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A B S T R A C T

Industrial waste pollution is a serious and systematic problem that harms the environment and people. The
development of cheap, simple, and efficient techniques to solve this problem is important for sustainability. In
this study, both experimental and evolutionary computation (EC)-based automatic programming (AP) methods
were used to investigate the biosorption process for water treatment. In the experiments, titan yellow (TY), an
anionic dye, was biosorbed from an aqueous solution containing pumpkin seed husk (PSH). The structure of
PSH was examined using a Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope
(SEM). The result of the experimental studies was that TY biosorption of PSH reached a biosorption efficiency
of 95% after 120 min of contact time. The maximum biosorption capacity (𝑞𝑚𝑎𝑥) was calculated to be 181.8
mg/g. It was found that the biosorption of TY better followed the Dubinin–Radushkevich isotherm (𝑅2 = 0.98)
and pseudo second-order reaction kinetics (𝑅2 = 0.99). Based on the thermodynamic data, the biosorption
process was exothermic and spontaneous. After the experiments, the process was modeled using pH, biosorbent
concentration, initial dye concentration, contact time, and temperature as inputs and biosorption efficiency (%)
as output for the methods. Moreover, the success of these AP methods was compared with a newly proposed
evolutionary method. The simulation results indicate that AP methods generate best models (𝑅2

train = 0.99 and
𝑅2

test = 0.97). At the same time, the most important parameter of the process in the feature analysis is contact
time. This study shows that EC-based AP methods can effectively model applications such as the biosorption
process.
1. Introduction

Environmental pollution has become dangerous worldwide due
to rapidly increasing urbanization and industrialization (Bahramian,
Dereli, Zhao, Giberti, & Casey, 2022; Saravanan et al., 2019). Dye
wastes from various sectors such as textiles, plastics, and paints, es-
pecially polluting water bodies, cause severe damage to the aquatic
ecosystem, environment, and human health due to their toxic, mu-
tagenic, and carcinogenic effects (Chaurasia, Jasuja, & Kumar, 2022;
Tabaraki & Sadeghinejad, 2018). For this reason, researchers from
around the world have been working in recent years on ways to remove
organic pollution from water (Vidya, Manjunatha, Sudeep, Ashoka,
& Raj, 2020). Organic dyes that cause this pollution are wastes with
complex chemical, aromatic, and stable structures that are difficult to
break down in nature (Shi, Li, Wang, Wang, & Cao, 2020; Tabaraki &
Sadeghinejad, 2018). Even in low concentrations, the release of dye
waste into nature causes serious ecological problems (Rigueto et al.,
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2021). Azo dyes are used in various fields such as paints, paper,
plastics, textiles and leather (Bameri, Saffari, Baniyaghoob, & Ekrami-
Kakhki, 2022; Ibrahim, Allah, & Muneer, 2021; Vidya et al., 2020).
Titan yellow (TY), an anionic azo dye, is an organic dye molecule
with sulfonic groups (Ibrahim et al., 2021; Shi et al., 2020). While TY
causes serious environmental damage in wastewater, it can damage the
digestive system, eyes and skin upon contact (Hiremath, Mal, Prabha,
& Vidya, 2018; Shi et al., 2020). There are various methods for the
removal of dyes such as filtration, osmosis, coagulation, membrane
processes, and oxidation. However, these methods are expensive when
used continuously. Adsorption technique, on the other hand, is a cost-
effective technique with high efficiency in dye removal (Bameri et al.,
2022; Tabaraki & Sadeghinejad, 2018). Another alternative method is
biosorption, which can use various biomasses such as bacteria, fungi
and plants (Rigueto et al., 2021; Tabaraki & Sadeghinejad, 2018).
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There have been numerous studies on modeling the adsorption/
biosorption process and the parameters affecting this process using
different methods. Tabaraki et al. synthesized arginine-modified mag-
netic Fe3O4/chitosan nanoparticles for TY adsorption. As a result of the
adsorption process, 52% dye removal and 374 mg/g adsorption capac-
ity were achieved. Moreover, the response surface method (RSM) was
used with the Box–Behnken model (Tabaraki & Sadeghinejad, 2018).
Moreira et al. dried Chlorella pyrenoidosa microalgae were modeled us-
ing RSM and artificial neural network (ANN) to optimize experimental
conditions for biosorption of copper. Modeling results showed that RSM
had better accuracy than ANN (Moreira, Lebron, & de Souza Santos,
2020). In a study where Hypnea musciformis powder was used as a
biosorbent, the biosorption of TY dye was optimized using the central
composite design program. Optimization values for the parameters
were proposed to achieve maximum biosorption by the model (Raju &
Sunil, 2018). In another study, in which a functionalized copper oxide-
zinc oxide nanocomposite was synthesized as an adsorbent, the adsorp-
tion process was modeled by genetic programming (GP) (Mahmoodi,
Chamani, & Kariminia, 2016).

Although previous studies have mostly used conventional methods
to model biosorption processes, selecting relevant features for the
process can be difficult even in such a specialized research area as evo-
lutionary computation (EC). The increasing complexity of engineering
problems and the inability of mathematical methods to find optimal
solutions have significantly increased the use of EC-based algorithms.
Whale optimization algorithm (Mirjalili & Lewis, 2016), firefly algo-
rithm (FA) (Yang, 2008), cuckoo search algorithm (CSA) (Yang & Deb,
2009), bee colony optimization (BCO) (Teodorovic, Lucic, Markovic,
& Dell’Orco, 2006), and dragonfly algorithm (DFA) (Mirjalili, 2016)
can be cited as examples of algorithms based on EC, and these can
be used by hybridizing them with different methods. Examples of such
applications include precipitation index prediction using the ANN-FA
hybrid model (Mohammadi, 2023), solar radiation estimation using
the CSA based hybrid model (Moazenzadeh, Mohammadi, Duan, &
Delghandi, 2022), and daily dew point temperature prediction using
the BCO, DFA, and Adaptive Neural-Fuzzy Inference Systems (ANFIS)
hybrid model (Mehdizadeh, Mohammadi, & Ahmadi, 2022).

By solving the symbolic regression (SR) problem, the mathematical
relationship between the inputs and outputs of a system is determined.
Recent developments in artificial intelligence have led to renewed
interest in SR, and several methods have been developed. One of these
methods is the reinforcement learning approach, in which the recurrent
neural network is trained with a risk-seeking policy gradient (Petersen
et al., 2019). The method called deep symbolic regression (DSR) has
outperformed many baseline methods and proved that deep learning
can be adapted to SR problems. Another method is iterative variable
selection assisted SISSO (VS-SISSO) method, which aims to select mean-
ingful features by adapting to high-dimensional datasets (Guo, Hu,
Han, & Ouyang, 2022). The purpose of the method is to keep the
dimensions of the models constant and try to choose the model that
best describes the data by selecting features from subsets of features
each time. In this method, the size of the selected subspace changes
depending on the number of dimensions. This method is similar to
the idea of GP. However, unlike GP, VS-SISSO evaluates features as
individuals rather than as expressions extracted from solution trees.
Another GP-like method is DoME (Rivero, Fernandez-Blanco, & Pazos,
2022). It uses solutions in tree structures as in GP and generates the
model by computing the error value for each node and finding the
best constant for the node. SR-Forest, on the other hand, combines
the advantages of GP and decision trees (Zhang, Zhou, Chen, Xue, &
Zhang, 2023). With these advantages, it also creates a SR-based ensem-
ble model using the mutation operator to deal with high-dimensional
datasets. Difference-based firefly programming (DFP) is also a EC-based
automatic programming (AP) method, similar to GP (Aliwi, Demirci,
2

& Aslan, 2023). DFP, which produces parse tree solutions like GP,
has improved standard firefly programming with simplification and
substitution operators.

The biosorption process can be modeled as a SR problem because it
involves the analysis of the data generated in the experiments, which
requires a lot of time and effort. Moreover, feature importance (FI)
analysis can be performed to explain the output of the biosorption
models. The contribution of each input in the model to the model
output can be predicted by FI (Rengasamy, Rothwell, & Figueredo,
2021). In the literature, many FI methods are adapted to various
machine learning algorithms (Oh, 2022; Wei, Zhao, Feng, He, & Yu,
2020). However, some are model independent and some are model
specific (Rengasamy et al., 2022).

The most commonly used EC based-AP methods for solving SR
problems and determining FI are GP and artificial bee colony pro-
gramming (ABCP) (Moghaddam, Al-Sahaf, Xue, Hollitt, & Zhang, 2021;
Nekoei, Moghaddas, Golafshani, & Gandomi, 2021; Yamashita, Fogli-
atto, Anzanello, & Tortorella, 2022; Zojaji, Ebadzadeh, & Nasiri, 2022).
Therefore, in our study we modeled the process using successful ver-
sions of these methods, multi-gene GP (MGGP) (Kütük & Arslan, 2022)
and multi-hive ABCP (MHABCP) (Arslan & Ozturk, 2019b), and at-
tempted to select the most important parameter for the process. The
stages and contributions of our study are as follows:

• The biosorption process by selecting TY, which is used in industry
as a model dye compound. We used pumpkin seed husk (PSH)
as a biosorbent because it is cheap, abundant, and has a fibrous
structure (Hameed & El-Khaiary, 2008).

• The structure of PSH before and after biosorption (FTIR and SEM)
was examined.

• The parameters (pH, biosorbent concentration, initial dye concen-
tration, contact time, and temperature) affecting the biosorption
process were investigated. Isotherm, reaction kinetic and thermo-
dynamic calculations were performed with the data obtained from
these parameters.

• The process was modeled using EC based AP methods and these
methods were compared with a recently proposed evolutionary
algorithm.

• The models were analyzed and the effects of the parameters on
the process were investigated.

• To the best of our knowledge, this study was the first to model
the biosorption process with MHABCP.

As outlined above, there is a research gap in the use of AP methods
in chemical engineering, especially in process modeling. This pioneer-
ing and detailed study will fill this gap by proposing the most accurate
models to correctly select the relevant parameters of the biosorp-
tion process. This will make an important contribution to researchers
interested in chemical engineering and EC.

We organize the remainder of this study as follows. Section 2
describes the material and method of the biosorption process. This
section also includes the definitions of the AP methods used in the
modeling. Section 3 presents in detail the analysis of the data obtained
by the experiments, the performance evaluation criteria, and the pa-
rameters of the methods. The analysis of the biosorption process, the
simulation results of the models generated by the methods, the feature
analysis, and additional study comparing AP methods are described
in Section 4. Research questions about this study were answered in
Section 5. Finally, we conclude this study in Section 6.

2. Materials and methods

2.1. Materials

The biosorbent used in the study, PSH, was supplied from local mar-
kets. TY (%99 purity) was obtained from Eastman Organic Chemicals.
Hydrochloric acid (HCl, %33) and sodium hydroxide (NaOH, pellet)
were obtained from Kimetsan (Ankara, Turkey). The physicochemical

properties of TY are given in Table 1.
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Table 1
Properties of dye.

Dye Titan yellow
Chemical formula C28H19 N5Na2O6 S4
Molecular weight (g/mol) 695.720 g/mol
Ionic structure Anionic
Solubility High (for water)
Color Yellow
𝜆max 405 nm

2.2. Biosorption procedure

To increase the surface area, the size of the PSH was reduced
by 0.05–0.1 mm using a grinding machine (Sinbo, coffee grinder,
SCM-2934). First, an aqueous stock solution (1000 mg/L) of TY was
prepared. The dilution was continued according to the concentration to
be used later. The experiments were performed intermittently in a 250
mL glass flask and 100 mL dye volume. Samples taken at specified time
intervals were filtered. Then, the absorbance values were determined at
405 nm by UV/vis spectroscopy. In the biosorption studies, dye removal
was optimized by the parameters of pH (2–8), initial dye concentration
(10–300 mg/L), biosorbent concentration (0.5–10 g/L), contact time
(0–120 min) and temperature (20–50 ◦C).

% Biosorption efficiency = (Co − C)∕Co × 100 (1)

𝑞𝑒 = ((𝐶𝑜 − 𝐶𝑒).𝑉 )∕𝑚 (2)

𝑞𝑡 = (((𝐶𝑜 − 𝐶𝑡) ⋅ 𝑉 ))∕𝑚 (3)

In Eq. (1), 𝐶0 is the initial concentration of the dye (mg/L) and
𝐶 is the concentration (mg/L) at time 𝑡. In Eqs. (2) and (3), qe is
he biosorption capacity (mg/g) at equilibrium, qt is the biosorption
apacity (mg/g) at t = t, 𝐶𝑒 is the final dye concentration (mg/L),
𝑉 is the solution volume (mL), and m is the biosorbent amount (g).
The absorbance values of the TY dye solution were determined by UV
spectroscopy (Schimadzu, 1601).

2.3. Characterization

2.3.1. Characterization of biosorbent
Attenuated Total Reflectance-Fourier Transform Infrared (ATR-

FTIR, Bruker, Tensor II) spectroscopy was used to analyze the chemical
structure of the PSH and TY dyes while scanning electron microscopy
was analyzed the morphological structure (SEM, Tescan Mira 3 XMU).
FTIR spectroscopy was examined milled materials in the 4000–400
cm−1 wavenumber region.

2.3.2. The point of zero charges (𝑝𝐻𝑝𝑧𝑐)
The method of examining the initial and equilibrium pH values

was used to determine the zero charge (𝑝𝐻𝑝𝑧𝑐) potential of PSH. It
was studied in the amount of 100 mg biosorbent in the pH range of
2–10, at room temperature and for 120 min with stirring. pH levels
were adjusted with NaOH and HCl solutions. The difference (𝛥pH) was
determined by making initial and final pH measurements. Initial pH
value and (𝛥pH) value were plotted and zero charge point (𝑝𝐻𝑝𝑧𝑐) was
determined with the help of graph.

2.3.3. Biosorption isotherm models used
Isotherms help to understand the maximum biosorption capacity of

biosorption and the type of biosorption. Langmuir isotherm (Eq. (4)) in-
dicates that the surface of the biosorbent is homogeneous and the pres-
ence of monolayer biosorption. 𝑅𝐿 is a coefficient indicating the suit-
ability of the Langmuir isotherm Eq. (5) Freundlich isotherm (Eq. (6)),
on the other hand, refers to multilayer biosorption and the hetero-
geneous structure of the biosorbent surface (Kütük & Arslan, 2022;
3

Rattanapan, Srikram, & Kongsune, 2017). Dubinin-Radushkevich (D-
R) (Eq. (7)) isotherm can be evaluated to get an idea of how the
biosorbent and dye interact (Isik, Ugraskan, & Cankurtaran, 2022;
Rattanapan et al., 2017). In Eq. (4), 𝑞𝑚𝑎𝑥 (mg/g) is the maximum
biosorption capacity, 𝐾𝐿 (L/mg) is the Langmuir constant, and 𝐶𝑒
is the dye concentration at equilibrium. In Eq. (6), 𝐾𝑓 (L/g) is the
Freundlich constant, and 𝑛 is the constant expressing the adsorption
capacity density. A value of n between 0 and 1 indicates that the
isotherm is suitable. Eq. (7), 𝑘𝐷 (mol2∕J2) is the constant of the D-R
isotherm, which expresses the free biosorption energy per mole of the
dye. Polanyi potential, 𝜀 is calculated according to Eq. (8). In Eq. (9),
the E value represents the average biosorption energy. If the E value
is 8–18 kJ mol−1, it can be said that there is ion exchange, if it is less
than 8 kJ mol−1, there is physical adsorption, and if it is between 20–40
kJ mol−1, there is chemical adsorption (Isik et al., 2022).
1
𝑞𝑒

= 1
𝑞𝑚𝑎𝑥

+ 1
𝐾𝐿𝑞𝑚𝑎𝑥

𝑥 1
𝐶𝑒

(4)

𝑅𝐿 = 1
1 +𝐾𝐿 ⋅ 𝐶0

(5)

ln 𝑞𝑒 = ln𝐾𝑓 + 1
𝑛
𝑥 ln𝐶𝑒 (6)

𝐿𝑛𝑞𝑒 = 𝐿𝑛𝑞max − 𝑘𝐷 ⋅ 𝜀2 (7)

= 𝑅𝑇 Ln
(

1 + 1
𝐶𝑒

)

(8)

𝐸 = 1
√

2𝐾𝐷
(9)

2.3.4. Kinetic models used
Biosorption kinetics studies were investigated with 4 different mod-

els. In Eqs. (10), (11), (12) and (13), pseudo-first-order kinetic model
(PFO), pseudo-second-order kinetic model (PSO), intraparticle diffusion
model and Elovich model are defined, respectively. 𝑞𝑡 (mg/g) is the
biosorption capacity at time 𝑡. 𝑘1 (1/min), 𝑘2 (g/mg min) and 𝑘𝑖
(mg∕g min2) which are the rate constants for PFO, PSO and the diffusion
model for the particle, respectively. Elovich model is known as 𝛼
(mg/g min), and the desorption rate constant, 𝛽 (g/mg), is related to
the activation energy for chemical adsorption (Bameri et al., 2022;
Netzahuatl-Muñoz, Guillén-Jiménez, Chávez-Gómez, Villegas-Garrido,
& Cristiani-Urbina, 2012; Rigueto et al., 2021).

log
(

𝑞𝑒 − 𝑞𝑡
)

= log 𝑞𝑒 −
𝑘1

2.303
t (10)

𝑡
𝑞𝑡

= 1
𝑘2 ⋅ 𝑞𝑒2

+ 1
𝑞𝑒

𝑡 (11)

𝑡 = 𝑘𝑖𝑑 ⋅ 𝑡1∕2 + C (12)

𝑡 =
1
𝛽
ln(𝛼 ⋅ 𝛽) + 1

𝛽
ln 𝑡 (13)

2.3.5. Thermodynamic characteristics
Thermodynamic data is used to determine the mechanism of

biosorption and its potential to occur spontaneously (Isik et al., 2022).
Thermodynamic parameters enthalpy energy (𝛥H, kJ/mol), entropy
change (𝛥S, kJ/mol K) and free energy change (𝛥G, kJ/mol) data were
calculated according to Eqs. (14)–(16).

𝐾𝑐 = 𝐶𝑎∕𝐶𝑒 (14)

In𝐾𝐶 = 𝛥S
R

− 𝛥𝐻
𝑅

⋅
1
𝑇

(15)

𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆 (16)

𝐾𝑐 is the equilibrium constant, 𝐶𝑎 is the amount of dye retained in
unit mass of biosorbent (mg/g), 𝐶𝑒 is the dye concentration remaining
in solution (mg/L). Ideal gas constant 𝑅 is taken as 8.314 J/mol K.
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Fig. 1. Example of multi tree solution in MGGP and MHABCP.
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2.4. AP methods

AP, one of the subfields of machine learning, generates nonlinear
mathematical models that represent systems (Arslan & Koca, 2023). It
also attempts to predict the relationship between the input and output
parameters of systems with the least error. In this way, information
between the system’s inputs and outputs can be discovered. Many
EC-based AP methods have been attracting more and more attention
worldwide. Two pioneers of these methods are GP (Koza, 1994) and
ABCP (Karaboga, Ozturk, Karaboga, & Gorkemli, 2012).

The commonly used versions of GP and ABCP are MGGP and
MHABCP that produce multi-tree solutions that have been success-
fully applied to many complex problems such as SR (Adeyi et al.,
2022; Boudouaoui, Habbi, Ozturk, & Karaboga, 2020; Datta, Dev,
& Eden, 2019; Ge, Yusa, & Fan, 2021), feature selection (Arslan &
Ozturk, 2019b; Öztürk, Tarım, & Arslan, 2020), prediction (Kazemi
& Barati, 2022; May Tzuc et al., 2019; Pawanr, Garg, & Routroy,
2022; Sattar, Majid, Kausar, Bilal, & Kashif, 2022), process model-
ing (Punugupati, Kandi, Bose, & Rao, 2017), classification (Arslan &
Ozturk, 2018, 2019a; Pedrino, Yamada, Lunardi, & de Melo Vieira,
2019) and forecasting (Hadi & Tombul, 2018).

The main advantage of MGGP and MHABCP is that the system can
automatically generate the model form with coefficients and variables,
since each tree in the solution has a nonlinear structure. The smallest
unit of the trees, the nodes, is selected from either the terminal set
or the function set. While the terminal set consists of variables and
constants like 𝑥, 𝑦, 𝑧; the function set consists of arithmetic operators
like +, –, ∗, ∕ and mathematical functions like 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥, 𝑠𝑞𝑟𝑡 and
𝑝𝑜𝑤𝑒𝑟. An example of a solution for these methods with multi-tree
structures is shown in Fig. 1. The mathematical formula for the solution
shown in the figure is given in Eq. (17). Flowcharts of the methods are
shown in Fig. 2.

y = w0 + w1 × Tree 1 + w2 × Tree 2 + w3 × Tree 3 + w4 × Tree 4

= 𝑤0 +𝑤1 × 0.6 sin
(

𝑥1
)

+𝑤2 × (𝑥2 − 3.6) +𝑤3 ×
6.4

cos
(

𝑥2
)

+𝑤4 ×
(

𝑥𝑥21 +
√

𝑥3
)

(17)

In both algorithms, the trees are generated using the ramped half-
and-half method. In this method, half of the solutions are generated
with the full method and the other half with the grow method. In the
full method, the nodes are selected from the function set up to the
desired maximum depth and the remaining nodes are selected from
the terminal set. In the grow method, the maximum tree depth is
achieved by randomly selecting from both the function set and the
terminal set. Since ramped half and half contains solutions generated by
both methods, diversity in the population/colony is guaranteed. Koza
suggested that the generated solutions should be different from each
other (Koza, 1994). In our study, we ensured that the solutions in the
initial population/colony were not repeated by either method.

In the initial phase of MHABCP, the solutions in the colony are
4

randomly generated from hives between 1 and the maximum number t
of hives, 𝐻max (Arslan & Ozturk, 2019b). The quality of each solution is
determined by considering the fitness function specific to the problem.
In the MHABCP algorithm, there are bees with three different tasks:
employed bees, onlooker bees, and scout bees. Two basic operators are
used to try to improve the bees/solutions. The first is the information
sharing mechanism, which is also proposed in ABCP (Fig. 3). The other
operator is the MGGP-inspired hive exchange mechanism (Fig. 4). Since
the same operators with different names are also found in MGGP, these
operators are mentioned after the explanation of MGGP.

When the employed bees leave the nest, they have a specific food
source in their memory and when they return to the nest, they share in-
formation with the onlooker bees about the food sources. In this phase,
each employed bee tries to improve itself through the mechanisms.
After this phase is completed, the probability of selecting solutions is
calculated based on their fitness values. The onlooker bees evaluate
the information shared by the employed bees and decide which food
source they will go to based on the amount of nectar in the food source.
Each onlooker bees tries to improve itself through the two mechanisms
mentioned above.

With counters initially set to 0, each solution is checked to deter-
ine how many unsuccessful improvements have been made. Whether

he solution is abandoned or not is determined by the 𝑙𝑖𝑚𝑖𝑡 parameter.
he counter is incremented by 1 for each unsuccessful improvement
ttempt. If there is a solution whose counter value is greater than
𝑖𝑚𝑖𝑡 after the onlooker bee phase, this solution will be abandoned in
he scout bee phase. Unlike other types of bees, these bees search for
ew food sources without sharing information. After they find the food
ources, the counter value of the solutions for these sources is set to 0
nd the scout bees continue their work as employed bees.

The steps of the MGGP algorithm are similar to those of GP, but
here are differences in the operation of the optimization operators due
o the tree structure of the solutions. First, initial solutions are gen-
rated and the best solution(s) are stored using elitism. This operator
nsures that a certain number of the best solutions are passed on to
he next generation. Thus, the best individuals in the population are
etained over generations. After elitism, attempts are made to improve
he solutions with three evolutionary operators: selection, crossover,
nd mutation. Each of these operators is applied to every solution in
he population. The selection operator is used to select parents that
enerate new solutions based on the fitness values of the solutions in
he population. This operator is used to evaluate the fitness of each
ndividual in the population for the problem. Individuals with good
itness are more likely to be recovered in the next generation. It is used
ith methods such as the selection operator, the roulette wheel, or the

ournament method. The crossover operator (Fig. 3) randomly modifies
elected subtrees of parent solutions to generate child solutions. The
igh-level crossover operator (Fig. 4) proposed by MGGP exchanges
he trees (genes) that represent the solution. In the mutation operator,

selected node or subtree is changed depending on the mutation
robability.

As mentioned earlier, two important operators in MGGP are adapted
o MHABCP. The first is the modifier crossover operator, which is called

he information sharing mechanism in MHABCP. The other operator is
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Fig. 2. Flowcharts of AP methods.
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Table 2
The comparison of the methods used.

Criteria MGGP MHABCP

Initialization Ramped half and half Ramped half and half
Operator High-level crossover,

crossover, mutation
Hive exchange mechanism,
information sharing
mechanism

Solution trees Multi gen Multi hive
Inspired algorithm GP ABCP

the high-level crossover operator, which is called the hive exchange
mechanism. The representation of the two operators can be found in
Figs. 3 and 4.

Both algorithms improve the solutions with their own improvement
mechanisms. These processes run until criteria such as the number of
iterations and the number of evaluations are satisfied. The comparison
of the methods can be found in Table 2. It should be noted that although
both algorithms use the same technique for generating output solutions,
the flowcharts and operators for improving the solutions in this table
differ.

3. Experimental design

In this section, we explained the generated dataset and presented
information about the fitness functions and parameters.

We expect to answer the following research questions with experi-
ments:

• Can PSH be used as an efficient biosorbent for the removal of TY
dye from wastewater?

• Under which experimental conditions can the highest biosorption
5

efficiency be achieved when the process is optimized? m
• Which isotherm and kinetic models is the biosorption reaction
compatible with?

• Can EC -based AP methods be used to model water treatment
processes such as biosorption?

• What is the observed error value when the biosorption process is
mathematically modeled using different methods?

• In what order are the features that contribute to the process
important?

3.1. Data and analysis

The experimental dataset was generated under laboratory condi-
tions to improve predictive models. It was partitioned based on the data
partitioning generally recommended in machine learning (70% training
and 30% test samples) (Alizadeh, Shahheydari, Kavianpour, Shamloo,
& Barati, 2017).

The total number of samples in the dataset is 84, so 59 randomly
selected samples (about 70%) were used for training and the remaining
25 samples (about 30%) were used for testing. Each data sample has
6 parameters: (𝑥1) pH, (𝑥2) biosorbent concentration (g/L), (𝑥3) initial
ye concentration (mg/L), (𝑥4) contact time (min), (𝑥5) temperature
◦C), and (𝑦) biosorption efficiency (%). The biosorption is the actual
utput (𝑦) and should be predicted from other parameters. It can be
oted that all features except output are represented as input parame-
ers for the methods to predict the actual output of the samples. This
epresentation can be seen in Fig. 5.

.2. Performance evaluation criteria

Methods were evaluated using the sum squared error (SSE), root
ean square error (RMSE), and mean absolute error (MAE) fitness
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(

Fig. 3. Information sharing mechanism of MHABCP/Crossover operator MGGP ((a): current solution, (b): neighborhood solution, (c): sub tree selected from neighborhood solution,
d): candidate solution).
Fig. 4. High-level crossover of MGGP/hive exchange mechanism of MHABCP.
functions. SSE, RMSE, and MAE are given in Eqs. (18), (19), and (20),
respectively.

𝑆𝑆𝐸 =
𝑁
∑

𝑖=1

(

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
)2 (18)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1

𝑁
∑

(

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
)2 (19)
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|

|

|

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
|

|

|

𝑁
(20)

where 𝑓
(

𝑥𝑖
)

is predicted output of models proposed by the methods,
𝑌𝑖 is output of generated by real experiments and 𝑁 is the number
of samples. Moreover, the performance of the models was statistically
evaluated by the coefficient of determination (goodness of fit, 𝑅2) using
Eq. (21). The closer this value is to 1, the better the actual data fit the
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Fig. 5. Data analysis of the proposed methods.
Fig. 6. FTIR spectrum of PSH biosorption with TY.
predicted data.

𝑅2 = 1 −
∑𝑁

𝑖=1
(

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
)2

∑𝑁
𝑖=1

(

𝑌𝑖 − 𝑌
)2

(21)

The complexity of trees of the models 𝐶 is also proportional to the
depth of solution 𝑑 and the total number of nodes in the corresponding
depth of solution 𝑛, and is calculated as in Eq. (22).

𝐶 =
𝑑
∑

𝑘=1
𝑛 ∗ 𝑘 (22)

3.3. Parameters of AP methods

Since parameter selection also affects the success of the algorithm,
we performed hyperparameter optimization using the Grid Search (GS)
algorithm for the parameters determined in both algorithms. GS tries
all possible combinations in a given hyperparameter space to select the
best performing parameters. For population/colony size (100, 200, 250,
500), number of iterations (100, 200, 250, 500), tournament size (5,
10, 20), information sharing mechanism/high level cross rate (0.1, 0.2,
0.5), and maximum number of genes/hives (2, 3, 5, 10). In total, the
parameters were adjusted among 4 ∗ 4 ∗ 3 ∗ 3 ∗ 4 = 516 different
combinations and other parameters determined by expert opinions are
shown in Table 3.

For a fair comparison, the same parameter values are used in
MGGP and MHABCP. To improve the solutions, high-level crossover,
crossover, mutation, and direct reproduction were used in MGGP, while
information sharing mechanism and hive exchange mechanism oper-
ators were used in MHABCP. Terminals express the functions 𝑠𝑞𝑢𝑎𝑟𝑒
(squared), 𝑐𝑢𝑏𝑒 (cubed), 𝑝𝑜𝑤𝑒𝑟 (exponent), 𝑛𝑒𝑔 (negative), and 𝑠𝑞𝑟𝑡
(square root). They are also functions representing the product of the
three terminals 𝑚𝑢𝑙𝑡3 and their sum 𝑎𝑑𝑑3. Other functions in Table 3
give the trigonometric function equivalent of the terminal.
7

Table 3
Parameters.

Parameters MGGP MHABCP

Population size 250 –
Colony size – 250
Generation 500 500
Maximum tree depth 5 5
Crossover rate 0.84 –
Mutation rate 0.14 –
Direct reproduction Rate 0.02 –
Tournament size 20 –
Limit – 50
Maximum number of gen/hive 10 10
Information sharing mechanism rate – 0.8
Hive exchange mechanism rate – 0.2
High level crossover 0.2 –
Functions +, −, ∗,/ (protected), 𝑠𝑞𝑢𝑎𝑟𝑒,

𝑐𝑢𝑏𝑒, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑎𝑑𝑑3, 𝑚𝑢𝑙𝑡3,
𝑠𝑞𝑟𝑡, 𝑝𝑜𝑤𝑒𝑟, 𝑛𝑒𝑔𝑒𝑥𝑝, 𝑛𝑒𝑔, 𝑎𝑏𝑠,
𝑙𝑜𝑔

4. Experimental evolution and results

4.1. Analysis of biosorption process

4.1.1. FTIR and SEM
FTIR spectra of PSH before and after TY biosorption are given in

Fig. 6. The peak occurring at 3292 cm−1, located between 3000–3600
cm−1 in the FTIR spectra, is attributed to the hydrogen bonded OH
stretching vibrations (Demiral & Şamdan, 2016; Kaur, Singh, & Rajor,
2021). The peak seen at 2929 cm−1 represents the C–H stretch. The
peak at 1743 cm−1 shows the stretching of the C=O carbonyl bond
originating from esters and ketones (Subbaiah & Kim, 2016). The peak
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Fig. 7. PSH SEM images (a) before biosorption, (b) after biosorption.
at 1453 cm−1 indicates the C–H stretching and the strong peak at 1030
cm−1 for C–O stretching vibration, respectively (Demiral & Şamdan,
2016; Kaur et al., 2021). The strong peak that emerged in 1634 cm−1

refers to the C=C vibrations attributed to the olefinic and aromatic
structure for the PSH. The peak occurring at 1229 cm−1 indicates the
presence of ester groups. The peak at 557 cm−1 indicates the presence
of alkynes and alkyl halides (Demiral & Şamdan, 2016).

SEM images of PSH before and after TY biosorption are given in
Fig. 7. SEM images were obtained at 2 kx magnification and at a
scale of 20 μm. The heterogeneous and porous structure of PSH was
clearly visible. After the biosorption process, it was observed that the
PSH surface and the pores are coated with dye (Hameed & El-Khaiary,
2008).

4.1.2. Effect of pH on biosorption
The pH change of the dye solution is very important for the biosorp-

tion capacity as it affects the solubility of the dye and the surface
charge of the adsorbent (Subbaiah & Kim, 2016). According to Fig. 8(a),
the 𝑝𝐻𝑝𝑧𝑐 value was determined to be 6.86. Here, the point from
the graph where the initial pH value equals the final pH value is
determined as 𝑝𝐻𝑝𝑧𝑐 . At pH conditions below this value, the biosorbent
surface becomes cationic and electrostatically interacts with TY, an
ionic dye. This leads to an increase in biosorption under low pH condi-
tions (Bameri et al., 2022; Mittal, Ahmad, & Mittal, 2021; Rigueto et al.,
2021). In biosorption, there is an electrostatic interaction between
the biosorbent and the dye (Raju & Sunil, 2018). When examining
the effect of pH value of dye solution (2–8) on biosorption, initial
dye concentration was 50 mg/L and biosorbent concentration was 1
g/L with 120 min contact time (Fig. 8(b)). While the pH value of
the TY solution was 2, the biosorption efficiency reached 90.7% and
the biosorption capacity reached 30.49 mg/g. Percentage biosorption
efficiency of 21.4%, 34%, and 19.9% at pH 4, 6 and 8, respectively,
and biosorption capacity values of 9.63, 25.01 and 11.87 mg/g were
achieved. A sharp decrease in efficiency and biosorption capacity is
observed when pH rises from 2 to 4. The reason for this situation may
be that the surface charge changes with the loss of protons on the
biosorbent surface (Mittal et al., 2021). For anionic dyes, it is seen
that the biosorption capacity decreases as the pH level increases. Weak
electrostatic interaction might be the cause of this situation (Rattana-
pan et al., 2017). In addition, when the pH value is greater than 6, TY
precipitates and biosorption efficiency decreases (Raju & Sunil, 2018).
8

4.1.3. Effect of biosorbent concentration on biosorption
In order to examine the effect of the concentration of biosorbent

on the biosorption, it was studied at an initial dye concentration of
50 mg/L at pH 2, with the concentration of 0.5–10 g∕L biosorbent.
When Fig. 9 is examined, it is clearly seen that the biosorption ca-
pacity decreases with the increase in the concentration of biosorbent.
Biosorption efficiency did not show any significant change with the
increase of the concentration of biosorbent and biosorption efficiency
values close to each other were obtained. Biosorption efficiency of 92%
and 92.17%, which were close to values at 0.5 g∕L and 10 g∕L, was
achieved, respectively. The highest biosorption capacity was achieved
with 74.88 mg/g and 0.5 g∕L biosorbent concentration. For this reason,
0.5 g∕L biosorbent concentration was chosen and the experiments were
continued. As the concentration of biosorbent increases, the number
of active sites on the biosorbent surface also increases. Biosorption
continues until the active sites are saturated. However, this situation
causes a decrease in the mobility in the solution as the concentration
increases (Azizinezhad, 2022). In addition, agglomeration occurs as the
concentration of biosorbent increases (Mahmoodi et al., 2016). This
result shows that high biosorption efficiency can be achieved with a
low concentration of biosorbent, and that both the cost and the amount
of waste will be low (Isik et al., 2022).

4.1.4. Interpretation of isotherm models used
The isotherm models examined in the biosorption of TY to PSH

are given in Fig. 10. The 𝑅2 value in the Langmuir isotherm was
determined as 0.7124 (Fig. 10(a)). The 𝑞𝑚𝑎𝑥 value was calculated as
181.8 mg/g according to the Langmuir isotherm. In addition, the 𝑅2

value in the Freundlich isotherm was determined as 0.839 (Fig. 10(b)).
The diffuse porous structure of the biosorbent surface in SEM images
showed that it could have a heterogeneous surface. In the D-R isotherm
(Fig. 10(c)), the 𝑅2 value was determined as 0.9874. The constant 𝑘𝐷
and E were calculated as 0.0047 mol2∕J2 and 10.31 kJ/mol, respec-
tively. In this case, it can be concluded that there is ion exchange in
the biosorption process (Isik et al., 2022). The effect of initial dye
concentration on biosorption efficiency and biosorption capacity is
given in Fig. 10(d). The highest biosorption efficiency (%) was achieved
at a dye concentration of 100 mg/L (pH:2, biosorbent concentration:
0.5 g/L, contact time: 120 min), with a biosorption capacity of 166.26
mg/g. It can be seen that with the increase of initial dye concentration,
the biosorption efficiency (%) and biosorption capacity increase up to
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Fig. 8. Effect of pH on biosorption efficiency (%) and biosorption capacity (𝑞𝑒).
Fig. 9. Effect of biosorbent concentration on biosorption efficiency (%) and biosorption capacity (𝑞𝑒).
Table 4
Various sorbents and experimental information used in the adsorption of TY in the literature.

Sorbent Biosorption efficiency (%) 𝑞max (mg/g) Contact time References

Supported chitosan adsorbent 97.95 120.48 90 min Shi et al. (2020)
Wallnut husk 85.5 7.8431 20 min Ibrahim et al. (2021)
Kahwa tea carbon – 55.55 240 min Mittal et al. (2021)
Polyaniline-SiO2 nanocomposite 95 141.5 80 min Rastgordani, Zolgharnein, and Mahdavi (2020)
Fe3O4 – 30 60 min Pietrzyk et al. (2022)
Fe3O4@10%Zn – 43 60 min Pietrzyk et al. (2022)
PSH 95 181.8 120 min This study
a certain concentration and then decrease. The reason for this situation
may be insufficient active sites on the biosorbent surface with increas-
ing concentration (Saravanan et al., 2021). Kinetic and thermodynamic
studies were investigated for an initial dye concentration of 100 mg/L.

Table 4 demonstrates the utilization of agricultural wastes, compos-
ites, and nanoparticles as sorbents in TY adsorption. It can be expressed
that PSH has a greater 𝑞𝑚𝑎𝑥 value than synthesized composites. With
his finding, it was determined that PSH, a naturally occurring, in-
xpensive, and plentiful agricultural waste, achieved high biosorption
ecause of its porous structure. PSH was employed in this investigation
ithout any chemical treatment, which saves energy and money.

.1.5. Kinetic models interpretation
The relationship between contact time and dye removal efficiency

n the biosorption process is known as biosorption kinetics (Shi et al.,
020). The reaction kinetics (Fig. 11) in the biosorption of TY to PSH
ere investigated with an initial dye concentration of 100 mg/L and a
iosorbent concentration of 0.5 g/L at pH 2 for 120 min.

When Fig. 11 is examined, it is seen that the highest regression
alues for TY biosorption kinetics were obtained with the PSO model
𝑅2 = 0.9943) and the Elovich model (𝑅2 = 0.9524). The Elovich model
9

constants were calculated as 𝛼 45.18 mg/g min and 𝛽 0.027 g/mg,
respectively. The PSO model states that there is a physicochemical
interaction between the two phases and that there is surface biosorp-
tion including chemisorption. The Elovich model, on the other hand,
suggests that biosorption occurs by mass transfer and that there is
chemisorption at the surface (Rigueto et al., 2021). The rate constant
(𝑘2) for the PSO model was calculated as 0.002 g/mg.min. The numer-
ical value of the rate constant gives information about whether the
biosorption between the biosorbent and the dye reaches equilibrium
quickly or slowly. The low computed 𝑘2 value can mean that it takes
the biosorption a while to reach equilibrium (Netzahuatl-Muñoz et al.,
2012).

4.1.6. Thermodynamic data interpretation
The effect of temperature on TY dye biosorption of PSH was investi-

gated for 20, 35 and 50 ◦C. The graph in Fig. 12 was obtained according
to the Van’t Hoff equation in Eq. (15). Eqs. (14)–(16) calculated param-
eters 𝛥H, 𝛥S and 𝛥G. The 𝛥H value was calculated as −30.55 kJ/kmol
and the 𝛥S value as −79.32 J/mol K. According to the calculated 𝛥H
value, biosorption is a physical and exothermic process (Isik et al.,

◦
2022). The 𝛥G value calculated for 20, 35 and 50 C temperatures was
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Fig. 10. (a) Langmuir, (b) Freundlich, (c) D-R Isotherms. (d) Effect of initial dye concentration on biosorption efficiency (%) and biosorption capacity (𝑞𝑒).
Fig. 11. Biosorption kinetics, (a) PFO model, (b) PSO model, (c) Intraparticle diffusion, (d) Elovich model.
etermined as −7.3, −6.1 and −4.91 kJ/mol, respectively. A negative
𝛥G value indicates that biosorption occurs spontaneously (Joudi et al.,
2020).

Following the evaluation of the collected data, several inferences
regarding the biosorption process between PSH and TY were made. Ac-
cording to theory, the PSH surface protonates in an acidic environment,
and the anionic dye TY then initiates the biosorption process. We can
discuss the existence of chemical adsorption because the exothermic
10
reaction is compatible with PSO. Additionally, the biosorption’s com-
pliance to the D-R isotherm suggests that ion exchange has occurred.
In Fig. 13, the biosorption experiment is given schematically. The
change in color of PSH before and after biosorption clearly indicates
that the biosorbent has biosorbed the dye. In addition, the color of
the TY solution became transparent after biosorption. After this part
of the study, by modeling the biosorption process with EC-based AP
methods, the parameters affecting the biosorption were investigated
with empirical equations.
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Fig. 12. Effect of temperature on PSH biosorption of TY (Van’t Hoff graph).
Fig. 13. Schematic view of the biosorption process.
4.2. Simulation results

4.2.1. Results of the AP methods
The modeling studies were tested with 100 independent runs for

each method and the results were shown in Table 5. The dataset
resulting from the experiments was first randomly mixed to learn the
methods using different samples. The table contains the results of the
models generated by both methods for both training and test data.
For 𝑅𝑀𝑆𝐸Train, 𝑀𝐴𝐸Train and 𝑅2

Train, the models from both methods
obtained very similar results. The significant difference in the results
of the methods was seen in the test data. The mean value of MGGP
models for 𝑆𝑆𝐸Test is approximately 1.14 times higher than that of
MHABCP. However, this difference is not observed in the 𝑅2 values of
the models. When evaluating the best models, the model of MHABCP
is quite low compared to the MGGP model both in terms of number
of nodes and complexity. What is striking in the results in this table is
that the MHABCP models have lower error values and higher 𝑅2 values
than MGGP for all evaluation criteria.

Because the performance evaluation criteria and 𝑅2 values of the
two methods were very close, one-sided t-tests were performed to deter-
mine whether there was a significant difference between the methods.
The null hypothesis that the mean of MGGP’s performance evaluation
criteria was equal to that of MHABCP was tested with the alternative
11
that the mean was greater than that of MHABCP. The significance level
(𝛼) used for the test was set at 0.05. The results of the t-tests for all
criteria present in Table 6.

It can be noted from the Table 6 that the returned value of ℎ = 0
accepts the null hypothesis that the means of MGGP and MHABACP
are equal. This means that there is no significant difference at the
5% level for the performance criteria tested. From this table, it can
be seen that for the criteria 𝑆𝑆𝐸Train, 𝑆𝑆𝐸Test, 𝑀𝐴𝐸Train, there is a
significant difference between the two methods and the null hypothesis
is rejected. In addition, the null hypothesis was not accepted for the
total number of nodes and complexity. The t-test results in Table 6
support the simulation results in Table 5. It is worth noting that there
is a significant difference in favor of MHABCP for some performance
criteria.

4.2.2. Analysis of the best models
Table 7 shows the comparative results of the best models with the

lowest error and the highest 𝑅2
Test values obtained by both methods

after 100 runs.
In general, the MHABCP model has lower errors than the MGGP

model. However, the 𝑅2
test value of MGGP is slightly higher than that

of MHABCP. Both models have very high 𝑅2 values in both training and
testing. The most significant difference between the criteria is seen in
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Table 5
Simulation results.

Method MHABCP MGGP MHABCP MGGP MHABCP MGGP MHABCP MGGP

Criteria Mean Best Worst Standart deviation

𝑅𝑀𝑆𝐸Train 2.3076 2.6062 2.0188 2.3893 3.8312 3.9672 0.4754 0.5712
𝑅𝑀𝑆𝐸Test 10.3412 11.1470 6.1626 5.8459 15.8888 17.2983 2.6439 2.5112
𝑆𝑆𝐸Train 327.4954 356.0730 80.1573 85.5713 866.0008 928.5871 137.8742 169.3837
𝑆𝑆𝐸Test 2848.2636 3262.4791 854.3779 949.4488 6311.3789 7480.7909 1451.2575 1436.5562
𝑀𝐴𝐸Train 1.4968 1.6575 0.9316 0.8347 2.6180 2.7636 0.3276 0.4324
𝑀𝐴𝐸Test 6.8905 7.4148 4.4464 4.3823 11.0314 10.2585 1.5293 1.4113
𝑅2

Train 0.9965 0.9962 0.9992 0.9991 0.9908 0.9902 0.0015 0.0018
𝑅2

Test 0.9558 0.9176 0.9784 0.9760 0.9239 0.8110 0.0123 0.0361
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑁𝑜𝑑𝑒𝑠 71.7000 80.2000 42.0000 55.0000 110.0000 123.0000 15.5345 13.9068
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 198.1400 234.1700 96.0000 151.0000 360.0000 384.0000 53.5785 47.9268
Fig. 14. The relationship between the predicted and actual data.
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able 6
and p-value of t-tests.

h p

𝑅𝑀𝑆𝐸Train 0 0.1296
𝑅𝑀𝑆𝐸Test 0 0.1722
𝑆𝑆𝐸Train 1 0.0010
𝑆𝑆𝐸Test 1 3.8E−05
𝑀𝐴𝐸Train 1 0.0014
𝑀𝐴𝐸Test 0 0.1592
𝑅2

train 0 0.9099
𝑅2

test 0 1.0000
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑁𝑜𝑑𝑒𝑠 1 5.6E−06
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 1 3E–07

he 𝑆𝑆𝐸Test values. According to these values, MGGP is approximately
.7 times higher than MHABCP. At the same time, the model created
y MGGP is about 0.5 times more complex than the MHABCP model.
his shows that there is no direct relationship between the complexity
f the model and the accuracy of the prediction. Simplified formulas of
he best models in Table 7 are shown in Table 8.

The dependent/independent parameters in Table 8 are presented
n Section 3.1. Since the complexity of the MGGP model is greater
han that of the MHABCP. Therefore, it can be said that it is more
dvantageous to prefer MHABCP. Moreover, both formulas contain all
ependent parameters. In addition, Figs. 14 and 15 are plotted to see
ow well they fit the biosorption data while analyzing the best models
n this study.
12

m

Fig. 14 shows how the methods relate to training and testing data.
he figure shows that data from chemical experiments can be modeled
ffectively using EC -based AP methods. The models fit the training
ata better than the test data. However, both models have a 𝑅2

test value
f about 0.98. As the 𝑅2 values decrease by 2% between training and
est data, the predictive accuracy of the models also decreases. Both
ethods fit the training and test data well with high 𝑅2 values, and

here is no overfitting (memorization of the training data and failure of
he test data). This is also confirmed by the scatter plots in Fig. 15.

Fig. 15 is a scatter plot where the value of the actual values
etermines the position on the horizontal axis and the value of the
redicted values determines the position on the vertical axis. The closer
he blue points on the scatter plots are to the lines, the stronger the
orrelation between the actual and predicted values. In this figure, the
oints converged with the line when training the best MHABCP model.
he convergence is greater for the training data than for the test data.
onsidering Figs. 14 and 15 together, MGGP and MHABCP are a great
uccess.

.2.3. Feature analysis results in the biosorption process
In this subsection, feature selection with SR was performed to un-

erstand which features are most relevant/necessary to the biosorption
rocess. For this purpose, the frequencies of the input parameters were
alculated and visualized in the distributions in all models with high 𝑅2

alues of 100 runs in both methods. The frequency distributions for the
odels with 𝑅2 ≥ 0.8 and 𝑅2 ≥ 0.9 are given in Fig. 16. The population
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Table 7
Comparative results of the best models.

Method 𝑅𝑀𝑆𝐸Train 𝑅𝑀𝑆𝐸Test 𝑆𝑆𝐸Train 𝑆𝑆𝐸Test 𝑀𝐴𝐸Train 𝑀𝐴𝐸Test 𝑅2
Train 𝑅2

Test Best model criteria

MHABCP 2.0188 6.1626 80.1573 240.4629 1.2928 4.4464 0.9975 0.9760
Nodes 69
Depth 4
Complexity 205

MGGP 2.3893 5.8459 85.5713 400.7300 1.8136 4.3823 0.9958 0.9784
Nodes 110
Depth 4
Complexity 334
Table 8
Simplified formulas.

Method Simplified formulas

MHABCP

𝑦 = 1554.0 e−1.0 e
−1.0 𝑥1 −1.0 cos(𝑥4)− 1.0 𝑥4

𝑥1 − 117.6 e−
1.0 𝑥4

2

𝑥3+2.0 𝑥4

−8549.0 e−
1.0 𝑥3 𝑥4
2.0 𝑥4+𝑥5 − 47.84 e−1.0

√ 𝑥4
𝑥3

+1527.0 e−1.0 e
−

1.0 𝑥4
𝑥1 + 9052.0 e

− 1.0 𝑥4
2

𝑥1 2 − 4.173 cos
(

𝑥3 cos
(

𝑥5
) (

𝑥1 + 𝑥5 − 6.176
))

−3915.0 e−1.0 e−1.0 𝑥1
2
− 2.742𝑒+15 cos(𝑥1)

1.407𝑒+14 𝑥3−1.407𝑒+14 𝑥4
− 3.415

√

𝑥4 𝑥5
𝑥3+7.405

+ 2443.0

MGGP

𝑦 = 4.816 cos
(√

𝑥1 + 𝑥2 + 𝑥4
)

− 0.3403 𝑥3 − 0.3403 sin
(

𝑥1 + 𝑥3 + 𝑥4
)

− 0.3403 sin
(

2.0 𝑥2 + 𝑥5
)

−4.163 cos
(

𝑥3
cos(𝑥4)

)

− 13.67 𝑥1 − 58.01 cos
(

𝑥3 − 0.7854
)

+27.76 sin
(

𝑥1
)

− 0.6806 sin
(

𝑥5
)

− 693.2 e−1.0 𝑥1−2.0 𝑥4 + 6.939𝑒−18 (4.197𝑒+15 𝑥3+8.394𝑒+15 sin(𝑥5))
cos(𝑥4 2)

− 2.22𝑒−16 (5.26𝑒+15 𝑥1+2.63𝑒+15 sin(𝑥5))
cos(𝑥4)

+0.008989 𝑥5 cos
(

𝑥1
) (

2.0 𝑥1 + 𝑥4 + cos
(

𝑥4
)

+ sin
(

𝑥5
))

+ 0.007106 𝑥1 cos
(

𝑥4
) (

𝑥2 + 𝑥4 + 𝑥5
)

+0.002369 cos
(

𝑥4
) (

2.0 𝑥2 + 𝑥4
) (

𝑥1 + 𝑥2 + 𝑥5
)

+ 148.4
Fig. 15. The scatter plots between the predicted and actual data.
size/colony size of each run is 500. Therefore, the population size of a
total of 100 runs is 500 * 100 = 50 000. In other words, Fig. 16 was
obtained by analyzing all runs and evaluating a total of 50 000 different
individuals.

As mentioned in Section 3.1, the input parameters are (𝑥1) pH, (𝑥2)
biosorbent concentration (g/L), (𝑥3) initial dye concentration (mg/L),
(𝑥4) contact time (min), (𝑥5) temperature (◦C), and (𝑦) biosorption
efficiency (%). Fig. 16 clearly shows that the methods contain the
same inputs in the formulas at similar frequency frequencies. The most
significant point that MHABCP has more individuals with higher 𝑅2

values for all population members. Another important point is how
significant the inputs are, from high to low, respectively, 𝑥4, 𝑥1, 𝑥3,
𝑥 , 𝑥 .
13
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4.2.4. Additional study comparing AP methods

Our goal is to compare the success of the AP method with an-
other method. For this purpose, we have chosen the newly proposed
Interaction-Transformation Evolutionary Algorithm (ITEA) for SR prob-
lems as our benchmarking algorithm. There are three important reasons
why we chose this algorithm:

• The algorithm is based on the interaction transformation repre-
sentation, unlike the AP methods.

• It has a closed form for the gradient of the generated model,
thanks to its differential representation, which allows to compute
the partial effect on the returned expressions.
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Fig. 16. Frequency distribution of input variables.
Table 9
Comparison of the AP methods and ITEA.

Method MHABCP MGGP ITEA

𝑅𝑀𝑆𝐸𝑇 𝑟𝑎𝑖𝑛 𝑅𝑀𝑆𝐸𝑇 𝑒𝑠𝑡 𝑅𝑀𝑆𝐸𝑇 𝑟𝑎𝑖𝑛 𝑅𝑀𝑆𝐸𝑇 𝑒𝑠𝑡 𝑅𝑀𝑆𝐸𝑇 𝑟𝑎𝑖𝑛 𝑅𝑀𝑆𝐸𝑇 𝑒𝑠𝑡

Mean 2.3076 10.3412 2.3893 11.1470 3.3006 12.7008
Best 2.0188 6.1626 2.6062 5.8459 2.8701 6.5911
Worst 3.8312 15.8888 3.9672 17.2983 5.1357 38.1795
Standard deviation 0.4754 2.6439 0.5712 2.5112 0.7942 6.9792
Table 10
Best model of ITEA.
𝑅𝑀𝑆𝐸𝑇 𝑟𝑎𝑖𝑛 𝑅𝑀𝑆𝐸𝑇 𝑒𝑠𝑡 Simplified model

2.8701 6.5911

0.023
√

𝑥1𝑥32𝑥
2
3𝑥

2
4𝑥

3
5 − 307.895

√

𝑥32𝑥4𝑥5 − 54.508 tan
(

𝑥−32 𝑥3𝑥
−2
4 𝑥−35

)

− 0.046
√

𝑥−11 𝑥32𝑥
2
3𝑥

2
4𝑥

3
5 + 25.404𝑒𝑥31𝑥22𝑥3𝑥−24 + 54.483

+ 883.37
√

𝑥−31 𝑥32𝑥4𝑥5 + 16.452𝑒𝑥31𝑥−22 𝑥3𝑥−34 𝑥−15
• ITEA was able to generate better models than the algorithms
random forest (RF), extreme gradient boosting (XGB) and kernel
ridge regression (KR) (Aldeia & de França, 2021).

To make a fair comparison, the parameter values given in Table 3
were not changed in ITEA. Therefore, the population size used in the
experiments is 250 and the number of iterations is 500. The maxterms
10, strength range (−3, 3) is taken from the specific parameters of the
algorithm. The results of 100 independent runs are shown in Table 9.

The most striking aspect of this table is that ITEA gives results that
are very close to the AP methods. The best mean and 𝑅𝑀𝑆𝐸𝑇 𝑟𝑎𝑖𝑛 is
that of MHABCP. ITEA is about 1 higher than the mean and about 0.8
higher than the best 𝑅𝑀𝑆𝐸𝑇 𝑟𝑎𝑖𝑛. The biggest difference between the
methods of ITEA and AP methods is the height of the standard deviation
in the test data. This shows that the difference between the best and
worst model produced by the algorithm is significant. The comparison
results prove that ITEA is a strong competitor for the AP methods. The
best model produced by this algorithm for the data is given in Table 10.
The model is produced using square root and exponent functions rather
than trigonometric functions.
14
5. Discussion

The answers to the research questions based on our experiments and
simulations are listed below.

• Can PSH be used as an efficient biosorbent for the removal of TY
dye from wastewater?
Answer: It is thought that PSH will be used as an efficient biosor-
bent due to the results it achieves in a short contact time.

• Under which experimental conditions can the highest biosorption
efficiency be achieved when the process is optimized?
Answer: For the biosorption of TY dye from wastewater by
PSH, 95% biosorption efficiency was achieved at pH 2, 0.5 g/L
biosorbent concentration, 100 mg/L initial dye concentration and
120 min contact time.

• Which isotherm and kinetic models is the biosorption reaction
compatible with?
Answer: The biosorption process follows the D-R isotherm and the
PSO kinetic model. The reaction occurs spontaneously.
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• Can EC-based AP methods be used to model chemical experiments
such as biosorption?
Answer: These methods fit the data well, with very high 𝑅2

values for both training and test data. Moreover, the high success
of the models in the test is evidence that the methods do not
overfitting the data. Considering the process as a SR problem and
producing its mathematical models means that we can identify
the process without additional experimental costs. Therefore, this
study shows that EC-based AP methods can be used in modeling
biotechnological applications.

• What is the observed error value when the biosorption process is
mathematically modeled using different methods?
Answer: In the study, we assessed the models based on three
different performance criteria. We also calculated the number of
nodes and the complexity of the models to analyze the trees,
and the 𝑅2 values to evaluate the fit to the data. According to
the simulation results, the SSE values are the highest among the
criteria and the 𝑅2 values are close to 1.

• In what order are the features that contribute to the process
important?
Answer: To evaluate the features, the models with the highest
𝑅2 values were analyzed. Below is the order of importance of
the features for the biosorption process according to the analysis,
from high to low:

– contact time
– pH
– initial dye concentration
– temperature
– biosorbent concentration

. Conclusions

In this study, the biosorption of TY was investigated by optimizing
he process using unmodified PSH, which is a cheap, easily available,
nd natural sorbent. In addition, mathematical models were generated
y using the data of the biosorption process obtained from experimental
tudies using MGGP and MHABCP. The success of the methods is
nfluenced by the values of the initial parameters. Therefore, in our
tudy, the optimal parameters for the methods had to be tuned. For
his purpose, we tried to find the most optimal parameters among 516
ifferent combinations by performing hyperparameter optimization. In
ddition, a biosorption efficiency of 95% was achieved in the parameter
anges selected for the biosorption process, which was optimized for
H 2–8, 0.5–10 g/L biosorbent concentration, 10–300 mg/L initial dye
oncentration, and 0–120 min contact time.

The findings are as follows:

• At pH 2, with an initial dye concentration of 100 mg/L, and a
biosorbent concentration of 0.5 g/L, 95% biosorption efficiency
was achieved after 120 min.

• A 𝑞𝑚𝑎𝑥 value of 181.8 mg/g was calculated according to the
Langmuir isotherm.

• According to D-R isotherm, it is found that PSH has a heteroge-
neous surface and is subject to multilayer biosorption.

• Biosorption of TY to PSH is an exothermic reaction and occurs
spontaneously.

• According to the simulation results, it should be noted that MAH-
BCP generates better models compared to MGGP.

• The success and complexity of the models are analyzed, and the
effects of the parameters on the process are examined.

• We compared AP methods and the newly proposed ITEA in an
additional study. The results show that these methods are better
than ITEA.

• According to the models, the most significant parameter is the
15

contact time.
When all the findings are evaluated together, it can be concluded
that EC-based AP methods can be used in modeling and analysis of
real problems such as the biosorption process. We plan to evaluate
the success of using EC -based methods in modeling various chemical
processes in future studies. We also plan to improve the performance
of hybrid methods and select features for high-dimensional problems.
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