Note on Lie ideals with symmetric bi-derivations in semiprime rings

Emine Koç Sögütcü • Shuliang Huang

Received: 4 September 2021 / Accepted: 16 June 2022 / Published online: 7 July 2022
© The Indian National Science Academy 2022

Abstract

Let R be a semiprime ring, U a square-closed Lie ideal of R and $D: R \times R \rightarrow R$ a symmetric bi-derivation and d be the trace of D. In the present paper, we prove that the R contains a nonzero central ideal if any one of the following holds: i) $d(x) y \pm x g(y) \in Z$, ii) $[d(x), y]= \pm[x, g(y)]$, iii) $d(x) \circ y= \pm x \circ g(y)$, iv) $[d(x), y]= \pm x \circ g(y)$, v) $d([x, y])=[d(x), y]+[d(y), x]$, vi) $d(x y) \pm x y \in Z$, vii) $d(x y) \pm y x \in Z$, viii) $d(x y) \pm[x, y] \in Z$, ix $) d(x y) \pm x \circ y \in Z$, x) $g(x y)+d(x) d(y) \pm x y \in Z$, xi) $g(x y)+d(x) d(y) \pm y x \in Z$, xii) $g([x, y])+[d(x), d(y)] \pm[x, y] \in Z$, xiii) $g(x \circ y)+d(x) \circ d(y) \pm x \circ y \in Z$, for all $x, y \in U$, where $G: R \times R \rightarrow R$ is symmetric bi-derivation such that g is the trace of G.

Keywords Semiprime ring \cdot Lie ideal \cdot Derivation \cdot Bi-derivation \cdot Symmetric bi-derivation.
Mathematics subject classification $16 \mathrm{~W} 25 \cdot 16 \mathrm{~W} 10 \cdot 16 \mathrm{U} 80 \cdot 16 \mathrm{~N} 60$

1 Introduction

Throughout R will represent an associative ring with center Z. A ring R is said to be prime if $x R y=(0)$ implies that either $x=0$ or $y=0$ and semiprime if $x R x=(0)$ implies that $x=0$, where $x, y \in R$. A prime ring is obviously semiprime. But the reverse is not always true. For any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $x y-y x$ and the symbol $x \circ y$ stands for the anti-commutator $x y+y x$. An additive subgroup U of R is said to be a Lie ideal of R if $[u, r] \in U$, for all $u \in U, r \in R . U$ is called a square-closed Lie ideal of R if U is a Lie ideal and $u^{2} \in U$ for all $u \in U$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. The concept of bi-derivation was introduced by Maksa in [7]. It is shown in [8] that symmetric bi-derivations are related to general solution of some functional equations. A mapping $D(.,):. R \times R \rightarrow R$ is said to be symmetric if $D(x, y)=D(y, x)$ for all $x, y \in R$. A mapping $d: R \rightarrow R$ is called the trace of $D(.,$.$) if d(x)=D(x, x)$ for all $x \in R$. It is obvious that if $D(.,$.$) is bi-additive (i.e., additive$ in both arguments), then the trace d of $D(.,$.$) satisfies the identity d(x+y)=d(x)+d(y)+2 D(x, y)$, for all $x, y \in R$. If $D(.,$.$) is bi-additive and satisfies the identities$

$$
D(x y, z)=D(x, z) y+x D(y, z)
$$

[^0]and
$$
D(x, y z)=D(x, y) z+y D(x, z)
$$
for all $x, y, z \in R$. Then $D(.,$.$) is called a symmetric bi-derivation.$

Example 1 Suppose the ring $R=\left\{\left.\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$. Define map $D: R \times R \rightarrow R$ as follows:

$$
D\left(\left(\begin{array}{ll}
a & 0 \\
b & 0
\end{array}\right),\left(\begin{array}{ll}
c & 0 \\
d & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & 0 \\
a c & 0
\end{array}\right)
$$

Then it is easy to verify that D is a symmetric bi-derivation of R.
Ashraf and Rehman showed that R is prime ring with a nonzero ideal U of R and d is a derivation of R such that $d(x y) \pm x y \in Z$, for all $x, y \in U$, then R is commutative in [2]. Ashraf et al. proved this result for a generalized derivation of R in [3]. Further, Ali and Boua [1] proved the following result: Let R be a semiprime ring, I a non-zero ideal of R and F, G be two multiplicative generalized derivations of R satisfying $G(x y)+F(x) F(y)-x y=0$ or $G(x y)+F(x) F(y)-y x=0$ for all $x, y \in R$. In [6], Koç Sögütcü and Gölbaşı have proved that if R is a 2-torsion-free semiprime ring and $(F, d),(G, h): R \rightarrow R$ are two generalized derivations on R such that $[F(u), v]= \pm[u, G(v)]$ or $F(u) \circ v= \pm u \circ G(v)$ or $[F(u), v]= \pm u \circ G(v)$ or $F([u, v])=[F(u), v]+[d(v), u]$ for all $u, v \in U$, then h is commuting mapping.

We extend some well known results concerning Lie ideals in semiprime rings to a symmetric bi-derivations. Throughout the present paper, we shall make use of the following basic identities without any specific mention:
(i) $[x, y z]=y[x, z]+[x, y] z$
(ii) $[x y, z]=[x, z] y+x[y, z]$
(iii) $x y o z=(x o z) y+x[y, z]=x(y o z)-[x, z] y$
(iv) $x o y z=y(x o z)+[x, y] z=(x o y) z+y[z, x]$.

2 The results

Lemma 1 [5, Theorem 1.3] Let R be a 2-torsion free semiprime ring and U a noncentral Lie ideal of R such that $u^{2} \in U$ for all $u \in U$. Then there exist a nonzero ideal I of R such that $I \subseteq U$.

Lemma 2 [4, Lemma 2 (b)] If R is a semiprime ring, then the center of a nonzero ideal of R is contained in the center of R.
Lemma 3 Let R be a 2-torsion-free semiprime ring and I a nonzero ideal of R. If $[I, I] \subset Z$, then R contains a nonzero central ideal.
Proof By the hypothesis, we get

$$
[x, y] \in Z, \text { for all } x, y \in I
$$

Replacing y by $y x$ in above expression, we have

$$
[x, y] x \in Z, \text { for all } x, y \in I
$$

Commuting this term with $r, r \in R$, we obtain that

$$
[[x, y] x, r]=0, \text { for all } x, y \in I, r \in R
$$

Using the hypothesis in the last expression, we get

$$
[x, y][x, r]=0, \text { for all } x, y \in I, r \in R
$$

Replacing r by $r y$ in the above equation and using this expression, we see that

$$
[x, y] R[x, y]=(0), \text { for all } x, y \in I
$$

Since R is semiprime ring, we get

$$
[x, y]=0, \text { for all } x, y \in I
$$

That is, $[I, I]=(0)$. By Lemma 2, we get $I \subseteq Z$. Thus, R contains a nonzero central ideal. This completes the proof.

Lemma 4 Let R be a 2-torsion free semiprime ring and I a nonzero ideal of R. If $I \circ I \subset Z$, then R contains a nonzero central ideal.

Proof We get

$$
x \circ y \in Z, \text { for all } x, y \in I .
$$

Replacing y by $y x$ in the last expression, we obtain that

$$
(x \circ y) x \in Z, \text { for all } x, y \in I .
$$

This implies that

$$
[(x \circ y) x, r]=0, \text { for all } x, y \in I
$$

and so

$$
(x \circ y)[x, r]=0, \text { for all } x, y \in I, r \in R
$$

Replacing y by $y t, t \in R$ in the above expression and using this, we get

$$
[x, y] t[x, r]=0, \text { for all } x, y \in I, r, t \in R .
$$

Replacing r by y in this equation, we have

$$
[x, y] R[x, y]=(0), \text { for all } x, y \in I
$$

Since R is semiprime ring, we get

$$
[x, y]=0, \text { for all } x, y \in I
$$

By Lemma 2, we have, $I \subseteq Z$. We conclude that R contains a nonzero central ideal. This completes the proof. \square
Theorem 1 Let R be a 2-torsion free semiprime ring, U a square-closed Lie ideal of R and $D: R \times R \rightarrow R$, $G: R \times R \rightarrow R$ two symmetric bi-derivations where d is the trace of D and g is the trace of G where $U D(U, U) \neq(0)$. If $d(x) y \pm x g(y) \in Z$, for all $x, y \in U$, then R contains a nonzero central ideal.

Proof By Lemma 1, there exist a nonzero ideal I of R such that $I \subseteq U$. By the hypothesis, we have

$$
d(x) y \pm x g(y) \in Z, \text { for all } x, y \in I .
$$

Writing y by $y+z, z \in I$, we have

$$
d(x) y+d(x) z \pm x g(y) \pm x g(z) \pm 2 x G(y, z) \in Z
$$

Using the hypothesis, we get

$$
2 x G(y, z) \in Z
$$

Since R is 2-torsion free and replacing z by y, we have

$$
x G(y, y) \in Z, \text { for all } x, y \in I
$$

Thus,

$$
x g(y) \in Z, \text { for all } x, y \in I
$$

By the hypothesis, we get

$$
d(x) y \in Z, \text { for all } x, y \in I
$$

Commuting this term with $r, r \in R$, we obtain that

$$
[d(x) y, r]=0, \text { for all } x, y \in I, r \in R,
$$

and so

$$
\begin{equation*}
d(x)[y, r]+[d(x), r] y=0, \text { for all } x, y \in I, r \in R \tag{2.1}
\end{equation*}
$$

Replacing y by $y z, z \in I$, we have

$$
d(x)[y, r] z+d(x) y[z, r]+[d(x), r] y z=0, \text { for all } x, y, z \in I, r \in R .
$$

Using (2.1) equation, we have

$$
d(x) y[z, r]=0, \text { for all } x, y, z \in I, r \in R .
$$

Replacing r by $d(x)$ in this equation, we find that

$$
\begin{equation*}
d(x) y[z, d(x)]=0, \text { for all } x, y, z \in I . \tag{2.2}
\end{equation*}
$$

Multiplying this equation on the left by z, we get

$$
z d(x) y[z, d(x)]=0, \text { for all } x, y, z \in I
$$

Taking y by $z y$ in equation (2.2), we find that

$$
d(x) z y[z, d(x)]=0, \text { for all } x, y, z \in I .
$$

Subctracting two last equations, we arrive at

$$
[z, d(x)] y[z, d(x)]=0, \text { for all } x, y, z \in I
$$

That is,

$$
[z, d(x)] y R[z, d(x)] y=(0), \text { for all } x, y, z \in I
$$

Since R is semiprime ring, we get

$$
[z, d(x)] y=0, \text { for all } x, y, z \in I
$$

Replacing y by $r[z, d(x)], r \in R$ in the last equation, we have

$$
[z, d(x)] r[z, d(x)]=0, \text { for all } x, y, z \in I, r \in R
$$

Again, since R is semiprime ring, we have

$$
\begin{equation*}
[z, d(x)]=0, \text { for all } x, z \in I \tag{2.3}
\end{equation*}
$$

By Lemma 2, we have

$$
d(x) \in Z, \text { for all } x \in I .
$$

Replacing x by $x+y, y \in I$ in above expression, we get

$$
d(x)+d(y)+2 D(x, y) \in Z, \text { for all } x, y \in I
$$

Using $d(x) \in Z$, for all $x \in I$ in this equation, we have

$$
2 D(x, y) \in Z, \text { for all } x, y \in I
$$

Since R is 2-torsion free, we have

$$
\begin{equation*}
D(x, y) \in Z, \text { for all } x, y \in I \tag{2.4}
\end{equation*}
$$

Commuting this term with $r, r \in R$, we get

$$
[D(x, y), r]=0, \text { for all } x, y \in I, r \in R
$$

Taking x by $x s, s \in R$ in the last equation, we obtain that

$$
[s D(x, y)+D(s, y) x, r]=0, \text { for all } x, y \in I, r, s \in R
$$

Using equation (2.4), we get

$$
[s, r] D(x, y)+D(s, y)[x, r]+[D(s, y), r] x=0, \text { for all } x, y \in I, r, s \in R
$$

Replacing s by x in the last equation, we get

$$
[x, r] D(x, y)+D(x, y)[x, r]+[D(x, y), r] x=0, \text { for all } x, y \in I, r, s \in R
$$

Appliying equation (2.4), we see that

$$
2[x, r] D(x, y)=0, \text { for all } x, y \in I, r \in R
$$

Since R is 2-torsion free, we get

$$
[x, r] D(x, y)=0, \text { for all } x, y \in I, r \in R
$$

Using $D(x, y) \in Z$, we have

$$
[x, r] t D(x, y)=0, \text { for all } x, y \in I, r, t \in R
$$

Since R is semiprime, we must contain a family $\wp=\left\{P_{\alpha} \mid \alpha \in \Lambda\right\}$ of prime ideals such that $\cap P_{\alpha}=(0)$. If P is a typical member of \wp and $x \in I$, we get

$$
[x, R] \subseteq P \text { or } D(x, y) \subseteq P, \text { for all } y \in I
$$

by Fact (ii). Define two additive subgroups $A=\{x \in I \mid[x, R] \subseteq P\}$ and $B=\{x \in I \mid D(x, y) \subseteq P$, for all $y \in I\}$. It is clear that $I=A \cup B$. Since a group cannot be a union of two of its subgroups, either $A=I$ or $B=I$, and so, we have $[I, R] \subseteq P$ or $D(I, I) \subseteq P$. Thus both cases together yield $[I, R] D(I, I) \subseteq P$, for any $P \in \wp$. Therefore $[I, R] D(I, I) \subseteq \cap P_{\alpha}=(0)$ and so $[I, R] D(I, I)=(0)$. That is, $[R I D(I, I) R, R] D(I, I)=(0)$. This implies that $[J, R] R J=(0)$ where $J=R I D(I, I) R$ is a nonzero ideal of R by Theorem 1. Then $[J, R] R[J, R]=(0)$. By the semiprimeness of R, we get $[R, J]=(0)$, and so $J \subseteq Z$. We conclude that R contains a nonzero central ideal.

Theorem 2 Let R be a 2-torsion free semiprime ring and U a square-closed Lie ideal of R. Suppose that R admits two symmetric bi-derivations $D: R \times R \rightarrow R, G: R \times R \rightarrow R$ where d is the trace of D and g is the trace of G where $U D(U, U) \neq(0)$ such that
(i) $[d(x), y]= \pm[x, g(y)]$, for all $x, y \in U$, or
(ii) $d(x) \circ y= \pm x \circ g(y)$, for all $x, y \in U$, or
(iii) $[d(x), y]= \pm x \circ g(y)$, for all $x, y \in U$, or
(iv) $d([x, y])=[d(x), y]+[d(y), x]$, for all $x, y \in U$. Then R contains a nonzero central ideal.

Proof i) By Lemma 1, there exist a nonzero ideal I of R such that $I \subseteq U$. We have

$$
[d(x), y]= \pm[x, g(y)], \text { for all } x, y \in I
$$

Substituting $y+z, z \in I$ for y in the hypothesis, we obtain that

$$
[d(x), y]+[d(x), z]= \pm[x, g(y)] \pm[x, g(z)] \pm 2[x, G(y, z)]
$$

Using the hypothesis and 2-torsion freeness of R, we find that

$$
[x, G(y, z)]=0, \text { for all } x, y, z \in I
$$

Writing z by y in last equation, we have

$$
[x, g(y)]=0, \text { for all } x, y \in I
$$

Using the hypothesis in the last relation gives

$$
[d(x), y]=0, \text { for all } x, y \in I
$$

Using the same arguments in the proof equation (2.3), we find that R contains a nonzero central ideal. We complete the proof.
(ii) By Lemma 1, there exist a nonzero ideal I of R such that $I \subseteq U$. By the hypothesis, we get

$$
d(x) \circ y= \pm(x \circ g(y)), \text { for all } x, y \in I
$$

Replacing y by $y+z, z \in I$, we obtain that

$$
d(x) \circ y+d(x) \circ z= \pm(x \circ g(y)) \pm(x \circ g(z)) \pm 2(x \circ G(y, z)) .
$$

Using the hypothesis and 2-torsion freeness of R, we see that

$$
(x \circ G(y, z))=0, \text { for all } x, y, z \in I .
$$

Taking z by y in this equation, we have

$$
x \circ g(y)=0, \text { for all } x, y \in I .
$$

By the hypothesis, we get

$$
d(x) \circ y=0, \text { for all } x, y \in I .
$$

Replacing y by $y z, z \in I$, we see that

$$
y[z, d(x)]=0, \text { for all } x, y, z \in I
$$

Replacing y by $[z, d(x)] r$ in the last equation, we have

$$
[z, d(x)] r[z, d(x)]=0, \text { for all } x, y, z \in I, r \in R
$$

Since R is semiprime ring, we have

$$
[z, d(x)]=0, \text { for all } x, z \in I
$$

The rest of the proof is the same as equation (2.3). This completes proof.
(iii) By Lemma 1, there exist a nonzero ideal I of R such that $I \subseteq U$. We get

$$
[d(x), y]= \pm x \circ g(y), \text { for all } x, y \in I .
$$

Taking y by $y+z, z \in I$, we see that

$$
[d(x), y]+[d(x), z]= \pm x \circ g(y) \pm x \circ g(y) \pm 2 x \circ G(y, z)
$$

By the hypothesis, we see that

$$
2(x \circ G(y, z))=0, \text { for all } x, y, z \in I .
$$

Since R is 2-torsion free, we have

$$
x \circ G(y, z)=0, \text { for all } x, y, z \in I .
$$

Replacing z by y in the above equation, we have

$$
x \circ g(y)=0, \text { for all } x, y \in I .
$$

Using the hypothesis, we get

$$
[d(x), y]=0, \text { for all } x, y \in I
$$

This equation is the same as equation (2.3). Using the same arguments in the proof of Theorem 1, we find the required result.
iv) By Lemma 1 , there exist a nonzero ideal I of R such that $I \subseteq U$. By the hypothesis, we get

$$
d([x, y])=[d(x), y]+[d(y), x], \text { for all } x, y \in I .
$$

Writing y by $y+z, z \in I$ in this equation, we obtain that

$$
\begin{aligned}
& d([x, y])+d([x, z])+2 D([x, y],[x, z]) \\
& =[d(x), y]+[d(x), z]+[d(y), x]+[d(z), x]+2[D(y, z), x]
\end{aligned}
$$

Using the hypothesis and 2-torsion freeness of R, we see that

$$
D([x, y],[x, z])=[D(y, z), x], \text { for all } x, y, z \in I
$$

Replacing z by y in the last equation, we have

$$
d([x, y])=[d(y), x], \text { for all } x, y \in I
$$

Using the hypothesis, we see that

$$
[d(x), y]=0, \text { for all } x, y \in I
$$

The rest of the proof is the same as equation (2.3). This completes proof.
Theorem 3 Let R be a 2-torsion free semiprime ring and U a square-closed Lie ideal of R. Suppose that R admits a symmetric bi-derivation $D: R \times R \rightarrow R$ where d is the trace of D such that
(i) $d(x y) \pm x y \in Z$, for all $x, y \in U$, or
(ii) $d(x y) \pm y x \in Z$, for all $x, y \in U$, or
(iii) $d(x y) \pm[x, y] \in Z$, for all $x, y \in U$, or
(iv) $d(x y) \pm x \circ y \in Z$, for all $x, y \in U$. Then R contains a nonzero central ideal.

Proof (i) By Lemma 1, there exist a nonzero ideal I of R such that $I \subseteq U$. By the hypothesis, we get

$$
d(x y) \pm x y \in Z, \text { for all } x, y \in I
$$

Taking y by $y+z, z \in I$ in the hypothesis, we see that

$$
d(x y)+d(x z)+2 D(x y, x z) \pm x y \pm x z \in Z
$$

Since R is 2-torsion free and using the hypothesis, we arrive at

$$
D(x y, x z) \in Z, \text { for all } x, y \in I
$$

Substituting y for z in the last equation, we have

$$
d(x y) \in Z, \text { for all } x, y \in I
$$

Using the hypothesis, we find

$$
\begin{equation*}
x y \in Z, \text { for all } x, y \in I \tag{2.5}
\end{equation*}
$$

Commuting this term with $r, r \in R$, we get

$$
[x y, r]=0, \text { for all } x, y \in I, r \in R,
$$

and so

$$
\begin{equation*}
[x, r] y+x[y, r]=0, \text { for all } x, y \in I, r \in R \tag{2.6}
\end{equation*}
$$

Replacing y by $y z$ in this equation and using equation (2.6), we have

$$
x y[z, r]=0, \text { for all } x, y, z \in I, r \in R
$$

Writting x by $[z, r]$, we arrive at

$$
[z, r] y[z, r]=0, \text { for all } y, z \in I, r \in R .
$$

That is,

$$
[z, r] y R[z, r] y=(0), \text { for all } y, z \in I, r \in R .
$$

Since R is semiprime ring, we have

$$
[z, r] y=0, \text { for all } y, z \in I, r \in R
$$

Taking y by $t[z, r], t \in R$, we see that

$$
[z, r] R[z, r]=(0), \text { for all } y, z \in I, r \in R .
$$

By the semiprime of R, we conclude that $I \subset Z$. Thus, R contains a nonzero central ideal. This completes the proof.
(ii) By Lemma 1, there exists a nonzero ideal I of R such that $I \subseteq U$. We get

$$
d(x y) \pm y x \in Z, \text { for all } x, y \in I
$$

Taking y by $y+z, z \in I$, we have

$$
d(x y)+d(x z)+2 D(x y, x z) \pm(y+z) x \in Z, \text { for all } x, y, z \in I
$$

Using the hypothesis, we obtain

$$
2 D(x y, x z) \in Z, \text { for all } x, y, z \in I .
$$

Since R is 2-torsion free, we have

$$
D(x y, x z) \in Z, \text { for all } x, y, z \in I .
$$

Replacing z by y in the last expression, we get

$$
d(x y) \in Z, \text { for all } x, y \in I .
$$

By the hypothesis, we get

$$
y x \in Z, \text { for all } x, y \in I .
$$

Using the same arguments after (2.5) in the proof of Theorem 3 (i), we get the required results.
(iii) By Lemma 1, there exists a nonzero ideal I of R such that $I \subseteq U$. We get

$$
d(x y) \pm[x, y] \in Z, \text { for all } x, y \in I
$$

Replacing y by $y+z, z \in I$, we have

$$
d(x y)+d(x z)+2 D(x y, x z) \pm[x, y] \pm[x, z] \in Z, \text { for all } x, y, z \in I
$$

By the hypothesis, we obtain that

$$
2 D(x y, x z) \in Z, \text { for all } x, y, z \in I .
$$

Since R is 2-torsion free, we have

$$
D(x y, x z) \in Z, \text { for all } x, y, z \in I .
$$

Replacing z by y in the last expression, we get

$$
d(x y) \in Z, \text { for all } x, y \in I .
$$

Again by the hypothesis, we get

$$
[x, y] \in Z, \text { for all } x, y \in I
$$

That is, $[I, I] \subset Z$. By Lemma 3, we obtain that R contains a nonzero central ideal.
(iv) By Lemma 1, there exists a nonzero ideal I of R such that $I \subseteq U$. We see that

$$
d(x y) \pm x \circ y \in Z, \text { for all } x, y \in I
$$

Taking y by $y+z, z \in I$, we have

$$
d(x y)+d(x z)+2 D(x y, x z) \pm x \circ y \pm x \circ z \in Z, \text { for all } x, y, z \in I
$$

By the hypothesis, we obtain

$$
2 D(x y, x z) \in Z, \text { for all } x, y, z \in I
$$

Since R is 2-torsion free, we have

$$
D(x y, x z) \in Z, \text { for all } x, y, z \in I
$$

Writting z by y in the last expression, we get

$$
d(x y) \in Z, \text { for all } x, y \in I .
$$

By the hypothesis, we get

$$
x \circ y \in Z, \text { for all } x, y \in I .
$$

That is, $I \circ I \subset Z$. We conclude that R contains a nonzero central ideal. by Lemma 4. The proof is completed.
Theorem 4 Let R be a 2-torsion free semiprime ring and U a square-closed Lie ideal of R. Suppose that R admits two symmetric bi-derivations $D: R \times R \rightarrow R, G: R \times R \rightarrow R$ where d is the trace of D and g is the trace of G such that
(i) $g(x y)+d(x) d(y) \pm x y \in Z$, for all $x, y \in U$, or
(ii) $g(x y)+d(x) d(y) \pm y x \in Z$, for all $x, y \in U$, or
(iii) $g([x, y])+[d(x), d(y)] \pm[x, y] \in Z$, for all $x, y \in U$, or
(iv) $g(x \circ y)+d(x) \circ d(y) \pm x \circ y \in Z$, for all $x, y \in U$. Then R contains a nonzero central ideal.

Proof (i) By Lemma 1, there exist a nonzero ideal I of R such that $I \subseteq U$. By the hypothesis, we get

$$
g(x y)+d(x) d(y) \pm x y \in Z, \text { for all } x, y \in I
$$

Replacing y by $y+z, z \in I$, we arrive at

$$
g(x y)+g(x z)+2 G(x y, x z)+d(x)(d(y)+2 D(y, z)+d(z)) \pm x y \pm x z \in Z
$$

Using the hypothesis and 2-torsion freeness of R, we have

$$
G(x y, x z)+d(x) D(y, z) \in Z, \text { for all } x, y \in I
$$

Writing z by y in this expression, we have

$$
g(x y)+d(x) d(y) \in Z, \text { for all } x, y \in I
$$

Using the hypothesis, we get

$$
x y \in Z, \text { for all } x, y \in I .
$$

Using the same arguments after (2.5) in the proof of Theorem 3 (i), we get the required results.
(ii) By Lemma 1, there exists a nonzero ideal I of R such that $I \subseteq U$. We get

$$
g(x y)+d(x) d(y) \pm y x \in Z, \text { for all } x, y \in I
$$

Taking y by $y+z, z \in I$, we have

$$
g(x y)+g(x z)+2 G(x y, x z)+d(x)(d(y)+2 D(y, z)+d(z)) \pm(y+z) x \in Z
$$

Using the hypothesis, we obtain

$$
2 G(x y, x z)+2 d(x) D(y, z) \in Z, \text { for all } x, y, z \in I .
$$

Since R is 2-torsion free, we have

$$
G(x y, x z)+d(x) D(y, z) \in Z, \text { for all } x, y, z \in I
$$

Replacing z by y in the last expression, we get

$$
g(x y)+d(x) d(y) \in Z, \text { for all } x, y \in I
$$

By the hypothesis, we get

$$
y x \in Z, \text { for all } x, y \in I .
$$

Using the same techniques in the proof of Theorem 3 (i), we can prove that R contains a nonzero central ideal. (iii) By Lemma 1, there exists a nonzero ideal I of R such that $I \subseteq U$. We get

$$
g([x, y])+[d(x), d(y)] \pm[x, y] \in Z, \text { for all } x, y \in I .
$$

Writing y by $y+z, z \in I$ in the hypothesis, we have

$$
\begin{aligned}
& g([x, y])+g([x, y])+2 G([x, y],[x, z])+[d(x), d(y)] \\
& +2[d(x), D(y, z)]+[d(x), d(z)] \pm[x, y] \pm[x, z] \in Z .
\end{aligned}
$$

Using the hypothesis, we obtain that

$$
2 G([x, y],[x, z])+2[d(x), D(y, z)] \in Z, \text { for all } x, y, z \in I .
$$

Since R is 2-torsion free, we have

$$
G([x, y],[x, z])+[d(x), D(y, z)] \in Z, \text { for all } x, y, z \in I .
$$

Replacing z by y in the above expression, we get

$$
g([x, y])+[d(x), d(y)] \in Z, \text { for all } x, y \in I .
$$

By the hypothesis, we get

$$
[x, y] \in Z, \text { for all } x, y \in I
$$

By Lemma 3, we obtain that R contains a nonzero central ideal.
iv) By Lemma 1, there exists a nonzero ideal I of R such that $I \subseteq U$. We see that

$$
g(x \circ y)+d(x) \circ d(y) \pm x \circ y \in Z, \text { for all } x, y \in I
$$

Taking y by $y+z, z \in I$, we have

$$
\begin{aligned}
& g(x \circ y)+g(x \circ z)+2 G(x \circ y, x \circ z)+d(x) \circ d(y) \\
& +d(x) \circ d(z)+2(d(x) \circ D(y, z)) \pm x \circ y \pm x \circ z \in Z .
\end{aligned}
$$

By the hypothesis, we obtain

$$
2 G(x \circ y, x \circ z)+2(d(x) \circ D(y, z)) \in Z, \text { for all } x, y, z \in I .
$$

Since R is 2-torsion free, we have

$$
G(x \circ y, x \circ z)+(d(x) \circ D(y, z)) \in Z, \text { for all } x, y, z \in I
$$

Writing z by y in the last equation, we get

$$
g(x \circ y)+d(x) \circ d(y) \in Z, \text { for all } x, y \in I .
$$

By the hypothesis, we get

$$
x \circ y \in Z, \text { for all } x, y \in I .
$$

We conclude that R contains a nonzero central ideal by Lemma 4. The proof is completed.

Acknowledgements The authors wish to express their sincere thanks to the referee for his/her valuable comments. The second author was supported by the University Science Research Project of Anhui Province (KJ2020A0711; KJ2020ZD74; KJ2021A1096) and the Natural Science Foundation of Anhui Province (1908085MA03).

References

1. A. Ali, A. Bano, Identities with multiplicative (generalized) (α, β)-derivations in semiprime rings, Int. J. Math. And Appl., 2018, 6(4), 195-202.
2. M. Ashraf, N. Rehman, On derivations and commutativity in prime rings, East-West J. Math., 2001, 3(1), 87-91.
3. M. Ashraf, A. Asma and A. Shakir, Some commutativiy theorems for rings with generalized derivations, Southeast Asain Bull. of Math., 2007, 31, 415-421.
4. M. N. Daif, H. E. Bell, Remarks on derivations on semiprime rings, Internat J. Math. Math. Sci., 1992, 15(1), 205-206.
5. Z. Bedir, Ö. Gölbaşı, Some commutativity on Lie ideals on semiprime rings, Adıyaman University Journal of Science, 2020, 10(2), 548-556.
6. E. Koç Sögütcü, Ö. Gölbaşı, Lie ideals of semiprime rings with generalized derivations, Adıyaman University Journal of Science, 2018, 8(1), 1-12.
7. G. Maksa, A remark on symmetric biadditive functions having non-negative diagonalization, Glasnik. Mat., 1980, 15 (35), 279-282.
8. G. Maksa, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada, 1987, 9, 303-307.

[^0]: Communicated by Bakshi Gurmeet Kaur.
 E. K. Sögütcü

 Department of Mathematics, Faculty of Science, Cumhuriyet University, Sivas, Turkey
 E-mail: eminekoc@cumhuriyet.edu.tr
 S. Huang (\boxtimes)

 School of Mathematics and Finance, Chuzhou University, Chuzhou 239000, China
 E-mail: shulianghuang@163.com

