

+ 4𝜇𝑒𝛼𝛽𝑟2

𝜂(𝑑+𝛾)𝑘2𝑎3
ln
(

𝛽−𝑑−𝛾
𝛽

)

(−𝛽 + 𝛾 + 𝑑) (𝑘𝑎 + 2) (𝑘𝑎 + 1) 𝑝2

+ 𝜇𝑒𝑟
𝑘𝑎(𝑑+𝛾) ln

(

𝛽−𝑑−𝛾
𝛽

)

(2 (−𝛽 + 2𝛾 + 2𝑑) + 𝑘𝑎(−𝛽 + 𝛾 + 𝑑)

+ 𝜇𝑒𝑘𝑎𝛾((𝛽 − 𝑑 − 𝛾) + 2𝛾 (𝛽 − 𝛾) − 𝑑2 (2𝜂 + 𝑘𝑎)

+ 𝑑 (−4𝛾 + 𝑘𝑎 + 2𝛽)))

− 𝜇𝑒𝑟
𝑘𝑎(𝑑+𝛾) ln

(

𝛽−𝑑−𝛾
𝛽

)

(2 (𝑑 + 𝛾)

+ (−𝛽 + 𝛾 + 𝑑)
(

𝑘𝑎 + ln
(

𝛽−𝑑−𝛾
𝛽

)))

Finally, taking 𝜆1 = −1 and using Eqs. (25) we get

𝐿3 ∶= 4 + 2𝜇𝑒𝑟

+
(

𝑘𝑎 + ln
(

𝛽−𝑑−𝛾
𝛽

))

ln
(

𝛽−𝑑−𝛾
𝛽

)

(

(1 − 𝛽 + 𝑑 + 𝛾) 𝑝1

+ (−𝛽 + 𝑑 + 𝛾) 𝑎)

+ ln
(

𝛽−𝑑−𝛾
𝛽

) [

3𝛼
𝑎𝜌 𝑝1 +

2
𝑎𝑘 + 𝜇𝑒𝑟

(𝑑+𝛾)𝑘 (2𝛾 + 𝑎𝑘 (𝛾 − 𝛽) + 3𝑘𝑑)
13

+ 𝜇𝑒 (𝑑 + 𝛾) (−𝛽 + 𝑑 + 𝛾)
+4 (𝜇𝑒)2𝛼𝛽𝑟2
𝜂𝑘2𝑎3𝜌(𝑑+𝛾) (−𝛽 + 𝑑 + 𝛾) (3𝑘𝑎 + 2) 𝑝2

+2 𝜇𝑒𝑟
𝜂(𝑑+𝛾)𝑘𝑎2𝜌

(

(−𝛽 + 𝑑 + 𝛾) 𝜂𝑎 + 3𝜂 (𝑑 + 𝛾) 𝑝1

+ 𝜇𝑒𝑟
(

2𝑘𝑎𝛼𝛽 (−𝛽 + 𝑑 + 𝛾) 𝑝2

+ 𝑎𝜂
𝑟 (−𝛾 (𝛾 + 2𝑑) + 𝛽 (𝑑 + 1))

)]

In that case, stable eigenvalues are found in the triangle in the 𝑝1𝑝2
plane circumscribed by the lines 𝐿1, 𝐿2, 𝐿3 for a given parametric
values.

State feedback control, a method, is used to stabilize chaos at the
moment where the system’s (5) unstable paths begin. The system (5)
can be made to take on a controlled form by introducing a feedback
control law as the control force 𝑢𝑏𝑏 and using the following formula.

𝑥𝑛+1 = 𝑥𝑛 +
𝜌𝛼

𝛤 (𝛼 + 1)

(

𝑟𝑥𝑛
(

1 −
𝑥𝑛
𝑘

)

− 𝜂(1 − exp(−𝑎𝑥𝑛))𝑦𝑛
)

+ 𝑢𝑏𝑏

𝑦𝑛+1 = 𝑦𝑛 +
𝜌𝛼

𝛤 (𝛼 + 1)
(

𝜂(1 − exp(−𝑎𝑥𝑛))𝑦𝑛 − 𝑑𝑦𝑛 − 𝛾𝑦𝑛
)

𝑢𝑏𝑏 = −𝑘1(𝑥𝑛 − 𝑥∗) − 𝑘2(𝑦𝑛 − 𝑦∗)

(26)

where (𝑥∗, 𝑦∗) represents the non-negative fixed point of the system (5).
The values 𝑘1 and 𝑘2 indicate the feedback gains.

Example. We take (𝜌, 𝑟, 𝑘, 𝛽, 𝑎, 𝛾, 𝑑, 𝛼, 𝜂) = (2.000199345, 1.5, 9.2, 0.77, 0.5,
0.5, 0.2, 0.9, 0.8). Thus the co-existence fixed point of the system (5) is
4.795790546, 4.735156114 . The specified controlled system is provided
( )
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Fig. 9. Visual representation of NS Bifurcation, MLEs and FDs of species for varying parameter a.
Fig. 10. 0 − 1 chaos test for model (5). (a) 𝑞 versus 𝑤 (b)Plot in new coordinates (𝜌,𝐾) plane .
by:

𝑥𝑛+1 = 𝑥𝑛 + 𝜔(1.5(𝑥𝑛 − 4.795790546)(1 − (𝑥𝑛 − 4.795790546)∕9.2))
−𝜔(0.8(1 − 𝑒𝑥𝑝(−0.4(𝑥𝑛 − 4.795790546)))(𝑦𝑛 − 4.735156114))

𝑦𝑛+1 = 𝑦𝑛 + 𝜔(0.77(1 − 𝑒𝑥𝑝(−0.4(𝑥𝑛 − 4.795790546))(𝑦𝑛 − 4.735156114)
− 0.7(𝑦𝑛 − 4.735156114))).

(27)

where 𝜔 ∶= (2.000199345)0.9∕0.9617658319, 𝐾 =
[

𝑝1 𝑝2
]

be gain matrix
and (𝑥∗, 𝑦∗) = (4.795790546, 4.735156114) is the fixed point of the system
(5) which leads the system to an unstable situation. Also, we have

𝐴 =
[

1.247696937 −1.662715998
]

,

14

−0.3788987037 1
𝐵 =
[

5.904914872
0

]

,

and

𝐶 = [𝐵 ∶ 𝐴𝐵]

=
[

5.904914872 7.367544199
0 −2.237364590

]

.

It is then simple to verify that the 𝐶 matrix’s rank is 2. As a result, the
system (27) is manageable. Next, the regulated system’s (27) jacobian
matrix 𝐴 − 𝐵𝐾 is provided by

𝐴 − 𝐵𝐾
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Fig. 11. (a) 3D Bifurcation diagram in (𝜌, 𝑎, 𝑥) space (b) 3D MLE (c) Maximum Lyapunov exponents projected in (𝜌, 𝑎) plane.
=
[

1.247696937 − 5.904914872𝑝1 −1.662715998 − 5.904914872𝑝2
−0.3788987037 1

]

(28)

Moreover, the lines 𝐿1, 𝐿2 and 𝐿3 which represent the marginal stabil-
ity and given by:

𝐿1 = −0.3823039998 − 5.904914872𝑝1 − 2.237364592𝑝2,

𝐿2 = −0.630000937 − 2.237364592𝑝2 = 0,

and

𝐿3 = 3.865392937 − 11.80982974𝑝1 − 2.237364592𝑝2 = 0.

The stable triangular area for the controlled system (27) is then de-
picted in Fig. 12(i) and is bounded by the marginal lines 𝐿1, 𝐿2 and
𝐿3.

We conducted numerical simulations(see Fig. 12)(ii) to study how
the state feedback control influence functions as a chaos controller in an
unstable environment. The parameters will be set to the same values as
the OGY method that we choose except 𝜌 = 1.5. The selected feedback
gains are 𝑘1 = 0.75 and 𝑘2 = −0.01.

7. Conclusions

In this study, the dynamics of a discrete prey–predator model with
harvesting in fractional order are examined. Three fixed points are
15
discovered under specific parametric circumstances and the article
goes into great detail about the stability of these fixed points. We
demonstrate mathematically and numerically that the model system
can undergo period-doubling and Neimark–Sacker bifurcations in cer-
tain conditions. We notice that the stability of the fixed points is greatly
influenced by the model parameters. Notably, our findings indicate that
chaotic behavior is visible in the model and the system destabilizes as
the parameters 𝜌, 𝑎, rise, causing a split from a stable state to chaotic
behavior. We also observe how the model’s behavior is impacted by
harvesting. For instance, more significant predator harvesting results in
unstable model dynamics, whereas lower predator harvesting stabilizes
the model dynamics. The numerical simulation demonstrates that
two parameters have changed simultaneously to exhibit the model’s
intricate dynamics. We construct multiple bifurcation diagrams and the
largest Lyapunov exponent in both 3D and 2D diagrams by varying 𝜌
and 𝑎. Interesting dynamical characteristics are seen in two-parameter
spaces that cannot be discovered by focusing on a single parameter
alone. The presence of different bifurcations exposes the dynamic be-
havior of the discrete model with differing complexity from diverse
perspectives. For instance, the Neimark–Sacker bifurcation starts a path
to chaos by causing a dynamic change from a stable fixed point to
attractive cycles and causes complicated dynamics, such as periodic
windows and chaotic attractors, to emerge. Populations with erratic
oscillations may abruptly change to ones with regular oscillations due
to environmental changes. The invariant curve in the supercritical
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Fig. 12. Stable regions: (i) OGY method, (ii) State feedback method.
Neimark–Sacker bifurcation provides important insights into the dy-
namics of nonlinear systems near the critical point. It reveals how the
system’s behavior changes as the parameter varies, and it plays a key
role in understanding the transition from stable periodic motion to
more complex and chaotic dynamics. In ecology, an invariant closed
curve for supercritical NS, denotes the possibility of coexistence and
self-production of densities for both predator and prey. On the invariant
curve, there could be periodic or quasi-periodic dynamics. The model
16
exhibits a period-doubling bifurcation, demonstrating the evolution of
the prey and predator populations. The period-doubling bifurcation
is associated with the emergence of chaotic behavior from a stable
periodic solution. It demonstrates the richness and ubiquity of chaotic
behavior in various natural phenomena and systems. We also present
the applicability of the OGY and state feedback techniques to control
chaotic behavior, both numerically and analytically.
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Our main finding is that the system’s behavior is significantly im-
pacted by the amount of memory that the parameter 𝛼 represents. Our
research indicates that weak memory, which is denoted by a 𝛼 value
hat is approaching 1, resulting in erratic behavior, yet having a strong
emory, which is represented by an 𝛼 value that is getting closer to

ero, stabilizes the system. These findings emphasize how important
emory is to the behavior of the model.

Finally, this study offers a comprehensive analysis of the dynamics
f the model and shows how bifurcations and chaos can occur when
ertain parametric conditions are met. We also highlight how mem-
ry affects system behavior. Our research advances knowledge of the
odel’s dynamics and highlights the function that memory plays in the

ehavior of the model.

unding

This study effort has no funding.

RediT authorship contribution statement

Md. Jasim Uddin: Methodology, Computations, Analysis, Valida-
ion, Writing – original draft, Review & editing. Sarker Md. Sohel
ana: Conceptualization, Software, Resources, Supervision, Writing –
riginal draft, Review & editing. Seval Işık: Methodology, Investi-
ation, Writing – original draft, Review & editing. Figen Kangalgil:
onceptualization, Supervision, Writing – original draft, Review &
diting.

eclaration of competing interest

There are no competing interests, according to the writers.

ata availability

No data was used for the research described in the article

eferences

[1] Suryanto A, Darti I, Panigoro HS, Kilicman A. A fractional-order predator–
prey model with ratio-dependent functional response and linear harvesting.
Mathematics 2019;7(11):1100.

[2] Lotka AJ. Elements of physical biology. Baltimor: Williams & Wilkins; 1925.
[3] Volterra V. Variazioni e fluttuazionidelnumero di indivui in species animalicon-

viventi. Mem Accad Naz Lincei 1926;2:31–313.
[4] Liu B, Zhang Y, Chen L. Dynamic complexities in a Lotka–Volterra predator–

prey model concerning impulsive control strategy. Int J Bifurcation Chaos
2005;15(2):517–31.

[5] Xiao D, Ruan S. Global analysis in a predator–prey system with nonmonotonic
functional response. SIAM J Appl Math 2001;61(4):1445–72.

[6] Agiza HN, Elabbasy EM, El-Metwally H, Elsadany AA. Chaotic dynamics of
a discrete prey-predator model with Holling type II. Nonlinear Anal RWA
2009;10(1):116–29.

[7] Din Q. Complexity and chaos control in a discrete-time prey-predator model.
Commun Nonlinear Sci Numer Simul 2017;49:113–34.

[8] Layek GC, et al. An introduction to dynamical systems and chaos, 449. Springer;
2015.

[9] Holling CS. The functional response of predators to prey density and its role in
mimicry and population regulation. Mem Entomol Soc Can 1965;97(S45):5–60.
17
[10] Iviev VS. Experimental ecology of the feeding of fishes. Yale Univ; 1961.
[11] Preedy KF, Schofield PG, Chaplain MA, Hubbard SF. Disease induced dy-

namics in host-parasitoid systems: chaos and co-existence. J R Soc Interface
2007;4(14):463–71.

[12] Guo G, Li B, Lin X. Qualitative analysis on a predator–prey model with Ivlev
functional response. Adv Difference Equ 2013;2013(1):1–14.

[13] Uriu K, Iwasa Y. Turing pattern formation with two kinds of cells and a diffusive
chemical. Bull Math Biol 2007;69(8):2515–36.

[14] Seval I, Kangalgil F. On the analysis of stability, bifurcation, and chaos control
of discrete-time predator–prey model with Allee effect on predator. Hacet J Math
Stat 2022;1–21.

[15] Khan MS, Samreen M, Gómez-Aguilar JF, Pérez-Careta E. On the qualitative
study of a discrete-time phytoplankton-zooplankton model under the effects of
external toxicity in phytoplankton population. Heliyon 2022;8(12):e12415.

[16] Baek H. Complex dynamics of a discrete-time predator–prey system with Ivlev
functional response. Math Probl Eng 2018;2018.

[17] Layek GC, Pati NC. Organized structures of two bidirectionally coupled logistic
maps. Chaos 2019;29(9):093104.

[18] Pati NC, Layek GC, Pal N. Bifurcations and organized structures in a
predator–prey model with hunting cooperation. Chaos Solitons Fractals
2020;140:110184.

[19] Lee J, Baek H. Dynamics of a Beddington–DeAngelis type predator–prey
system with constant rate harvesting. Electron J Qual Theory Differ Equ
2017;2017(1):1–20.

[20] Chatibi Y, El Kinani EH, Ouhadan A. Variational calculus involving nonlo-
cal fractional derivative with Mittag–Leffler kernel. Chaos Solitons Fractals
2019;118:117–21.

[21] Fan Y, Huang X, Wang Z, Li Y. Nonlinear dynamics and chaos in a sim-
plified memristor-based fractional-order neural network with discontinuous
memductance function. Nonlinear Dynam 2018;93(2):611–27.

[22] Mondal S, Lahiri A, Bairagi N. Analysis of a fractional order eco-epidemiological
model with prey infection and type 2 functional response. Math Methods Appl
Sci 2017;40(18):6776–89.

[23] Uddin MJ, Rana SM. Chaotic dynamics of the fractional order Schnakenberg
model and its control. Math Appl Sci Eng 2023;4(1):40–60.

[24] El-Saka HAA. Backward bifurcations in fractional-order vaccination models. J
Egyptian Math Soc 2015;23(1):49–55.

[25] Yan Y, Kou C. Stability analysis for a fractional differential model of
HIV infection of CD4+ T-cells with time delay. Math Comput Simulation
2012;82(9):1572–85.

[26] Javidi M, Nyamoradi N. Dynamic analysis of a fractional order prey-predator
interaction with harvesting. Appl Math Model 2013;37(20–21):8946–56.

[27] Atangana A, Secer A, et al. A note on fractional order derivatives and table of
fractional derivatives of some special functions. Abstr Appl Anal 2013;2013.

[28] Salman SM, Yousef AM, Elsadany AA. Stability, bifurcation analysis and chaos
control of a discrete predator–prey system with square root functional response.
Chaos Solitons Fractals 2016;93:20–31.

[29] Khan MS. Bifurcation analysis of a discrete-time four-dimensional cubic auto-
catalator chemical reaction model with coupling through uncatalysed reactant.
MATCH Commun Math Comput Chem 2022;87(2):415–39.

[30] Cartwright JHE. Nonlinear stiffness, Lyapunov exponents, and attractor
dimension. Phys Lett A 1999;264(4):298–302.

[31] Gottwald GA, Melbourne I. A new test for chaos in deterministic systems. Proc
R Soc Lond Ser A Math Phys Eng Sci 2004;460(2042):603–11.

[32] Xin B, Li Y. 0-1 test for chaos in a fractional order financial system with
investment incentive. Abstr Appl Anal 2013;2013.

[33] Xin B, Wu Z. Neimark–Sacker bifurcation analysis and 0–1 chaos test of an
interactions model between industrial production and environmental quality in
a closed area. Sustainability 2015;7(8):10191–209.

[34] Ott E, Grebogi C, Yorke JA and. Controlling chaos. Phys Rev Lett
2007;64(11):1196.

[35] Lynch S. Dynamical systems with applications using mathematica. Springer;
2007.

http://refhub.elsevier.com/S0960-0779(23)00833-0/sb1
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb1
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb1
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb1
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb1
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb2
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb3
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb3
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb3
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb4
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb4
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb4
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb4
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb4
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb5
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb5
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb5
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb6
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb6
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb6
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb6
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb6
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb7
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb7
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb7
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb8
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb8
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb8
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb9
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb9
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb9
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb10
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb11
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb11
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb11
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb11
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb11
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb12
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb12
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb12
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb13
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb13
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb13
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb14
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb14
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb14
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb14
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb14
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb15
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb15
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb15
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb15
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb15
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb16
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb16
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb16
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb17
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb17
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb17
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb18
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb18
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb18
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb18
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb18
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb19
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb19
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb19
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb19
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb19
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb20
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb20
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb20
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb20
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb20
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb21
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb21
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb21
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb21
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb21
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb22
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb22
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb22
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb22
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb22
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb23
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb23
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb23
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb24
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb24
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb24
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb25
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb25
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb25
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb25
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb25
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb26
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb26
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb26
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb27
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb27
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb27
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb28
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb28
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb28
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb28
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb28
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb29
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb29
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb29
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb29
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb29
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb30
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb30
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb30
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb31
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb31
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb31
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb32
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb32
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb32
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb33
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb33
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb33
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb33
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb33
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb34
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb34
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb34
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb35
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb35
http://refhub.elsevier.com/S0960-0779(23)00833-0/sb35

	On the qualitative study of a discrete fractional order prey–predator model with the effects of harvesting on predator population
	Introduction
	Discretization Process
	Existence Conditions and Fixed Point's Stability Analysis
	Fixed points and their existence
	Analysis of stability for fixed points

	Analysis of Bifurcation
	Neimark-Sacker Bifurcation
	Period-Doubling bifurcation

	Numerical Simulation
	Fractal Dimension
	0–1 Chaos Test Algorithm

	Chaos Control
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


