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Abstract Let R be a semiprime ring, U a square-closed Lie ideal of R and D : R × R → R a symmetric
bi-derivation and d be the trace of D. In the present paper, we prove that the R contains a nonzero central ideal
if any one of the following holds: i) d (x) y ± xg(y) ∈ Z , ii)[d(x), y] = ±[x, g(y)], iii) d(x) ◦ y = ±x ◦ g(y),
iv) [d(x), y] = ±x ◦ g(y), v) d([x, y]) = [d(x), y]+ [d(y), x], vi) d(xy)± xy ∈ Z , vii) d(xy)± yx ∈ Z , viii)
d(xy) ± [x, y] ∈ Z , ix) d(xy) ± x ◦ y ∈ Z , x) g(xy) + d(x)d(y) ± xy ∈ Z , xi) g(xy) + d(x)d(y) ± yx ∈ Z ,

xii) g([x, y]) + [d(x), d(y)] ± [x, y] ∈ Z , xiii) g(x ◦ y) + d(x) ◦ d(y) ± x ◦ y ∈ Z , for all x, y ∈ U, where
G : R × R → R is symmetric bi-derivation such that g is the trace of G.

Keywords Semiprime ring · Lie ideal · Derivation · Bi-derivation · Symmetric bi-derivation.

Mathematics subject classification 16W25 · 16W10 · 16U80 · 16N60

1 Introduction

Throughout R will represent an associative ring with center Z . A ring R is said to be prime if x Ry = (0) implies
that either x = 0 or y = 0 and semiprime if x Rx = (0) implies that x = 0, where x, y ∈ R. A prime ring
is obviously semiprime. But the reverse is not always true. For any x, y ∈ R, the symbol [x, y] stands for the
commutator xy − yx and the symbol x ◦ y stands for the anti-commutator xy + yx . An additive subgroup U
of R is said to be a Lie ideal of R if [u, r ] ∈ U , for all u ∈ U, r ∈ R. U is called a square-closed Lie ideal
of R if U is a Lie ideal and u2 ∈ U for all u ∈ U . An additive mapping d : R → R is called a derivation if
d(xy) = d(x)y+xd(y) holds for all x, y ∈ R. The concept of bi-derivation was introduced byMaksa in [7]. It is
shown in [8] that symmetric bi-derivations are related to general solution of some functional equations.Amapping
D(., .) : R × R → R is said to be symmetric if D(x, y) = D(y, x) for all x, y ∈ R. A mapping d : R → R is
called the trace of D(., .) if d(x) = D(x, x) for all x ∈ R. It is obvious that if D(., .) is bi-additive (i.e., additive
in both arguments), then the trace d of D(., .) satisfies the identity d(x + y) = d(x) + d(y) + 2D(x, y), for all
x, y ∈ R. If D(., .) is bi-additive and satisfies the identities

D(xy, z) = D(x, z)y + xD(y, z)
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and

D(x, yz) = D(x, y)z + yD(x, z)

for all x, y, z ∈ R. Then D(., .) is called a symmetric bi-derivation.

Example 1 Suppose the ring R =
{(

a 0
b 0

)∣∣∣∣ a, b ∈ R

}
. Define map D : R × R → R as follows:

D

((
a 0
b 0

)
,

(
c 0
d 0

))
=

(
0 0
ac 0

)
.

Then it is easy to verify that D is a symmetric bi-derivation of R.

Ashraf and Rehman showed that R is prime ring with a nonzero ideal U of R and d is a derivation of R
such that d(xy) ± xy ∈ Z , for all x, y ∈ U , then R is commutative in [2]. Ashraf et al. proved this result
for a generalized derivation of R in [3]. Further, Ali and Boua [1] proved the following result: Let R be a
semiprime ring, I a non-zero ideal of R and F,G be two multiplicative generalized derivations of R satisfying
G(xy) + F(x)F(y) − xy = 0 or G(xy) + F(x)F(y) − yx = 0 for all x, y ∈ R. In [6], Koç Sögütcü and
Gölbaşı have proved that if R is a 2-torsion-free semiprime ring and (F, d), (G, h) : R → R are two generalized
derivations on R such that [F(u), v] = ±[u,G(v)] or F(u) ◦ v = ±u ◦ G(v) or [F(u), v] = ±u ◦ G(v) or
F([u, v]) = [F(u), v] + [d(v), u] for all u, v ∈ U , then h is commuting mapping.

We extend some well known results concerning Lie ideals in semiprime rings to a symmetric bi-derivations.
Throughout the present paper, we shall make use of the following basic identities without any specific mention:
(i) [x, yz] = y[x, z] + [x, y]z
(ii) [xy, z] = [x, z]y + x[y, z]
(iii) xyoz = (xoz)y + x[y, z] = x(yoz) − [x, z]y
(iv) xoyz = y(xoz) + [x, y]z = (xoy)z + y[z, x].

2 The results

Lemma 1 [5, Theorem 1.3] Let R be a 2-torsion free semiprime ring and U a noncentral Lie ideal of R such
that u2 ∈ U for all u ∈ U. Then there exist a nonzero ideal I of R such that I ⊆ U.

Lemma 2 [4, Lemma 2 (b)] If R is a semiprime ring, then the center of a nonzero ideal of R is contained in the
center of R.

Lemma 3 Let R be a 2-torsion-free semiprime ring and I a nonzero ideal of R. If [I, I ] ⊂ Z, then R contains
a nonzero central ideal.

Proof By the hypothesis, we get

[x, y] ∈ Z , for all x, y ∈ I.

Replacing y by yx in above expression, we have

[x, y]x ∈ Z , for all x, y ∈ I.

Commuting this term with r, r ∈ R, we obtain that

[[x, y]x, r ] = 0, for all x, y ∈ I, r ∈ R.

Using the hypothesis in the last expression, we get

[x, y][x, r ] = 0, for all x, y ∈ I, r ∈ R.

Replacing r by r y in the above equation and using this expression, we see that

[x, y]R[x, y] = (0), for all x, y ∈ I.

Since R is semiprime ring, we get

[x, y] = 0, for all x, y ∈ I.

That is, [I, I ] = (0). By Lemma 2, we get I ⊆ Z . Thus, R contains a nonzero central ideal. This completes the
proof. ��
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610 E. K. Sögütcü and S. Huang

Lemma 4 Let R be a 2-torsion free semiprime ring and I a nonzero ideal of R. If I ◦ I ⊂ Z , then R contains
a nonzero central ideal.

Proof We get

x ◦ y ∈ Z , for all x, y ∈ I.

Replacing y by yx in the last expression, we obtain that

(x ◦ y) x ∈ Z , for all x, y ∈ I.

This implies that

[(x ◦ y) x, r ] = 0, for all x, y ∈ I,

and so

(x ◦ y)[x, r ] = 0, for all x, y ∈ I, r ∈ R.

Replacing y by yt, t ∈ R in the above expression and using this, we get

[x, y]t[x, r ] = 0, for all x, y ∈ I, r, t ∈ R.

Replacing r by y in this equation, we have

[x, y]R[x, y] = (0), for all x, y ∈ I.

Since R is semiprime ring, we get

[x, y] = 0, for all x, y ∈ I.

By Lemma 2, we have, I ⊆ Z . We conclude that R contains a nonzero central ideal. This completes the proof. ��
Theorem 1 Let R be a 2-torsion free semiprime ring, U a square-closed Lie ideal of R and D : R × R → R,

G : R × R → R two symmetric bi-derivations where d is the trace of D and g is the trace of G where
UD(U,U ) 	= (0). If d (x) y ± xg(y) ∈ Z , for all x, y ∈ U, then R contains a nonzero central ideal.

Proof By Lemma 1, there exist a nonzero ideal I of R such that I ⊆ U. By the hypothesis, we have

d (x) y ± xg(y) ∈ Z , for all x, y ∈ I.

Writing y by y + z, z ∈ I, we have

d (x) y + d (x) z ± xg(y) ± xg(z) ± 2xG(y, z) ∈ Z .

Using the hypothesis, we get

2xG(y, z) ∈ Z .

Since R is 2-torsion free and replacing z by y, we have

xG(y, y) ∈ Z , for all x, y ∈ I.

Thus,

xg(y) ∈ Z , for all x, y ∈ I.

By the hypothesis, we get

d (x) y ∈ Z , for all x, y ∈ I.

Commuting this term with r, r ∈ R, we obtain that

[d (x) y, r ] = 0, for all x, y ∈ I, r ∈ R,
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and so

d(x)[y, r ] + [d(x), r ]y = 0, for all x, y ∈ I, r ∈ R. (2.1)

Replacing y by yz, z ∈ I, we have

d(x)[y, r ]z + d(x)y[z, r ] + [d(x), r ]yz = 0, for all x, y, z ∈ I, r ∈ R.

Using (2.1) equation, we have

d(x)y[z, r ] = 0, for all x, y, z ∈ I, r ∈ R.

Replacing r by d(x) in this equation, we find that

d(x)y[z, d(x)] = 0, for all x, y, z ∈ I. (2.2)

Multiplying this equation on the left by z, we get

zd(x)y[z, d(x)] = 0, for all x, y, z ∈ I.

Taking y by zy in equation (2.2), we find that

d(x)zy[z, d(x)] = 0, for all x, y, z ∈ I.

Subctracting two last equations, we arrive at

[z, d(x)]y[z, d(x)] = 0, for all x, y, z ∈ I.

That is,

[z, d(x)]yR[z, d(x)]y = (0), for all x, y, z ∈ I.

Since R is semiprime ring, we get

[z, d(x)]y = 0, for all x, y, z ∈ I.

Replacing y by r [z, d(x)], r ∈ R in the last equation, we have

[z, d(x)]r [z, d(x)] = 0, for all x, y, z ∈ I, r ∈ R.

Again, since R is semiprime ring, we have

[z, d(x)] = 0, for all x, z ∈ I. (2.3)

By Lemma 2, we have

d(x) ∈ Z , for all x ∈ I.

Replacing x by x + y, y ∈ I in above expression, we get

d(x) + d(y) + 2D(x, y) ∈ Z , for all x, y ∈ I.

Using d(x) ∈ Z , for all x ∈ I in this equation, we have

2D(x, y) ∈ Z , for all x, y ∈ I.

Since R is 2-torsion free, we have

D(x, y) ∈ Z , for all x, y ∈ I. (2.4)

Commuting this term with r, r ∈ R, we get

[D(x, y), r ] = 0, for all x, y ∈ I, r ∈ R.
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612 E. K. Sögütcü and S. Huang

Taking x by xs, s ∈ R in the last equation, we obtain that

[sD(x, y) + D(s, y)x, r ] = 0, for all x, y ∈ I, r, s ∈ R.

Using equation (2.4), we get

[s, r ]D(x, y) + D(s, y)[x, r ] + [D(s, y), r ]x = 0, for all x, y ∈ I, r, s ∈ R.

Replacing s by x in the last equation, we get

[x, r ]D(x, y) + D(x, y)[x, r ] + [D(x, y), r ]x = 0, for all x, y ∈ I, r, s ∈ R.

Appliying equation (2.4), we see that

2[x, r ]D(x, y) = 0, for all x, y ∈ I, r ∈ R.

Since R is 2-torsion free, we get

[x, r ]D(x, y) = 0, for all x, y ∈ I, r ∈ R.

Using D(x, y) ∈ Z , we have

[x, r ]t D(x, y) = 0, for all x, y ∈ I, r, t ∈ R.

Since R is semiprime, we must contain a family ℘ = {Pα|α ∈ �} of prime ideals such that ∩Pα = (0). If P is
a typical member of ℘ and x ∈ I , we get

[x, R] ⊆ P or D(x, y) ⊆ P, for all y ∈ I

by Fact (ii). Define two additive subgroups A = {x ∈ I |[x, R] ⊆ P} and B = {x ∈ I |D(x, y) ⊆ P, for all
y ∈ I }. It is clear that I = A∪B. Since a group cannot be a union of two of its subgroups, either A = I or B = I ,
and so, we have [I, R] ⊆ P or D(I, I ) ⊆ P .Thus both cases together yield [I, R]D(I, I ) ⊆ P , for any P ∈ ℘.
Therefore [I, R]D(I, I ) ⊆ ∩Pα = (0) and so [I, R]D(I, I ) = (0). That is, [RI D(I, I )R, R]D(I, I ) = (0).
This implies that [J, R]RJ = (0) where J = RI D(I, I )R is a nonzero ideal of R by Theorem 1. Then
[J, R]R[J, R] = (0). By the semiprimeness of R, we get [R, J ] = (0), and so J ⊆ Z . We conclude that R
contains a nonzero central ideal. ��
Theorem 2 Let R be a 2-torsion free semiprime ring and U a square-closed Lie ideal of R. Suppose that R
admits two symmetric bi-derivations D : R × R → R, G : R × R → R where d is the trace of D and g is the
trace of G where UD(U,U ) 	= (0) such that

(i) [d(x), y] = ±[x, g(y)], for all x, y ∈ U, or
(ii) d(x) ◦ y = ±x ◦ g(y), for all x, y ∈ U, or
(iii) [d(x), y] = ±x ◦ g(y), for all x, y ∈ U, or
(iv) d([x, y]) = [d(x), y] + [d(y), x], for all x, y ∈ U. Then R contains a nonzero central ideal.

Proof i) By Lemma 1, there exist a nonzero ideal I of R such that I ⊆ U. We have

[d(x), y] = ±[x, g(y)], for all x, y ∈ I.

Substituting y + z, z ∈ I for y in the hypothesis, we obtain that

[d(x), y] + [d(x), z] = ±[x, g(y)] ± [x, g(z)] ± 2[x,G(y, z)].
Using the hypothesis and 2-torsion freeness of R, we find that

[x,G(y, z)] = 0, for all x, y, z ∈ I.

Writing z by y in last equation, we have

[x, g(y)] = 0, for all x, y ∈ I.
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Using the hypothesis in the last relation gives

[d(x), y] = 0, for all x, y ∈ I.

Using the same arguments in the proof equation (2.3), we find that R contains a nonzero central ideal. We
complete the proof.

(ii) By Lemma 1, there exist a nonzero ideal I of R such that I ⊆ U. By the hypothesis, we get

d(x) ◦ y = ± (x ◦ g(y)) , for all x, y ∈ I.

Replacing y by y + z, z ∈ I, we obtain that

d(x) ◦ y + d(x) ◦ z = ± (x ◦ g(y)) ± (x ◦ g(z)) ± 2(x ◦ G(y, z)).

Using the hypothesis and 2-torsion freeness of R, we see that

(x ◦ G(y, z)) = 0, for all x, y, z ∈ I.

Taking z by y in this equation, we have

x ◦ g(y) = 0, for all x, y ∈ I.

By the hypothesis, we get

d(x) ◦ y = 0, for all x, y ∈ I.

Replacing y by yz, z ∈ I, we see that

y[z, d(x)] = 0, for all x, y, z ∈ I.

Replacing y by [z, d(x)]r in the last equation, we have
[z, d(x)]r [z, d(x)] = 0, for all x, y, z ∈ I, r ∈ R.

Since R is semiprime ring, we have

[z, d(x)] = 0, for all x, z ∈ I.

The rest of the proof is the same as equation (2.3). This completes proof.
(iii) By Lemma 1, there exist a nonzero ideal I of R such that I ⊆ U. We get

[d(x), y] = ±x ◦ g(y), for all x, y ∈ I.

Taking y by y + z, z ∈ I, we see that

[d(x), y] + [d(x), z] = ±x ◦ g(y) ± x ◦ g(y) ± 2x ◦ G(y, z).

By the hypothesis, we see that

2(x ◦ G(y, z)) = 0, for all x, y, z ∈ I.

Since R is 2-torsion free, we have

x ◦ G(y, z) = 0, for all x, y, z ∈ I.

Replacing z by y in the above equation, we have

x ◦ g(y) = 0, for all x, y ∈ I.

Using the hypothesis, we get

[d(x), y] = 0, for all x, y ∈ I.

This equation is the same as equation (2.3). Using the same arguments in the proof of Theorem 1, we find the
required result.
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614 E. K. Sögütcü and S. Huang

iv) By Lemma 1, there exist a nonzero ideal I of R such that I ⊆ U. By the hypothesis, we get

d([x, y]) = [d(x), y] + [d(y), x], for all x, y ∈ I.

Writing y by y + z, z ∈ I in this equation, we obtain that

d([x, y]) + d([x, z]) + 2D([x, y], [x, z])
= [d(x), y] + [d(x), z] + [d(y), x] + [d(z), x] + 2[D(y, z), x].

Using the hypothesis and 2-torsion freeness of R, we see that

D([x, y], [x, z]) = [D(y, z), x], for all x, y, z ∈ I.

Replacing z by y in the last equation, we have

d([x, y]) = [d(y), x], for all x, y ∈ I.

Using the hypothesis, we see that

[d(x), y] = 0, for all x, y ∈ I.

The rest of the proof is the same as equation (2.3). This completes proof. ��
Theorem 3 Let R be a 2-torsion free semiprime ring and U a square-closed Lie ideal of R. Suppose that R
admits a symmetric bi-derivation D : R × R → R where d is the trace of D such that

(i) d(xy) ± xy ∈ Z , for all x, y ∈ U, or
(ii) d(xy) ± yx ∈ Z , for all x, y ∈ U, or
(iii) d(xy) ± [x, y] ∈ Z , for all x, y ∈ U, or
(iv) d(xy) ± x ◦ y ∈ Z , for all x, y ∈ U. Then R contains a nonzero central ideal.

Proof (i) By Lemma 1, there exist a nonzero ideal I of R such that I ⊆ U. By the hypothesis, we get

d(xy) ± xy ∈ Z , for all x, y ∈ I.

Taking y by y + z, z ∈ I in the hypothesis, we see that

d(xy) + d(xz) + 2D(xy, xz) ± xy ± xz ∈ Z .

Since R is 2-torsion free and using the hypothesis, we arrive at

D(xy, xz) ∈ Z , for all x, y ∈ I.

Substituting y for z in the last equation, we have

d(xy) ∈ Z , for all x, y ∈ I.

Using the hypothesis, we find

xy ∈ Z , for all x, y ∈ I. (2.5)

Commuting this term with r, r ∈ R, we get

[xy, r ] = 0, for all x, y ∈ I, r ∈ R,

and so

[x, r ]y + x[y, r ] = 0, for all x, y ∈ I, r ∈ R. (2.6)

Replacing y by yz in this equation and using equation (2.6), we have

xy[z, r ] = 0, for all x, y, z ∈ I, r ∈ R.
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Writting x by [z, r ], we arrive at
[z, r ]y[z, r ] = 0, for all y, z ∈ I, r ∈ R.

That is,

[z, r ]yR[z, r ]y = (0), for all y, z ∈ I, r ∈ R.

Since R is semiprime ring, we have

[z, r ]y = 0, for all y, z ∈ I, r ∈ R.

Taking y by t[z, r ], t ∈ R, we see that

[z, r ]R[z, r ] = (0), for all y, z ∈ I, r ∈ R.

By the semiprime of R, we conclude that I ⊂ Z . Thus, R contains a nonzero central ideal. This completes the
proof.

(ii) By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We get

d(xy) ± yx ∈ Z , for all x, y ∈ I.

Taking y by y + z, z ∈ I, we have

d(xy) + d(xz) + 2D(xy, xz) ± (y + z)x ∈ Z , for all x, y, z ∈ I.

Using the hypothesis, we obtain

2D(xy, xz) ∈ Z , for all x, y, z ∈ I.

Since R is 2-torsion free, we have

D(xy, xz) ∈ Z , for all x, y, z ∈ I.

Replacing z by y in the last expression, we get

d(xy) ∈ Z , for all x, y ∈ I.

By the hypothesis, we get

yx ∈ Z , for all x, y ∈ I.

Using the same arguments after (2.5) in the proof of Theorem 3 (i), we get the required results.
(iii) By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We get

d(xy) ± [x, y] ∈ Z , for all x, y ∈ I.

Replacing y by y + z, z ∈ I, we have

d(xy) + d(xz) + 2D(xy, xz) ± [x, y] ± [x, z] ∈ Z , for all x, y, z ∈ I.

By the hypothesis, we obtain that

2D(xy, xz) ∈ Z , for all x, y, z ∈ I.

Since R is 2-torsion free, we have

D(xy, xz) ∈ Z , for all x, y, z ∈ I.

Replacing z by y in the last expression, we get

d(xy) ∈ Z , for all x, y ∈ I.
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Again by the hypothesis, we get

[x, y] ∈ Z , for all x, y ∈ I.

That is, [I, I ] ⊂ Z . By Lemma 3, we obtain that R contains a nonzero central ideal.
(iv) By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We see that

d(xy) ± x ◦ y ∈ Z , for all x, y ∈ I.

Taking y by y + z, z ∈ I, we have

d(xy) + d(xz) + 2D(xy, xz) ± x ◦ y ± x ◦ z ∈ Z , for all x, y, z ∈ I.

By the hypothesis, we obtain

2D(xy, xz) ∈ Z , for all x, y, z ∈ I.

Since R is 2-torsion free, we have

D(xy, xz) ∈ Z , for all x, y, z ∈ I.

Writting z by y in the last expression, we get

d(xy) ∈ Z , for all x, y ∈ I.

By the hypothesis, we get

x ◦ y ∈ Z , for all x, y ∈ I.

That is, I ◦ I ⊂ Z . We conclude that R contains a nonzero central ideal. by Lemma 4. The proof is completed. ��
Theorem 4 Let R be a 2-torsion free semiprime ring and U a square-closed Lie ideal of R. Suppose that R
admits two symmetric bi-derivations D : R × R → R, G : R × R → R where d is the trace of D and g is the
trace of G such that

(i) g(xy) + d(x)d(y) ± xy ∈ Z , for all x, y ∈ U, or
(ii) g(xy) + d(x)d(y) ± yx ∈ Z , for all x, y ∈ U, or
(iii) g([x, y]) + [d(x), d(y)] ± [x, y] ∈ Z , for all x, y ∈ U, or
(iv) g(x ◦ y) + d(x) ◦ d(y) ± x ◦ y ∈ Z , for all x, y ∈ U. Then R contains a nonzero central ideal.

Proof (i) By Lemma 1, there exist a nonzero ideal I of R such that I ⊆ U. By the hypothesis, we get

g(xy) + d(x)d(y) ± xy ∈ Z , for all x, y ∈ I.

Replacing y by y + z, z ∈ I, we arrive at

g(xy) + g(xz) + 2G(xy, xz) + d (x) (d (y) + 2D(y, z) + d(z)) ± xy ± xz ∈ Z .

Using the hypothesis and 2-torsion freeness of R, we have

G(xy, xz) + d(x)D(y, z) ∈ Z , for all x, y ∈ I.

Writing z by y in this expression, we have

g(xy) + d(x)d(y) ∈ Z , for all x, y ∈ I.

Using the hypothesis, we get

xy ∈ Z , for all x, y ∈ I.

Using the same arguments after (2.5) in the proof of Theorem 3 (i), we get the required results.
(ii) By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We get

g(xy) + d(x)d(y) ± yx ∈ Z , for all x, y ∈ I.
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Taking y by y + z, z ∈ I, we have

g(xy) + g(xz) + 2G(xy, xz) + d (x) (d (y) + 2D(y, z) + d(z)) ± (y + z)x ∈ Z .

Using the hypothesis, we obtain

2G(xy, xz) + 2d(x)D(y, z) ∈ Z , for all x, y, z ∈ I.

Since R is 2-torsion free, we have

G(xy, xz) + d(x)D(y, z) ∈ Z , for all x, y, z ∈ I.

Replacing z by y in the last expression, we get

g(xy) + d(x)d(y) ∈ Z , for all x, y ∈ I.

By the hypothesis, we get

yx ∈ Z , for all x, y ∈ I.

Using the same techniques in the proof of Theorem 3 (i), we can prove that R contains a nonzero central ideal.
(iii) By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We get

g([x, y]) + [d(x), d(y)] ± [x, y] ∈ Z , for all x, y ∈ I.

Writing y by y + z, z ∈ I in the hypothesis, we have

g([x, y]) + g([x, y]) + 2G([x, y], [x, z]) + [d (x) , d (y)]
+2[d(x), D(y, z)] + [d(x), d(z)] ± [x, y] ± [x, z] ∈ Z .

Using the hypothesis, we obtain that

2G([x, y], [x, z]) + 2[d(x), D(y, z)] ∈ Z , for all x, y, z ∈ I.

Since R is 2-torsion free, we have

G([x, y], [x, z]) + [d(x), D(y, z)] ∈ Z , for all x, y, z ∈ I.

Replacing z by y in the above expression, we get

g([x, y]) + [d(x), d(y)] ∈ Z , for all x, y ∈ I.

By the hypothesis, we get

[x, y] ∈ Z , for all x, y ∈ I.

By Lemma 3, we obtain that R contains a nonzero central ideal.
iv) By Lemma 1, there exists a nonzero ideal I of R such that I ⊆ U. We see that

g(x ◦ y) + d(x) ◦ d(y) ± x ◦ y ∈ Z , for all x, y ∈ I.

Taking y by y + z, z ∈ I, we have

g(x ◦ y) + g(x ◦ z) + 2G(x ◦ y, x ◦ z) + d(x) ◦ d(y)
+d(x) ◦ d(z) + 2(d(x) ◦ D(y, z)) ± x ◦ y ± x ◦ z ∈ Z .

By the hypothesis, we obtain

2G(x ◦ y, x ◦ z) + 2(d(x) ◦ D(y, z)) ∈ Z , for all x, y, z ∈ I.

Since R is 2-torsion free, we have

G(x ◦ y, x ◦ z) + (d(x) ◦ D(y, z)) ∈ Z , for all x, y, z ∈ I.

Writing z by y in the last equation, we get

g(x ◦ y) + d(x) ◦ d(y) ∈ Z , for all x, y ∈ I.

By the hypothesis, we get

x ◦ y ∈ Z , for all x, y ∈ I.

We conclude that R contains a nonzero central ideal by Lemma 4. The proof is completed. ��
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