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Abstract: The geomechanical properties of rock materials, such as uniaxial compression strength
(UCS), are the main requirements for geo-engineering design and construction. A proper under-
standing of UCS has a significant impression on the safe design of different foundations on rocks.
So, applying fast and reliable approaches to predict UCS based on limited data can be an efficient
alternative to regular traditional fitting curves. In order to improve the prediction accuracy of UCS,
the presented study attempted to utilize the support vector machine (SVM) algorithm. Multiple
training and testing datasets were prepared for the UCS predictions based on a total of 120 samples
recorded on limestone from the Maragheh region, northwest Iran, which were used to achieve a
high precision rate for UCS prediction. The models were validated using a confusion matrix, loss
functions, and error tables (MAE, MSE, and RMSE). In addition, 24 samples were tested (20% of
the primary dataset) and used for the model justifications. Referring to the results of the study,
the SVM (accuracy = 0.91/precision = 0.86) showed good agreement with the actual data, and the
estimated coefficient of determination (R2) reached 0.967, showing that the model’s performance was
impressively better than that of traditional fitting curves.

Keywords: uniaxial compression strength; support vector machine; fitting curves; prediction performance;
limestone

1. Introduction

The geomechanical properties of rock masses involve the intact rock features and
discontinuity networks [1]. The intact rock features represent valuable information about a
rock’s stiffness and strength parameters, which are considered to be the principal geotechni-
cal design index requirements [2,3]. These index parameters, such as uniaxial compression
strength (UCS), cohesion (c), angle of internal friction (ϕ), elastic modulus (E), shear modu-
lus (G), bulk modulus (K), and P-wave modulus (M), are measured by direct and indirect
geotechnical laboratory tests, which are performed on obtained samples, recovered cores,
and on-site specimens under specific instructions. Direct methods involve experimen-
tal measurements applied to the rock material in the laboratory or on site. To perform
these experiments, the special instructions, devices, and methods that are used have been
standardized by international or national organizations [4]. The UCS (also known as the
unconfined compressive strength) test is the first experiment applied on rock samples to
estimate the maximum strength of the intact rock against axial loading [5], which is the
maximum axial compressive stress that a right-cylindrical sample of material can withstand
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before failure [6]. UCS represents the compressive strength of a rock, which can be defined
as the ability of the rock to resist forces imposed on it or the maximum stress that a sample
can withstand under specified loading conditions.

On the other hand, UCS directly informs geo-engineers about a rock’s durability and
its ultimate strength under different loading stages, providing essential data in the design
stages to avoid structural failure and instabilities. This makes the UCS measurement very
important in geo-engineering practice. ASTM D7012 [7] provides a description of the
experimental procedure for the testing of samples.

Estimating a rock’s geomechanical index properties such as its UCS guarantees the
success of design and construction assurance. So, accurate measurements are key points in
evaluations. Traditional methods dictate that to achieve the appropriate level of accuracy,
the number of samples should be high and repeatable (regarding the scope, sensitivity,
and scale of the project) so that the average values can be calculated with less error. A low
volume of samples will increase uncertainties and errors in the measurements. Using a
large number of samples for a UCS test requires a long time period and is very costly. Thus,
applying alternative methods that require a shorter period with less financial leverage
that reaches a good accuracy is always welcomed. With the advances in computer-based
algorithms, the geo-material strength indexes for different materials can be predicted and
can achieve the expected level of reliability. Subsequently, many scientific researchers
have launched various aspects of related research related to these predictions [8]. These
studies have been implemented to complete the advancements of traditional procedures to
estimate the geomechanical index properties of rock materials based on UCS, point-load [9],
or Schmidt hammer [10] results.

Recently, predictive techniques have changed significantly after the introduction of ma-
chine learning to geotechnical applications, especially material behavior predictions [11–14].
Singh et al. [15] and Sonmez et al. [16] provided artificial neural network (ANN)-based
predictive models for predicting several sedimentary and igneous intact rock index be-
haviors. Yılmaz and Yuksek [17,18] applied multilayer perceptron (MLP) as one of the
most-common ANN-based predictive models to estimate geo-mechanical features indexes
such as UCS based on UCS and point-load (Is) test results conducted on gypsum samples
from Sivas in Turkey. Kahraman et al. [19] applied the same technique (MLP) to predict
the UCS values from samples taken from Misis Fault Breccia in Nigde, Turkey. The re-
sults were used for a deformability evaluation in the studied site. Dehghan et al. [20],
Bahrami et al. [21], and Yurdakul et al. [22] applied several types of machine learning
classifiers to evaluate and predict UCS variations compared to regression models, which
indicated that the predictive model showed a good performance in estimating the indices.
The coefficient of determination (R2) is the main criterion used to estimate predictive
performances. Armaghani et al. [23] and Armaghani et al. [24] applied MLP, support vec-
tor machine (SVM), and other benchmark algorithms to predict the UCS values of shale
and granite samples utilized for predicting geomechanical index behavioral evaluations.
Mozumder and Laskar [25] used the same neural network to identify the UCS changes in
compacted clayey soils as stiff materials. Their results were incredibly close to the actual
data during the prediction process. Abdi et al. [26] developed a forecasting model to obtain
the relationship between UCS and the elastic modulus (E) in sedimentary rocks, which
was appropriately used to estimate the correlation for different types of sediment units by
using regular regression analysis. Barham et al. [12] used the coupled MLP with ordinary
multivariate regression analysis to implement a predictive model for masonry samples
taken from Jordan to predict the UCS variations in the materials.

Using computational techniques such as machine learning improves the reliability of
predictive models with reasonable accuracy and low errors, according to the literature cited.
Regarding these claims, regression analysis is used to establish a correlation between the
UCS values from the predictive model and the measured data and the prediction models
created by the machine learning classifiers. This link can further enhance the prediction
accuracy of forecasting the UCS of samples. To this end, the presented study attempted to



Appl. Sci. 2023, 13, 2217 3 of 14

use one of the most-efficient benchmark machine learning algorithms, SVM, to analyze and
predict UCS variations in sedimentary rocks from the Maragheh region in Iran. SVM-based
models are supervised learning models with associated algorithms for classification and
regression analysis. The SVM method works relatively well when there is a clear margin of
separation between classes. It is more effective in high-dimensional spaces and cases where
the dimensions are greater than the number of samples. In addition, SVM is relatively
memory efficient and is widely used in classifications related to forecasting procedures [27].
The presented study used these advantages to prepare a predictive model for analysis
and predict UCS variations in Maragheh limestone, which was mainly implemented in a
Python high-level programming environment [28].

The main objective of this article was to provide a reliable model to classify and predict
the UCS values for limestone-type sedimentary rocks from the Maragheh region. Given that
the traditional and usual methods of conducting extensive tests and using experimental
regression methods to determine the changes in the resistance of rock masses are costly and
time-consuming, methods that effectively reduce the cost and increase the speed of analysis
have recently gained the attention of rock engineering experts. In this regard, computer
models and artificial intelligence can be used to estimate the resistance parameters of rock
masses, especially UCS. As an achievement, this is of interest to geo-engineers. So, the
presented study attempted to use an SVM-supervised model to classify and predict the
UCS of rock samples from the studied region.

2. Materials and Methods
2.1. Laboratory Studies

Uniaxial compression strength, or UCS, is the standardized universal test that can be
performed on all types of rock specimens that is used by the American Society for Testing
and Materials, ASTM [7], and the International Society for Rock Mechanics, ISRM [29]. The
principle of UCS involves placing cylindrical samples or prepared drill cores under axial
loading until the failure moment in a uniaxial compression test (UCT) device. Figure 1
illustrates a conventional rock UCT machine [30]. The UCT is used for the determination
of the ultimate UCS values. The presented study used regular cylindrical specimens for
testing via the UCT in a geotechnical laboratory. The rock samples in this study were
obtained from limestone from Maragheh County, located in East Azerbaijan province,
northwest Iran. In total, 120 samples were taken from the studied region, where the main
component of the rock is calcium carbonate and is categorized as Argillaceous lime to
limestone with a 75% to 100% carbonate content according to the Pettijohn classification [31].
After sampling the limestone from the site, the specimens were prepared according to the
ASTM instructions and tested via the UCT [7]. In order to prepare the test specimens,
the taken samples were transferred into the geotechnical laboratory and drilled with a
50 mm diameter (5 cm) and a 100 mm height (10 cm) with an overall cylindrical shape.
These specimens were cut and polished to produce UCS samples with smooth and flat
surfaces and no evident fissures, as per the ASTM requirements. After preparation, all
samples were divided and tested regarding the UCS compression test, and the results were
recorded. During the tests, the water content of the samples was natural, and the tests were
conducted at room temperature. The results of these tests were prepared and inputted into
the primary database for implementing the SVM-based predictive modeling.

Figure 2 illustrates several limestone images in the laboratory during the UCS test,
which was used for preparing the SVM primary dataset. According to the ASTM [7]
instructions, providing a proper sample is one of the key steps in UCS testing, as this leads
to a reduction in measurement errors. UCS tests are typically performed on intact rocks
with standard lengths of 100 mm (prepared) or with NQ, HQ, or PQ diamond drill cores,
and the maximum axial loading is recorded at the failure point [1]. The correct preparation
of samples leads to the obtaining of more reliable UCS values and classified accuracy of a
rocks’ strength. The International Society for Rock Mechanics (ISRM) standard classification
for UCS variation in rock is very low (<5 MPa), low (5–25 MPa), moderate (25–50 MPa),
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medium (50–100 MPa), high (100–250 MPa), and very high (250< MPa) [32]. Sedimentary
rock is generally classified as being in the very low to medium classes [11]. Nevertheless,
the UCS corresponds to axial loading, where peak stress is responsible for the failure of a
rock sample. Using displacement transducers and strain gages, the stress–strain data were
continuously logged and recorded.
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2.2. Artificial-Intelligence-Based Modeling
2.2.1. SVM Algorithm Principles

Support vector machine or SVM is a set of supervised learning methods used for
classification, regression, and outlier detection. SVM was initially developed by Cortes
and Vapnik in AT&T Bell Laboratories [33] and was operated based on statistical learning
frameworks, namely the Vapnik–Chervonenkis theory [34], and can be applied in both
linear and non-linear classifications. The linear SVM uses a maximum-margin hyperplane
(hard-margin or soft-margin), and the non-linear SVM utilizes kernels for classifications.
SVM is also used for unsupervised learning, which is called support vector clustering
(SVC) [27]. SVM algorithms use differing types of kernel functions, whose most-common
functions are linear, nonlinear, polynomial, radial basis function, and sigmoid [31]. The
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present study used a sigmoid kernel function. This kernel function is similar to a two-
layer perceptron model of a neural network, which works as an activation function for
neurons. So, using such a function helps to modify the prediction process similarly to
neural networks. SVM classifies the input data during the training by using a maximum-
margin hyperplane derived by solving the optimization. There are specialized algorithms
for quickly solving the quadratic programming (QP) problem that arises from SVM that
generally rely on heuristics to break the problem down into smaller, more manageable
chunks. Another approach is to use an interior-point method that uses Newton-like
iterations to find a solution to the Karush–Kuhn–Tucker conditions of primal and dual
problems [35]. Instead of solving a sequence of broken-down issues, this approach directly
solves the problem altogether.

To avoid solving a linear system involving a large kernel matrix, a low-rank approxi-
mation to the matrix is often used in the kernel trick [27]. Drucker et al. [36] proposed a
version of SVM for regression and prediction called support-vector regression (SVR), which
is a model produced by support-vector classification that depends only on a subset of the
training data because the loss function for building the model does not care about training
points that lie beyond the margin. Analogously, the model produced by SVR depends only
on a subset of the training data because the loss function for building the model ignores
any training data close to the model prediction [37,38]. Training the original SVR involves
solving the following equations [38]:

minimize ‖w‖
2

2 + C
N
∑

i=1
(ξi + ξ∗i )

subject to |yi− < w, xi > −b| ≤ ε

where w is the vector normal to the hyperplane (margin), C is a quadratic function, b is the
width from the origin, ξi is the slack variable, C is the width from the hyperplane, xi is a
training sample with a target value (yi), ε is a free parameter, and i = {1,2,3, . . . ., N}. The
inner product plus the intercept <w,xi> −b is the prediction for that sample, and ε is a free
parameter that serves as a threshold; all predictions have to be within an ε range of the
true predictions. Slack variables are usually added into the above to allow for errors and to
allow an approximation in case the above problem is infeasible. There is a target value for
different values of ε, which has an impact on the regression analysis and prediction results.
The present study used an SVM-supervised classifier for the prediction and regression
evaluation for the UCS prediction for a prepared dataset of Maragheh limestone.

2.2.2. Data Analysis and Inspection

In this study, 120 specimens were taken from different spatial locations in the Maragheh
Region located in East Azerbaijan province, northwest Iran. The sampling distribution
from the studied area was specifically selected so that samples represented Maragheh
limestone. The samples were prepared and tested via ASTM instructions [7], and the results
were recorded during the experimental stage. These data were used to prepare the main
database of the predictive and verification models. The database was randomly divided
into testing and training sets. The testing set contained 20% of the primary database, and
the training set included 70% of the main database. The SVM model was trained with a
training set and validated with a testing set. The training set contained 96 samples, and the
testing set contained 24 samples of data. The coefficient of determination (R2) was used to
establish correlations between the predicted and measured data during the experimental
as well as the prediction stages.

2.2.3. Model Implementation

The SVM models were used to predict the compressive strength of the Maragheh
limestone based on the gathered comprehensive database of the 120 concluded UCS testing
results that were divided into the testing and training datasets. The confusion matrix and
loss function estimated the model trained with a training set and tested it with a testing
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set regarding the accuracy, model performance, and capability. The confusion matrix is
a performance evaluator used for machine learning classifiers with evaluation criteria
that include accuracy, precision, recall, and the harmonic mean [28,38,39]. The results of
this table represent the performance and capability of the predictive model in terms of its
accurate prediction and perfect operation. In this table, the criteria vary from 0 to 1, with 0
being the lowest and 1 being the highest. The loss function (or cost function) is a function
that maps an event or values of variables onto an actual number, intuitively representing
some ‘loss’ associated with the event. The loss function provides information about the
mathematical optimization and seeks to minimize errors regarding the prediction and
measured values. So, it is a difference between the estimated and valid values for a data
instance [27]. The loss function helps to understand the capacity of the predictive model for
both the training and testing sets to learn appropriately. This function was used in this task
to demonstrate the learning rate for the SVM model. The models learned under specific
optimizing functions that improved the learning rates. The learning rate is a configurable
hyperparameter used in training procedures for machine learning algorithms. Table 1
provides information about the utilized hyperparameters in the different applied classifiers.

Table 1. The hyperparameters used in utilized models.

Classifier Hyperparameters Elements

SVM Kernels
C value

Kernel = ‘sigmoid’; Degree = 2
C = 100; Epsilon = 0.1

2.2.4. Model Validation and Justification

Of course, the confusion matrix and loss function represent the predictive model’s
validation during the learning stages, but for controlling the model’s performance, we
used a statistical errors table that included the mean absolute error (MAE), mean square
error (MSE), and root mean square error (RMSE). These error tables are frequently used
to measure the differences between the predicted values generated by a model and the
measured values obtained by tests [40]. Generally, a lower number of computational errors
indicates a better algorithm performance [28].

3. Results and Discussion
3.1. Laboratory Studies

After the testing stage, according to the standard procedure, all the UCS values were
measured and categorized. Statistical analysis is one of the most important stages for
providing appropriate ground data. Although various indexes for multi-indicator analysis
for geomaterials [41–43] exist, in SVM modeling, the predictive analysis is usually based on
two directions and two variables. Therefore, underrating the target values is much more
important. The main uncertainty [44] regarding the model in this study belonged to the UCS
values, which could be modified by considering the distribution function and normalized
by the Q–Q chart, as presented in Figures 3 and 4. Table 2 provides the statistical variations
in the estimated UCS values for the Maragheh limestone. The quantile–quantile chart
(known as the Q–Q chart) was obtained for the UCS results to examine the normality of
the data variations, as illustrated in Figure 3. Based on the results of the statistical analysis
of the UCS data, it was indicated that the average UCS value measured for the studied
limestone was 109.93 MPa, and the calculated standard deviation was 39.754. Regarding the
Q–Q chart, the experimental data followed a normal distribution law within the confidence
interval of 93.7%. This fact was verified using a normal distribution envelope on the UCS
data, as shown in Figure 4.
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Table 2. Statistical analysis for Maragheh limestone UCS results.
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3.2. Artificial-Intelligence-Based Modeling

The SVM algorithm was implemented on the training and testing datasets to predict
the UCS variation for the studied limestone. Figure 5 provides the predicted values of the
UCS values from the SVM model against the measured values, which were correlated by
using R2, representing the dependency of the measured and predicted variables. R2 is the
link between the actual outcomes and the predicted values that normally range from 0
to 1, where if it is closer to 1, a higher accuracy of the data overlap appears. According
to Figure 5, the estimated R2 for the UCS results was 0.967, which was considerable for a
shallow learning classifier. In addition, Figure 6 provides information about the overlap
of the actual and predicted values of the UCS. As seen in this figure, there were good
agreements between the actual and predicted data. In addition, the loss rate calculated
for the model was reduced to 0.2 in the training set. So, the model was appropriately
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implemented and operated with a high performance and could predict the UCS with
less error. Table 3 illustrates the errors table estimated for the SVM model regarding the
prediction process. Based on Table 3, it was indicated that the training set operated with
fewer errors than the testing set; the error rates for the training set were MAE = 0.237463,
MSE = 0.210540, and RMSE = 0.200674, where these rates for the testing set were 0.451089,
0.435988, and 0.410456, respectively. Figure 7a provides the scatter index error for the UCS
results. Figure 7b provides the Willmott index for the error variations for the UCS results.

Figure 8 presents the decision boundary and probability for the scattering data with
SVM, which was used to categorize the data during the learning and testing procedures. As
seen in this figure, the accuracy of the boundary and probability indexes reached 0.7, which
showed the model’s high performance. The model was validated using a confusion matrix
(evaluation criteria included accuracy, precision, and recall), the loss function, and an errors
table. The results of the validated learning classifier are provided in Figures 9 and 10.
Figure 9 shows the confusion matrix of the predictive model, and Figure 7 presents the
calculated loss function. According to Figure 9, the model’s estimated accuracy, precision,
and recall were 0.91, 0.86, and 0.80, respectively. Figure 10 provides information about
the loss function variations for the testing and training datasets, which was reduced to
0.2. This value indicated a considerable reduction in the error rate during the learning
procedure. Figure 11 provides the statistical analysis index conducted on the results of the
SVM modeling on the training and testing datasets. In addition, the predicted results of
the used model, along with the corresponding measured values in both the testing and
training datasets as well as the prediction errors, are presented in Figure 12.
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The application of the SVM algorithm is appropriate for different types of geo-material
behavioral predictions, and researchers in future scientific projects can consider this. How-
ever, it should be noted that the SVM algorithm is unsuitable for large datasets and when
facing datasets with noise. So, users must be notified when they attempt to utilize the
SVM or SVP models in the prediction process. In addition, if a probabilistic analysis needs
to be conducted, SVM classifiers are not capable of using a probabilistic explanation for
the classification. Although these limitations are general aspects of SVM and provide
sufficient coverage and accuracy for the analyses of intact rocks, they have to be considered
in analyses such as when analyzing the anisotropy of rocks.

4. Conclusions

The presented study attempted to apply an SVM-supervised classifier to classify and
predict the compressive strength (UCS) behavior of Maragheh limestone. In this regard, a
comprehensive field survey and sampling were performed in the Maragheh region, leading
to a total of 120 specimens of limestone being obtained from different sites in the studied
region. The samples were isolated and transferred into a geotechnical laboratory to conduct
UCS tests as per ASTM regulations in a UCT device. After performing the laboratory and
modeling procedures, the following results were obtained:

• An extensive database was provided using the UCS experimental records to provide a
detailed analysis of the SVM model. The prepared database was randomly divided
into a training test (80% of the primary database) and a testing set (the remaining 20%
of the primary database). The SVM model was trained on the training set and tested
on the testing dataset.

• The machine learning technique was controlled by a confusion matrix, loss function,
and statistical error analysis for both the testing and training datasets, which provided
relevant information about the capability and performance of the model.

• According to the SVM results, the model’s accuracy was 0.91, and its precision was
0.86. In addition, the estimated loss function was reduced to 0.2, which is considered
to be a good capability for learning. In addition, the other evaluating criteria, such as
recall, were estimated at about 0.78, which is considerable for the learning rate of the
SVM model.

• By normalizing the experiment data with the Q–Q chart, it appeared that the data
chart followed a normal distribution law within the confidence interval of 93.7%.

• The correlation results for both the testing and training data with the actual results from
the experiments indicated that the model was trained remarkably well (R2 = 0.967)
and was tested properly (R2 = 0.955).

The statistical error rates obtained for the SVM model indicated that the model oper-
ated with a low error rate, including MAE = 0.237463, MSE = 0.210540, and RMSE = 0.200674
for the training set and 0.451089, 0.435988, and 0.410456 for the testing set, respectively.
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Abbreviations
UCS Uniaxial compression strength
SVM Support vector machine
SVR Support vector regression
SVC Support vector clustering
MLP Multilayer perceptron
QP Quadratic programming
MAE Mean absolute error
R2 Coefficient of determination
MSE Mean square error
RMSE Root mean square error
Q–Q chart Quantile–quantile chart
Std.Dev. Standard deviation
UCT Uniaxial compression test device
c Cohesion
ϕ Internal friction
E Elastic modulus
G Shear modulus
K Bulk modulus
M P-wave modulus
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