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Benzimidazol-2-ylidene Silver

Complexes: Synthesis,

Characterization, Antimicrobial and

Antibiofilm Activities, Molecular

Docking and Theoretical

Investigations. Inorganics 2023, 11,

385. https://doi.org/10.3390/

inorganics11100385

Academic Editor: Antonio Laguna

Received: 23 August 2023

Revised: 13 September 2023

Accepted: 23 September 2023

Published: 27 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inorganics

Article

Benzimidazol-2-ylidene Silver Complexes: Synthesis,
Characterization, Antimicrobial and Antibiofilm Activities,
Molecular Docking and Theoretical Investigations
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Abstract: Five silver(I) complexes, namely chloro[1-methallyl-3-benzyl)benzimidazol-2-ylidene]
silver (6), chloro[1-methallyl-3-(2,3,5,6-tetramethylbenzyl)benzimidazol-2-ylidene]silver (7), chloro[1-
methallyl-3-(3,4,5-trimethoxylbenzyl)benzimidazol-2-ylidene]silver (8), chloro[1-methallyl- 3-
(naphthylmethyl)benzimidazol-2-ylidene]silver (9), and chloro [1-methallyl-3-(anthracen-9-yl-
methyl)benzimidazol-2-ylidene]silver (10), were prepared starting from their corresponding benzimi-
dazolium salts and silver oxide in 71–81% yields. A single-crystal X-ray structure of 7 was determined.
These five Ag-NHC complexes were evaluated for their antimicrobial and biofilm formation inhi-
bition properties. Complex 10 exhibited high antimicrobial activities comparable to those obtained
with standard drugs such as Fluconazole in contact with Staphylococcus aureus, Enterococcus faecalis,
Escherichia coli, Acinetobacter baumannii, and Candida albicans. The latter complex has been shown to be
very efficient in antibiofilm activity, with 92.9% biofilm inhibition at 1.9 µg/mL on Escherichia coli.
Additionally, the molecules were optimized with DFT-based computational methods for obtaining
insight into the structure/reactivity relations through the relative energies of the frontier orbitals.
The optimized molecules were also analyzed by molecular docking method against DNA gyrase of
Escherichia coli and CYP51 from Candida albicans.

Keywords: silver; benzimidazol-2-ylidene; antimicrobial activity; antibiofilm activity; molecular
docking

1. Introduction

N-heterocyclic carbenes (NHCs), one of the most important families of organic ligands
for coordination chemistry, are cyclic compounds composed of a divalent carbon atom that
bonded at least to one nitrogen atom. Popularized by the groups of Bertrand and Arduengo
in the early 1990s [1,2], NHCs have prominent chemical properties such as strong binding
ability and easy modulation of electronic and steric properties. In addition, the easy grafting
of substituents on the NHC allows fine-tuning of their physical properties, such as solubility
or steric hindrance, and even the introduction of chiral groups. After coordination with
transition metals, the carbene–metal bond is generally strong and exhibits high stability
in various environments [3,4], which has allowed important applications in many fields
in catalysis [5–8] and biochemistry, such as anticancer, antimicrobial, antioxidant, and
antimalarial [9–13].
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Antimicrobial research is another important area where NHC–silver complexes have
been particularly successful [14,15]. Before the discovery of modern antibiotics, silver was
the most important tool for fighting bacterial infection [16,17]. Due to the increasing growth
of highly resistant pathogenic microorganisms, in particular for bacterial biofilms [18],
which are often pathogenic and can cause, as revealed by the National Institutes of Health,
65% of microbial and 80% of chronic infections, there is an urgent need for new antibi-
otics [19,20]. However, in recent years, the approval of new antimicrobial agents has
declined, motivating the use of new silver-based complexes or nanoparticles as antibac-
terial and antibiofilm agents [21–26], even if the presence of aromatic substituents on the
ligand allows the lipophilic NHC-silver complexes to inhibit more effectively the formation
of biofilm [27]. As examples, Şahin and co-workers demonstrated that bis-alkylated-NHC-
silver complexes could display important antibiofilm activities. As examples, bromo[1-
methallyl-3-(4-ter-butylbenzyl)-5,6-dimethylbenz-imi- dazole-2-ylidene]silver (A) [28] and
bromo[1-allyl-3-(4-tert-butylbenzyl)-5,6-dimethyl- benzimidazole-2-ylidene]silver (B) [29]
could reduce biofilm formation by up to 90% at a concentration as low as 1.9 µM for a large
variety of fungi, Gram-positive, and Gram-negative bacteria (Figure 1).
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Figure 1. Example of silver complexes A and B exhibiting antibiofilm activities.

Density Functional Theory (DFT) is a useful computational method and provides
reasonable predictions of various properties of molecules [30]. Reactivity descriptors are
quantitative measures that give insights into how a chemical system behaves in chemical
reactions through the relative energies of the frontier orbitals. These descriptors help to
understand the reactivity of molecules, which is crucial in drug discovery [31,32]. Molecular
docking is also a computational technique used to study the interactions between a ligand
and a macromolecule such as an enzyme or protein. One of the most important applications
of molecular docking is drug discovery [33,34]. The method helps recognize the potential
drug candidates, which can bind to a target protein to influence its activity.

In previous work, optimized Ag–NHC complexes were analyzed by molecular docking
methods against Quorum-Quenching N-Acyl Homoserine Lactone Lactonase, SarA, and
Malate Synthase A, and useful information was obtained regarding the interaction types
and strength of the molecules [12] In continuation of our quest to develop new biologically
active silver–NHC complexes, we reported the synthesis of five unseen complexes as breast
anticancer, antimicrobial and antibiofilm activities. The relative energies of the frontier
orbitals of the optimized molecules were used to gain insight into the reactivity by the
chemical reactivity descriptor. The molecules were also analyzed using the molecular
docking method against DNA gyrase of Escherichia coli and CYP51 from Candida albicans.

2. Results and Discussion
2.1. Synthesis and Characterization of Ag(I)-NHC Complexes

The synthesis of the five silver complexes [35], firstly, required the preparation of
the benzimidazolium salts 1–5, respectively, in which the benzimidazole ring is substi-
tuted with a methylallyl and five different arylmethyl moieties, namely benzyl (1), 2,3,5,6-
tetramethylbenzyl (2), 3,4,5-trimethoxylbenzyl (3), naphthylmethyl (4), and anthracen-9-
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yl-methyl (5). These salts were synthesized according to the reported procedure [36–38]
in two steps: first, the nucleophilic of methylallyl chloride on the benzimidazole scaffold,
followed by the alkylation of the latter with arylmethyl reagents. The silver complexes
(6–10) were finally obtained by a reaction of Ag2O with the benzimidazolium salts (1–5)
in dichloromethane for 24 h at room temperature, protected from light with an aluminum
foil (Scheme 1).
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Scheme 1. Synthesis of silver complexes 6–10.

The Ag(I)–NHC complexes were isolated in 71–81% yields and were stable to air
and moisture in solid and solution but sensitive to light. Therefore, dark conditions were
required both for their synthesis and for their applications. The structures of the Ag(I)–
NHC complexes were established by FT-IR, multinucleus NMR spectroscopy (1H and 13C),
and LC-MS spectroscopy (see the experimental section and Supplementary Materials).

The 1H NMR spectra revealed the disappearance of the acidic proton (NCHN, sharp
singlet) from the imidazolium salts at around 11 ppm, except for 5, for which the signal
shifted at 9.21 ppm due to the presence of the electron donor anthracene moiety. In
the 13C NMR spectra of imidazolium salts 1–5, the NCHN signals appeared in the range
142.1–144.5 ppm while in the corresponding Ag(I)–NHC complexes, the NCN carbon peaks
were observed at 189.3, 187.8, and 189.0 ppm for 6, 7 and 8, respectively (Figure 2) as broad
singlets and not as expected doublet of doublets due to coupling with the two NMR active
silver isotopes (107Ag and 109Ag). According to Lin and co-workers, the lack of coupling
could be due to the fluxional behavior of the complexes on the NMR time scale [39]. Note
that, as in a significant number of silver(I) complexes, these signals could not be observed
for complexes 9 and 10 [40] (Table 1).

LC-MS spectra of the silver complexes 6–10 displayed molecular ion peaks correspond-
ing to the [Ag(NHC)2]+ cations at m/z = 631.3, 745.4, 813.3, 731.3 and 833.4, respectively.
The observation of these bis-carbenic complexes demonstrates the lability (lower Ag-C
bond) of the carbene moieties, which is responsible for the reported equilibrium between the
[AgX(NHC)] and [Ag(NHC)2]+ [AgX2]− complexes [41,42]. The formation of [Ag(NHC)2]+

[AgX2]− complexes took place under the sampling conditions used for LC-MS [43]. In
solution, the formation of the latter complexes was not observed.
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Figure 2. NMR spectra (1H and 13C) of benzimidazolium salt 2 (top) and its corresponding silver
complex 7 (bottom).

Table 1. Spectroscopic data of benzimidazolium salts 1–5 [36–38] and their corresponding silver
complexes 6–10.

Benzimidazolium Salt Silver Complex
FT-IR
ν(CN)

(cm−1) 1

1H NMR
NCHN
(ppm)

13C NMR
NCHN
(ppm)

FT-IR
ν(CN)

(cm−1) 1

13C NMR
NC(Ag)N

(ppm)

1 1557 11.86 144.2 6 1397 189.3
2 1557 11.29 144.1 7 1396 187.8
3 1558 11.74 144.1 8 1392 189.0
4 1556 11.94 144.5 9 1392 Not observed
5 1561 9.21 142.2 10 1394 Not observed

1 CN stretching frequency, maximal peak intensity.

The benzimidazolium salts 1–5 revealed in their FT-IR spectra a specific ν(C=N)
band between 1557 and 1560 cm−1. After silver complexes formation, no peaks were
detected in this region, and a downshifting of about 165 cm-1 for the ν(C=N) bands was
observed (1392–1397 cm−1). The decrease in the N=C stretching frequency was due to the
electropositive silver atom that attracts the electron density and causes the weakening of
the C=N bond [44]. The shift of the ν(C=N) bands could be considered as an indicator of
silver complex formation.

2.2. Single-Crystal X-ray Diffraction Studies

Coordination of the N-heterocyclic carbene to the silver atom and formation of the
neutral (NHC)Ag-Cl type monomeric complexes was confirmed by a single-crystal X-ray
diffraction study realized on complex 7. The complex crystallizes in the monoclinic space
group C2/c (Figure 3).
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Figure 3. Molecular structure of 7. The OLEX2 drawing, with a 20% probability thermal ellipsoid,
shows the atom-labeling. Important bond lengths (Å) and angles (◦): Ag1-Cl1 2.3256(8), Ag1-C1
2.085(3), N1-C1 1.353(3), N1-C2, 1.390(3), N1-C8 1.459(3), N2-C1 1.345(3), N2-C7 1.387(3), N2-C12
1.475(3), C2-C7 1.384(4), Cl1-Ag1-C1 174.81(7), Ag1-C1-N1 125.40(18), C1-N1-C2 111.3(2), N1-C2-C7
105.7(2), C2-C7-N2 106.1 (2), C1-N2-C7 111.4(2), N2-C1-N1 105.4(2), N2-C1-Ag1 129.10(18), C1-N1-C8
124.8(2), C2-N1-C8 123.9(2), C1-N2-C12 125.5(2), and C7-N2-C12 123.0(2).

The silver atom is almost linearly coordinated to the carbonic carbon and to the
chloride with a pitch angle of 5.2◦ (C1-Ag1-Cl1 angle of 174.81(7)◦) [45]. The Ag1-Cl1
moiety is oriented on one side of the benzyl ring, resulting in two different Ag1-C15
(4.348 Å) and Ag1-C22 (3.561 Å) lengths. The tetramethylphenyl ring is almost orthogo-
nal to the coordinated benzimidazolydene (dihedral angle of 85.77◦) as observed in the
related chloro[1-methallyl-3-(2,3,4,5,6-pentamethylbenzyl)-5,6-dimethylbenzimidazol-2-
ylidene]silver(I) complex [46]. The Ag1-Cl1 and Ag1-C1 distances (2.3256(8) and 2.085(3)
Å, respectively) and the N1-C1-N2 angle (105.4(2)◦) are within the range usually observed
for (NHC)Ag–Cl complexes [47–51]. We can observe that the two N1-C1 and N2-C1 bonds
(1.353(3) and 1.345(3) Å, respectively) are shorter than the two N1-C2 and N2-C7 bonds
(1.390(3) and 1.387(3) Å, respectively); this difference could be explained by delocalization
within the imidazole ring. Furthermore, the tetramethylphenyl and 2-methylallyl moieties
are in syn positions with respect to the carbenic ring.

2.3. Antimicrobial and Antibiofilm Activities

Benzimidazolium salts 1–5 and their silver metal complexes 6–10 were tested as antimi-
crobial and antibiofilm agents with microorganisms, which commonly cause nosocomial
infections [52], namely Staphylococcus aureus, Enterococcus faecalis (two Gram-positive bac-
teria), Escherichia coli, Acinetobacter baumannii (two Gram-negative bacteria) and Candida
albicans. These strains were obtained from the American Type Culture Collection (ATCC).

As shown in Table 2, the tested benzimidazolium salts and silver complexes displayed
antimicrobial activity at certain concentrations. Good minimum inhibitory concentrations
(MIC) were obtained for the salts 1–5 for the selected microorganisms with values in the
range from 7.8 to 125.0 µg/mL, except for the Gram-positive Staphylococcus aureus, for
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which the MIC values are strongly dependent on the nature of the aromatic substituent
on the benzimidazole ring and vary between moderate 125.0 µg/mL for salt 1 (benzyl) to
excellent 7.8 µg/mL for salt 5 (anthracen-9-yl-methyl) concentrations. The introduction of a
silver atom has a beneficial effect on antibacterial activities. With silver complexes 6–10, the
maximum MIC value measured for the five microorganism strains was 15.6 µg/mL. The
complex bearing the anthracen-9-yl-methyl substituent 10 proved to be the most effective,
with MIC values as low as 1.9 µg/mL against Staphylococcus aureus and Candida albicans
strains. These MIC values are close to those obtained with commonly used Ciprofloxacin
antibiotic and Fluconazole antifungal or silver complexes based on multi-donor heterocyclic
thioamides for which bis-silver drugs could lead to MIC in the range 1.9–15.6 µg/mL [53].

Table 2. Minimum inhibitory concentrations (MICs) of compounds (µg/mL).

Drug
Microorganism

Staphylococcus
aureus

Enterococcus
faecalis

Escherichia
coli

Acinetobacter
baumannii

Candida
albicans

1 125.0 62.5 62.5 62.5 62.5
2 31.2 62.5 62.5 62.5 62.5
3 125.0 62.5 62.5 62.5 62.5
4 15.6 62.5 62.5 62.5 31.2
5 7.8 31.2 62.5 62.5 31.2

6 15.6 15.6 7.8 7.8 7.8
7 15.6 15.6 7.8 7.8 7.8
8 7.8 7.8 3.9 7.8 7.8
9 7.8 7.8 3.9 7.8 7.8

10 1.9 7.8 3.9 7.8 1.9

Ciprofloxacin <1.9 <1.9 <1.9 <1.9 /

Fluconazole / / / / <1.9

The good performances of compounds 1–5 and 6–10 as antimicrobial agents allowed us
to study their ability to reduce the more challenging biofilm formation [54]. The antibiofilm
activities were determined at 0.5 MIC concentrations (Table 3). The five benzimidazolium
salts 1–5 displayed moderate antibiofilm activities towards Enterococcus faecalis, Escherichia
coli, Acinetobacter baumannii, and Candida albicans, with biofilm inhibition of 37.6–63.4%
with concentrations of 32.2 or 15.6 µg/mL. The higher activities were obtained using
Staphylococcus aureus and salt 5, for which a biofilm inhibition of 71.8% was measured at
3.9 µg/mL. As an attempt, the antibiofilm effect of silver complexes was more significant
with a minimum of biofilm inhibition of 76.1 ± 0.1 at a similar concentration (3.9 µg/mL)
measured using the silver complex 8. The higher biofilm inhibition, 92.9% at 1.9 µg/mL,
was obtained for the Gram-negative Escherichia coli using silver complex 10. Note that
for technical reasons, with the latter complex, sub-MIC concentration could not be tested.
Nevertheless, at MIC concentration (1.9 µg/mL of 10), biofilm inhibition higher than 90%
was measured for the two microorganism strains, Staphylococcus aureus and Candida albicans.

2.4. Molecular Docking

Deoxyribonucleic acid (DNA) gyrase is a topoisomerase-type enzyme in prokaryotic
cells and has a critical role in DNA replication. The enzyme puts the negative supercoils
during replication and ensures the proceeding of the processes [55]. Therefore, DNA gy-
rase could be a convenient target for disrupting DNA replication and other vital cellular
processes, leading to bacterial death [56]. Moreover, DNA gyrase can be accepted as a
key object for the treatment of bacterial infections and the design of new antibacterials.
For instance, the primary action mechanism of Ciprofloxacin, which was used for ranking
in vitro experiments in this study, is the inhibition of bacterial DNA gyrase [57]. Con-
sequently, DNA gyrase was a target molecule in molecular docking studies examining
antibacterial activity; for example, Patil and co-workers analyzed the potential utilization
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of new piperazine derivatives using the molecular docking method against DNA gyrase
and recorded consensus scores in the range of 5.55–2.41 kcal/mol, which are accepted as
very good docking scores against Escherichia coli [58]. Düşünceli and co-workers performed
molecular docking against DNA gyrase to provide insights into the antibacterial activ-
ity of benzimidazol-2-ylidene silver(I) complexes and recorded remarkable interactions
with the region, including Met91, Val120, Leu130, and Val167, with a binding energy of
8 kcal/mol [59]. Anastasiadou and co-workers studied the silver complexes with thioamide
and arylphosphane type ligands against DNA gyrase and recorded the remarkable interac-
tions with the protein’s binding pocket, including Asn46, Glu50, Ile78, Ile90, Val120, and
Thr165 residues [60].

Table 3. Biofilm inhibition (%) measured at 0.5 MIC (µg/mL).

Drug
Microorganism

Staphylococcus
aureus

Enterococcus
faecalis

Escherichia
coli

Acinetobacter
baumannii

Candida
albicans

1 62.5 µg/mL
36.5 ± 1.1%

31.2 µg/mL
48.5 ± 0.3%

31.2 µg/mL
59.7 ± 0.6%

31.2 µg/mL
46.5 ± 0.7%

31.2 µg/mL
40.9 ± 0.5%

2 15.6 µg/mL
47.7 ± 0.4%

31.2 µg/mL
44.6 ± 0.8%

31.2 µg/mL
63.4 ± 0.5%

31.2 µg/mL
49.2 ± 0.8%

31.2 µg/mL
43.4 ± 0.4%

3 62.5 µg/mL
43.2 ± 0.6%

31.2 µg/mL
50.2 ± 0.1%

31.2 µg/mL
54.8 ± 1.0%

31.2 µg/mL
57.3 ± 0.2%

31.2 µg/mL
7.6 ± 0.7%

4 7.8 µg/mL
57.9 ± 0.4%

31.2 µg/mL
42.7 ± 0.2%

31.2 µg/mL
59.3 ± 0.4%

31.2 µg/mL
58.0 ± 0.3%

15.6 µg/mL
45.6 ± 0.2%

5 3.9 µg/mL
71.8 ± 0.3%

15.6 µg/mL
55.4 ± 0.3%

31.2 µg/mL
62.6 ± 0.3%

31.2 µg/mL
55.8 ± 0.3%

15.6 µg/mL
50.8 ± 0.2%

6
7.8 µg/mL
61.6 ±0.4%

7.8 µg/mL
54.6 ± 0.1%

3.9 µg/mL
75.9 ± 0.3%

3.9 µg/mL
77.1 ± 0.7%

3.9 µg/mL
81.2 ± 0.2%

7 7.8 µg/mL
68.4 ± 0.3%

7.8 µg/mL
59.0 ± 0.1%

3.9 µg/mL
86.6 ± 0.2%

3.9 µg/mL
73.9 ± 0.4%

3.9 µg/mL
78.0 ± 0.3%

8 3.9 µg/mL
76.1 ± 0.1%

3.9 µg/mL
63.3 ± 0.2

1.9 µg/mL
90.1 ± 0.1

3.9 µg/mL
83.2 ± 0.2%

3.9 µg/mL
76.5 ± 0.3%

9 3.9 µg/mL
67.3 ± 0.2%

3.9 µg/mL
59.6 ± 0.1%

1.9 µg/mL
86.5 ± 0.3%

3.9 µg/mL
80.7 ± 0.1%

3.9 µg/mL
84.3 ± 0.3%

10 Not tested 3.9 µg/mL
70.8 ± 0.4%

1.9 µg/mL
92.9 ± 0.2%

3.9 µg/mL
84.0 ± 0.2% Not tested

The interactions of the five silver complexes 6–10 against DNA gyrase were in-
vestigated using molecular docking method, and the results were compared to that of
Ciprofloxacin (Table 4). All molecules interacted with the same region of the macromolecule,
and H-bonds were observed with all silver drugs (Figure 4). The highest interaction was
measured for complex 9 with a binding affinity of −8.11 kcal/mol and came mainly from
a strong H-bond (3.11 Å) with Asn46 and π-interactions with Glu50 and Thr165. On the
other hand, complex 10 displayed a strong H-bond (2.69 Å) with the carboxy region of
Asn46, as well as a weak H-bond (3.39 Å) through the nitrogen in the amino region for a
−8.01 kcal/mol binding constant. Conversely, despite the H-bonds with Asn46 (2.83 Å,
strong), Asn49 (2.91 Å, strong), and Thr165 (3.37 Å, weak), complex 8 presented the weakest
binding affinity (−6.21 kcal/mol) [61]. The binding affinities of complexes 6 and 7 were
calculated as −7.26 and −7.50 kcal/mol, respectively. The weak H-bond of 6 with Thr165
has a 3.23 Å bond length, while the weak H-bond of 7 with Asn45 has a 3.44 Å bond length.
All molecules except 8 have higher binding affinity than Ciprofloxacin.
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Table 4. Active sites of the crystal structure of Escherichia coli DNA gyrase and CYP51 from the
pathogen Candida albicans with silver complexes 6–10.

Drugs Binding Energy (kcal/mol) Amino Acids Residue 1

Escherichia coli DNA gyrase

6 −7.26 Thr165, Glu50, Val43, Val47, Arg76,
Ile78, Pro79, Ile90, Val167, . . .

7 −7.50 Asn45, Thr165, Ala47, Arg76, Ile78,
Pro79, Ile90, Val120, . . .

8 −6.21 Asn46, Asp49, Thr165, Glu50, Arg76,
Gly77, Pro79, Ile78, . . .

9 −8.11 Asn46, Glu50, Thr165, Ala47, Ile78,
Ile90, Met91, Val120, Val167

10 −8.01 Asn46, Glu50, Ile78, Met91, Val120,
Thr165, Ala47, Val167, Val43

Ciprofloxacin −6.89 Asp73, Arg76, Arg136, Thr165, Glu50,
Gly77, Ile78, Pro79, . . .

CYP51 from the pathogen Candida albicans

6 −7.94 Gly303, Ile131, Leu139, Lys143, Ala146,
Leu150, Leu300, Ile304, Phe126, . . .

7 −8.25 Ile131, Leu139, Lys143, Ala146, Leu150,
Leu204, Leu276, Leu300, Ile304, . . .

8 −8.52 Cys470, Gly472, Ile304, Ile471, Ile131,
Tyr132, Leu139, Lys143, . . .

9 −8.51 Leu150, Ile304, Ile131, Ala146, Leu204,
Leu276, Leu300, Cys470, Ile471, . . .

10 −9.26 Ile131, Leu300, Lys143, Ala146, Leu150,
Leu204, Leu276, Ile304, Cys470, . . .

Fluconazole −5.65 Ile304, Gly307, Cys470, Gly303, Ile471,
Ile131, Lys143, Leu204, . . .

1 red: H-bond, orange: pi-interactions, blue: alkylic interactions, green: van der Waals interactions, and purple:
halogenic interactions.
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Lanosterol 14α-demethylase (CYP51) is an enzyme of the cytochrome P450 family
that plays an essential role in the biosynthesis of sterols, which are key components of the
cell membranes of fungi. Fungal cell membranes become more weakened and permeable
with an insufficient level of ergosterol, which results in cell death [62]. The molecules, able
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to inhibit CYP51, are important for developing the antifungal agents and understanding
the antifungal resistance mechanisms. Fluconazole, which was used as a ranking drug
in this study, is one of the antifungal molecules able to interact with CYP51 and impair
cell membrane permeability [63]. Therefore, CYP51 is the target molecule of choice in
many molecular docking studies examining antifungal activity. As example, Kartsev and
co-workers analyzed the probable mechanism of the antifungal activity of heteroaryl(aryl)
thiazole-type molecules with molecular docking method against CYP51 and recorded
the remarkable interactions with Tyr64, Tyr118, and Tyr132 residues [64]. Ismael and
co-workers performed the docking to understand the interaction of bidentate Schiff base
ligands and their metal complexes against the 14α-demethylase enzyme and achieved the
interactions with His374, Ser375, His377, and Gln66 with good binding affinity values [65].
Souza and co-workers analyzed a family of zinc(II) complexes bearing polydentate-N,N,S
ligands against the CYP51 enzyme. The calculations revealed that one complex displayed a
docking score of -11.12 kcal/mol, mainly due to hydrogen bonds with Tyr118 and Hem601
and confirmation of its considerable antifungal activity [66].

The interactions of complexes 6–10 were investigated by the molecular docking
method, and the results were compared to those of Fluconazole (Table 4). The all complexes
interacted with the same region of the macromolecule (Figure 5). The highest interaction
was recorded for complex 10, which was in agreement with the results recorded in vitro
experiments for Candida albicans. Two H-bonds were observed with Gly472 (2.99 Å, strong)
and Cys470 (3.90 Å, weak) for complex 8, and the binding constant of −8.52 kcal/mol was
determined as a result of these interactions. The binding values recorded for complexes 6,
7, and 9 were calculated as −7.94, −8.25, and −8.51 kcal/mol, respectively. All binding
energy calculated for the five silver complexes was lower than the calculated value for
Fluconazole (5.65 kcal/mol) (see Supplementary Materials).
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The highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecu-
lar orbitals (LUMO) are the most reactive regions of molecules. These orbitals give useful
insight into biological and chemical activity. LUMO behaves as a Lewis base, while the
HOMO region acts as a Lewis acid [67]. In the present study, HOMOs of complexes
6–10 were located on the chloride atom while LUMOs of complexes 6, 7, and 8 were lo-
cated on the benzimidazole ring and for complexes 9 and 10 on naphthyl and anthracenyl
substituents (Figure 6). In general, ionization potential (IP), electron affinity (EA), elec-
tronegativity (χ), chemical hardness (η), global softness (S), and the electrophilicity index
(ω) are considerable criteria for having an idea about the structure–activity relationship
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(Table 5). The HOMO-LUMO Gap (eV), which is important for intramolecular charge
transfer, order of the molecules was recorded as 10 (1.731 eV) < 9 (2.314 eV) < 8 (2.452 eV)
< 6 (2.474 eV) < 7 (2.534 eV). The electron affinity values of the molecules were recorded
as 8 (2.283 eV) < 7 (2.297 eV) < 6 (2.379 eV) < 9 (2.495 eV) < 10 (3.126 eV). Consequently,
complex 10 with the lowest HOMO-LUMO gap should be considered to be a softer and
more reactive compound due to lower kinetic stability and higher polarity.
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Table 5. Spectroscopic data of benzimidazolium salts 1–5 and their corresponding silver complexes
6–10.

6 7 8 9 10

HOMO-LUMO Gap (∆E) 2.474 2.534 2.452 2.314 1.731
Ionization Potential (IP) 4.854 4.831 4.735 4.809 4.856
Electron Affinity (EA) 2.379 2.297 2.283 2.495 3.126
Electronegativity (χ) 3.616 3.564 3.509 3.652 3.991

Chemical Hardness (η) 1.237 1.267 1.226 1.157 0.865
Global Softness (S) 0.404 0.395 0.408 0.432 0.578

3. Materials and Methods

The syntheses of the silver complexes were made under an inert atmosphere (Ar)
using standard Schlenk techniques. All reagents were supplied by Sigma-Aldrich Chem-
ical Co and Merck. The Electrothermal-9200 melting point apparatus was used for the
melting point measurements under air in glass capillaries, and the temperatures were
reported as uncorrected values. FT-IR spectra were generated with a Perkin Elmer 100 spec-
trometer. 1H and 13C{1H} NMR spectra were recorded with a 400 MHz Bruker Avance
III spectrometer. 1H NMR and 13C{1H} spectra were referenced to residual protonated
solvents (δ = 7.26 ppm and 77.16 ppm for CDCl3, respectively, and 2.50 ppm and 39.52 ppm
for (CD3)2SO, respectively). An Agilent Technologies LC/MSD SL mass spectrometer
was employed with nitrogen as a nebulizer and dry gas. LC-MS samples were ob-
tained at room temperature with a continuous flow of 1 mL/min using a C18 column
(250/4.6 mm). 1-Methallyl-3-benzylbenzimidazolium chloride (1), 1-methallyl-3-(2,3,5,6-
tetramethyl-benzyl)benzimidazolium chloride (2), 1-methallyl-3-(3,4,5-trimethoxy-ben-
zyl)benzimidazolium chloride (3), 1-methallyl-3-(naphthylmethyl)benzimidazolium chlo-
ride (4), and 1-methallyl-3-(anthracen-9-yl-methyl)benzimidazolium chloride (5) were
prepared by following literature procedures [36–38].
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3.1. General Procedure for the Synthesis of Silver Complexes

Under an argon atmosphere, a solution of benzimidazolium salt (1.0 mmol) in
dichloromethane (50 mL) was prepared, and silver(I)oxide (2.2 mmol) was added and
stirred. After 24 h at room temperature and in the dark, the mixture was filtered through a
celite bed. The resulting clear solution was concentrated under vacuum to ca 5 mL before
the addition of diethyl ether (60 mL). The precipitated complexes 6–10 were recovered by
filtration, washed (diethyl ether), and dried under vacuum.

Chloro[1-methallyl-3-benzyl)benzimidazol-2-ylidene]silver(I) (6) Yield: 79%; m.p.
215–216 ◦C; FT-IR ν(CN): 1397 cm−1; LC-MS: 631.3 [AgL2 − H]+, 671.3 [AgL2 + K]+; 1H
NMR (400 MHz, (CD3)2SO) δ = 1.69 (s, 3H, NCH2C(CH3)CH2), 4.76 (s, 1H, NCH2C(CH3)CH2),
4.96 (s, 1H NCH2C(CH3)CH2), 5.09 (s, 2H, NCH2C(CH3)CH2), 5.75 (s, 2H, CH2C6H5),
7.28–7.37 (m, 5H, CH arom.), 7.38–7.43 (m, 2H, CH arom.), 7.70–7.75 (m, 2H, CH arom.);
13C{1H} NMR (100 MHz, (CD3)2SO) δ: 19.87 (s, NCH2C(CH3)CH2), 51.90 (s, CH2C6H5),
53.96 (s, NCH2C(CH3)CH2), 124.09 (s, NCH2C(CH3)CH2), 140.49 (s, NCH2C(CH3)CH2),
112.39, 113.40, 127.20, 127.33, 128.02, 128.80, 133.15, 133.68, 136.33 (9s, arom Cs), 189.27
(Ccarbene-Ag) ppm.

Chlro[1-methallyl-3-(2,3,5,6-tetramethylbenzyl)benzimidazol-2-ylidene]sil-ver(I) (7)
Yield: 81%; m.p. 189–190 ◦C; FT-IR ν(CN): 1396 cm−1; LC-MS: 745.4 [AgL2 + H]+; 1H NMR
(400 MHz, CDCl3) δ = 1.67 (s, 3H, NCH2C(CH3)CH2), 2.14 (s, 6H, C6H(CH3)4), 2.29 (s,
6H, C6H(CH3)4), 4.75 (s, 1H, NCH2C(CH3)CH2), 4.92 (s, 2H, NCH2C(CH3)CH2), 4.97 (s,
1H, NCH2C(CH3)CH2), 5.50 (s, 2H, CH2C6H(CH3)4), 7.14 (s, 1H, CH arom of C6H(CH3)4),
7.35–7.46 (m, 4H, CH arom of C7H4N2); 13C{1H} NMR (100 MHz, CDCl3) δ = 16.32 (s,
C6H(CH3)4), 20.11 (s, NCH2C(CH3)CH2), 20.83 (s, C6H(CH3)4), 47.71 (s, CH2C6H(CH3)4),
56.42 (s, NCH2C(CH3)CH2), 112.23 (s, NCH2C(CH3)CH2), 139,22 (s, NCH2C(CH3)CH2),
111.47, 114.39, 124.30, 124.48, 129.74, 133.33, 133.59, 133.95, 134.52, 135.50 (10s, arom Cs),
187.82 (Ccarbene-Ag) ppm.

Chloro[1-methallyl-3-(3,4,5-trimethoxylbenzyl)benzimidazol-2-ylidene]silver(I) (8)
Yield: 77%; m.p. 239–240 ◦C; FT-IR ν(CN): 1392 cm−1; LC-MS: 813.3 [AgL2 + H]+; 1H
NMR (400 MHz, (CD3)2SO) δ = 1.69 (s, 3H, NCH2C(CH3)CH2), 3.61 (s, 3H, C6H2(OCH3)3),
3.70 (s, 6H, C6H2(OCH3)3), 4.73 (s, 1H, NCH2C(CH3)CH2), 4.95 (s, 1H, NCH2C(CH3)CH2),
5.08 (s, 2H, NCH2C(CH3)CH2), 5.63 (s, 2H, CH2C6H2(OCH3)3), 6.77 (s, 2H, CH arom of
C6H2(OCH3)3), 7.41–7.43 (m, 2H, CH arom of C7H4N2), 7.72–7.74 (m, 1H, CH arom of
C7H4N2), 7.86–7.88 (m, 1H, CH arom of C7H4N2); 13C{1H} NMR (100 MHz, (CD3)2SO)
δ = 19.82 (s, NCH2C(CH3)CH2), 51.87 (s, CH2C6H2(OCH3)3), 54.00 (s, NCH2C(CH3)CH2),
55.87 (s, C6H2(OCH3)3), 59.98 (s, C6H2(OCH3)3), 124.13 (s, NCH2C(CH3)CH2), 140.56 (s,
NCH2C(CH3)CH2), 105.07, 112.37, 113.22, 124.10, 131.82, 133.26, 133.55, 137.15, 153.04 (9s,
arom Cs), 189.03 (Ccarbene-Ag) ppm.

Chloro[1-methallyl-3-(naphthylmethyl)benzimidazol-2-ylidene]silver(I) (9) Yield: 74%;
m.p. 145–146 ◦C; FT-IR ν(CN): 1392 cm−1, LC-MS: 731.3 [AgL2 − H]+; 1H NMR (400 MHz,
CDCl3) δ = 1.74 (s, 3H, NCH2C(CH3)CH2), 4.86 (s, 1H, NCH2C(CH3)CH2), 5.02 (s, 2H,
NCH2C(CH3)CH2), 5.04 (s, 1H, NCH2C(CH3)CH2), 6.08 (s, 2H, CH2C10H7), 6.97 (d, 1H,
3JHH = 7.2 Hz, CH arom of C10H7), 7.22–7.28 (m, 1H, CH arom of C10H7), 7.33–7.37 (m,
2H, CH arom of C7H4N2), 7.48 (d, 1H, 3JHH = 8.4 Hz, CH arom of C10H7), 7.52–7.58 (m,
2H, CH arom of C10H7 and C7H4N2), 7.72–7.80 (m, 1H, CH arom of C7H4N2), 7.83 (d, 1H,
3JHH = 8.0 Hz, CH arom of C10H7), 7.89–7.91 (m, 1H, CH arom of C10H7), 7.99–8.01 (m,
1H, CH arom of C10H7); 13C{1H} NMR (100 MHz, CDCl3) δ = 20.16 (s, NCH2C(CH3)CH2),
51.45 (s, CH2C10H7), 55.85 (s, NCH2C(CH3)CH2), 112.26 (s, NCH2C(CH3)CH2), 139.18
(s, NCH2C(CH3)CH2), 112.31, 114.78, 122.41, 124.52, 124.55, 125.02, 125.45, 126.46, 127.15,
129.32, 129.41, 130.16, 130.63, 133.96, 134.14, 134.19 (16s, arom Cs), no peak
(Ccarbene-Ag) ppm.

Chloro[1-methallyl-3-(anthracen-9-yl-methyl)benzimidazol-2-ylidene]silver(I) (10)
Yield: 71%; m.p. 277–278 ◦C; FT-IR ν(CN): 1394 cm−1; LC-MS: 833.4 [AgL2 + H]+; 1H
NMR (400 MHz, CDCl3) δ = 1.66 (s, 3H, NCH2C(CH3)CH2), 4.74 (s, 1H, NCH2C(CH3)CH2),
4.91 (s, 2H, NCH2C(CH3)CH2), 4.96 (s, 1H, NCH2C(CH3)CH2), 6.47 (s, 2H, CH2C14H9),
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7.02 (d, 1H, 3JHH = 8.4 Hz, CH arom of C7H4N2), 7.09 (t, 1H, 3JHH = 7.8 Hz, CH arom
of C14H9), 7.25 (t, 1H, 3JHH = 7.8 Hz, CH arom of C14H9), 7.37 (d, 1H, 3JHH = 8.4 Hz,
CH arom of C7H4N2), 7.48–7.56 (m, 4H, CH arom of C14H9 and C7H4N2), 8.09 (d, 2H,
3JHH = 8.0 Hz, CH arom of C14H9), 8.22 (d, 2H, 3JHH = 8.8 Hz, CH arom of C14H9), 8.61 (s,
1H, CH arom of C14H9); 13C{1H} NMR (100 MHz, CDCl3) δ = 20.10 (s, NCH2C(CH3)CH2),
49.99 (s, CH2C14H9), 56.06 (s, NCH2C(CH3)CH2), 112.21 (s, NCH2C(CH3)CH2), 139.17 (s,
NCH2C(CH3)CH2), 112.11, 114.58, 123.00, 123.16, 123.30, 124.34, 125.47, 127.81, 130.17,
130.51, 131.23, 131.57, 134.17, 134.22 (14s, arom Cs), no peak (Ccarbene-Ag) ppm.

3.2. X-ray Crystallography

Slow diffusion of diethylether into a dichloromethane solution of complex 7 led
to the formation of single crystals suitable for X-ray analysis. The measurements were
performed on an STOE IPDS II diffractometer using Mo Kα radiation andω-scans at 296(2)
K. All data collection, cell refinement, data reduction, and correction procedures were
performed using the X-AREA and X-RED32 software [68]. The structure was solved by
direct methods with SIR2019 [69] and refined against F2 using the full-matrix least-squares
method with the SHELXL-2019 program [70]. H atoms were included in idealized positions
and constrained to ride on their parent atoms. A summary of the key crystallographic
information is collected in Table 6. OLEX2 [71] was employed for the generation of the
molecular graphic. CCDC entry 2018964 contains the supplementary crystallographic data
for 7. These data can be downloaded from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/structures, accessed on 20 February 2023.

Table 6. Crystal data and structure refinement parameters for complex 7.

CCDC Depository 2018964 Color/Shape Colorless/Prism
Chemical formula AgClC22H26N2 Formula weight 461.77
Temperature (K) 296(2) Wavelength (Å) 0.71073 Mo Kα
Crystal system Monoclinic Space group C2/c

Unit cell parameters Z 8
a (Å) 28.1169(14) Dcalc. (g/cm3) 1.432
b (Å) 9.3573(6) µ (mm−1) 1.073

c (Å) 17.0595(8) θ range for data
collection (◦) 2.305 ≤ θ ≤ 27.570

α (◦) 90 Absorption correction Integration
β (◦) 107.331(4) F000 1888
γ (◦) 90 Diffractometer STOE IPDS II

Index ranges −33 ≤ h ≤ 36 Reflections collected 14053
−10 ≤ k ≤ 12 Rint. 0.0365
−22 ≤ l ≤ 22 Data/restraints/parameters 4899/1/235

Independent
reflections 4899 Observed reflections 3493

Refinement method Full-matrix
least-squares on F2

Final R indices [I >
2σ(I)]

R1 = 0.0327, wR2 =
0.0788

Goodness-of-fit on F2 0.918 R indices (all data) R1 = 0.0523, wR2 =
0.0842

∆ρmax., ∆ρmin. (e/Å3) 0.603, −0.410

3.3. Biological Assays
3.3.1. Antimicrobial Activity

Per the advice of international standards, the antibacterial activities of the compounds
were determined using the liquid microdilution method [72]. The method was used to
investigate the minimum inhibitory concentration (MIC) values of the silver compounds
for the yeast and bacterial strains. Standard bacterial strains Staphylococcus aureus ATCC
29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Acinetobacter baumannii
ATCC 17978, and yeast Candida albicans ATCC 10231, were previously stored at −80 ◦C
then revived at room temperature. Microorganisms were inoculated using overnight

www.ccdc.cam.ac.uk/structures


Inorganics 2023, 11, 385 13 of 18

broth cultures, and suspensions (1 × 108 CFU/mL microorganisms) were maintained
at 0.5 McFarland standard turbidity. Compounds weighing 2 mg were diluted in 4 mL
of Mueller–Hinton Broth (MHB) to form a stock solution. All compounds to be tested
were dissolved in MHB containing 10% (v/v) DMSO, followed by sequential two-fold
dilutions in 96-well plates with MHB at concentrations ranging from 1.9 to 125 g/mL.
Aliquots (100 µL) were dispensed into the wells of the MHB 96 well microplate. Initial
concentrations of the compounds were distributed on them. Then, two-fold dilutions were
made sequentially. The microorganisms were suspended in 100 µL of liquid and added
to each test well. Ciprofloxacin and Fluconazole were used for the positive control in the
study. Microorganism suspensions (200 µL) were used as negative controls. The optical
density was measured at 620 nm. The first concentration without microbial growth was
determined as MIC.

3.3.2. Reduction in Biofilm Formation

The well plate assay was utilized to test the effectiveness of compounds in inhibiting
biofilms made by microorganisms. Microorganisms in TSB (Tryptic Soy Broth) containing
1% glucose were adjusted at a density of 1 × 108 CFU/mL. Then, 100 µL of these suspen-
sions were dispensed into the test wells. In the next step, 100 µL of compounds ranging
from 1.9 to 125 g/mL were poured into the wells. While suspensions of microorganisms
were used as a positive control in the study, TSB containing 1% glucose was used as a nega-
tive control. Plates were incubated for one day at 36.5 ◦C. After the plates were emptied,
they were washed three times with 300 µL of deionized water. The wells were dried for
half an hour. The next step was staining with 0.1% (w/v) violet dye, cleaning three times
with deionized water, and drying at room temperature. The crystal violet adhering to the
wall of the wells was dissolved with 95% ethanol, and the optical density was measured at
570 nm. Antibiofilm activities of compounds were measured at sub-MIC values using the
equation below, where ODc and ODb stand for the compound’s and the broth’s respective
absorbances [73]. The test was run three times, and the mean value was calculated. Biofilm
preventing (%) = {(ODb − ODc)/ODb} × 100.

3.4. Theoretical Methods
3.4.1. Molecular Docking

The target macromolecules were acquired in PDB format from https://www.rcsb.org/,
accessed on 20 February 2023 (PDB ID: 1kzn and 5v5z) [74,75]. All the molecular docking
performances were achieved by AutoDock 4.2 [76]. The macromolecules were cleaned
from the water, and Kollman charges and the polar hydrogens were used during the
performances. The ligand molecules with Gasteiger charges were randomly positioned for
starting, and Lamarkian genetic algorithms were used [77].

3.4.2. DFT-Based Calculation Methods

The geometry optimizations were performed using ORCA package version 4.0 [78,79],
and def2-SVP def2-SVP/J basis set and BP86 functional were used during the proce-
dures [80]. tightscf and KDIIS SOSCF were used as the restriction of the calculation [81,82].
The global reactivity descriptors, IP (ionization potential), EA (electron affinity), χ (elec-
tronegativity), η (chemical hardness), S (global softness), and ω (electrophilicity index),
were determined according to Koopmans Theorem [83]:

IP = −EHOMO (1)

EA = −ELUMO (2)

χ = − I + A
2

(3)

https://www.rcsb.org/
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η =
I − A

2
(4)

S =
1

2η
(5)

ω =
µ2

2η
(6)

4. Conclusions

We have shown that the reaction between five benzimidazolium salts substituted with
methylaryl moieties and Ag2O in dichloromethane readily forms the corresponding silver(I)
complexes, which were fully characterized using spectroscopic methods for one of them by
a single-crystal X-ray diffraction study. These newly synthesized organometallic species
were screened for in vitro antimicrobial and antibiofilm activities. The complexes provide
antimicrobial activities, with MIC as low as 1.9 µg/mL, against Staphylococcus aureus and
Candida albicans strains, which were similar in the range of standard drugs Ciprofloxacin
and Fluconazole. The antimicrobial activities of the compounds were also found to be
quite effective for other microorganisms. Finally, these silver complexes were shown to be
very efficient in antibiofilm activity with up to 92.9% biofilm inhibition at 1.9 µg/mL on
Escherichia coli. According to the molecular docking results, complex 9 has the best binding
affinity with strong H-bonds against Escherichia coli DNA gyrase, while the highest binding
constant was calculated for complex 10 against CYP51 from the pathogen Candida albicans.
These results were in agreement with the in vitro experiments carried out on Escherichia coli
and Candida albicans. Furthermore, the chemical reactivity descriptors were determined,
and the results emphasized that LUMOs of complexes 6, 7, and 8 were located on the
benzimidazole ring, while all HOMOs were located on the chloride atom. According to
the descriptors and in agreement with in vitro tests, complex 10 was found to be the most
reactive drug.

The present study has highlighted the importance of the N-heterocyclic carbene sub-
stituents on the antimicrobial activity of silver complexes, and the optimization of these
drugs will be the subject of future studies.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/inorganics11100385/s1, Characterizing data of silver complexes
6–10 (1H and 13C NMR, FT-IR, and LC-MS spectra) and interaction details of Ciprofloxacin, Flucona-
zole and complexes 6–10 with DNA gyrase of Escherichia coli and CYP51 of Candida albicans.
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