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Abstract
Theoreticalmodels come into play when the radius of nuclear charge, one of themost fundamental
properties of atomic nuclei, cannot bemeasured using different experimental techniques. As an
alternative to thesemodels, machine learning (ML) can be considered as a different approach. In
this study,ML techniques were performed using the experimental charge radius of 933 atomic
nuclei (A� 40 andZ� 20) available in the literature. In the calculations in which eight different
approaches were discussed, the obtained outcomes were comparedwith the experimental data,
and the success of eachML approach in estimating the charge radius was revealed. As a result of
the study, it was seen that the Cubistmodel approachwasmore successful than the others. It has
also been observed thatMLmethods do notmiss the different behavior in themagic numbers
region.

1. Introduction

Nuclear radii are fundamental properties of atomic nuclei that have been studied extensively in nuclear physics
[1, 2]. The size and shape of a nucleus play an important role in determining its stability and interactions with
other particles and nuclei. Direct information about theCoulomb energy of nuclei can be obtained by examining
the radii of nuclear charges and,more generally, the distributions of charge density in atomic nuclei. For this
reason, charge radii have long attracted attention for nuclearmass formulas [3]. It can bemeasured by various
methods based on the electromagnetic interaction that takes place between atomic nuclei and electrons or
muons. Commonly usedmethods aremeasurements of transition energies inmuonic atoms, elastic electron
scattering experiments, Kα x-ray, and optical isotope shifts. Details of these techniques formeasuring rootmean
square (RMS) charge radii of nuclei can be found in [4, 5].With the latest advances in experimental techniques,
such as the use of radioactive ion beams,more nuclei away from theβ-stability line have been reached, thereby
gaining access to the experimental nuclear charge.

Themeasurement of nuclear charge radii which is related to exotic phenomena such as skin and halo has
been among themost interesting topics [6]. Studying the nuclear charge radius is important for a better
understanding of the proton distribution in nuclei and the skin and halo. For these reasons, accurate and
reliable estimation of nuclear charge radii in the absence of experimental data is important for studies on
exotic nuclei and effective nucleon-nucleon interactions. Recently updated experimental data for nuclear
charge radii of over 1000 nuclei are already available in the literature [4, 5, 7]. In our study, these experimental
data were used as a source for different artificial intelligencemethods and thusmachine learning was
carried out.

Machine learningmethods have been used inmany fields in nuclear physics as in other fields, such as
the development of nuclearmass systematics [8], the identification of impact parameters in heavy-ion collisions
[9–11], estimating beta decay half-lives [12], estimating beta decay energies [13], adjustment of non-linear
interaction parameters for relativisticmeanfield approach [14], predictions forα-decay half-life superheavy
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nuclei [15], estimations offission barrier heights [16, 17], studying ground-state energies of the nuclei [18],
estimation of fusion reaction cross-sections [19] and shell-model calculations supported by artificial
intelligence [20].

When themachine learning studies on nuclear charge radius are examined in the literature, we can
summarize some examples. Our previous work used artificial neural networks to derive a charge radius formula
forA� 40 andZ� 20 nuclei [21]. Utama et al [22] improved the nuclear charge radius estimation performance
by combining the Bayesian neural networkmethodwith density functional theory. Themainmotivation in the
work is to develop amodel that will accurately predict the charge radius of isotopeswhose charge radius has
never beenmeasured. In their work, they considered the atomic nuclei withA� 40 andZ� 20 and took the
numbersA andZ as inputs to the network. Accordingly, by improving the results of the theoreticalmodels by
applying the neural network, theymanaged to improve the deviation between the results obtained for the radius
from themodels and the experimental values up to 3 times.

Wu et al [23] obtained nuclear charge radius by using feed-forward neural networks considering theZ,N,
and electric quadrupole transition strength values of the nuclei as input parameters of the network. As a result of
the training they performed by separating Ca, Sm, and Pb isotopes from the test data, theywere able to observe
the existence ofmagic numbers in the isotope chains of these isotopes. Therefore, besides estimating the nuclear
charge radii, theywere also able to observe the kink, which corresponds to themagic numbers in the Sn, Sm, and
Pb isotope chains. In their study, which also emphasized the importance ofB(E2) in generating the kink, they
proposed the existence of a new relationship between the symmetry energy and the charge radius by including
the symmetry energy term in the inputs of the network. Recently, a relationship between nuclear quadrupole
deformation and the nuclear size for 98−118Pdwas pointed out in the study of Geldhof et al [24]. Furthermore,
they showed that pairing correlations attribute to amore correct description of nuclear charge radii for density
functional calculations.

Dong et al [25] successfully predicted the nuclear charge radii in the neural networks calculations they
performed in theA� 40 andZ� 20 regions. In the study, a Bayesian neural network is used, inwhichA,Z,
pairing term, and promiscuity factor values are considered as inputs. By combining theNP formula, which
allows the calculation of the load radius, with the Bayesian neural network, the results of the radius calculations
were improved by approximately 2.7 times. In the illustrations carried out onCa andK isotope chains, it was
shown that while theNP formula exhibits a linear behavior, it is in agreement with the experimental data if it is
supported by a Bayesian neural network. Later, authors revisited their study [26] to reduce the rms deviation
difference (%30) between the validation set and training set which can cause a possible over-fitting. For this
purpose, they added new features containing physical information.

In the study ofMa et al [27]nuclear charge radii were systematically estimated by the naive Bayesian
probability classifier and the estimations improved up to about 1.7 times. By combining the raw results of the
theoreticalmodels with the predicted residuals of the naive Bayesian probabilitymethod, the theoretical charge
radii from theHFBmodel and Shengʼs semi-empirical formula calculations were refined. The results were
analyzed inCa andBi isotope chains and the success ofNBP refinements was demonstrated.

Themain purpose of this study is to use differentmachine learning algorithms on the nuclear charge radius
through to nuclidic chart (A� 40 andZ� 20) as well as to obtain the best results with simple variables. The
deformation effect on nuclear charge radii by taking experimental data of quadrupole transition strength values
can be considered to be in the study ofWu et al [23] for improving the predictive power ofmachine learning
methods.However, this is possible for even–even nuclei. In the present study, we have studied the global
prediction ofmachine learningmethods on nuclear charge radii covering even–even, odd–even, even–odd and
odd–odd nuclei by using the same physical quantities in the study ofDong et al [25] such as proton number (Z),
mass number (A), pairing effects, shell closure effects, isospin dependence, abnormal behavior of someHg
isotopes.We have used 8 differentmachine learningmethods as an alternative approach for estimating a reliable
model to obtain nuclear charge radius. Through detailed analysis of the results from the study, the success of
machine learning in obtaining the nuclear charge radius was highlighted. After this extensive studywith a large
number ofmachine learningmethods used in addition to previous literature studies,methods that improve the
deviations between the experimental data and the estimation results have been determined. Thus,machine
learning has been shown to be a suitable and reliable tool for estimating nuclear charge radii in the absence of
experimental data.

The paper is organized as follows. In section 2, thematerials used in the study arementioned and the applied
methods are explained in short summaries by supporting the relevant references. In section 3, thefindings from
the study are presented and discussed. In the last part section 4, there is the Conclusion section inwhich an
evaluation of the study ismade.
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2.Materials andmethods

2.1. The data structure and software resources
In this research, experimental data reported in the literature [4, 5, 7]were used to estimate the nuclear charge
radii with differentmachine learning algorithms. These data include the radius information of 933 nuclei
(A� 40 andZ� 20). In this study, 699 randomly selected datawere used as training data and the remaining 234
as testing data to evaluate the performance of themodels. The predictive variables were taken as in the study of
Dong et al [26]. These aremass number (A), proton number (Z), isospin dependence (I2), pairing term (δ), the
promiscuity factor (P) related to shell closure effects [28, 29], and a term related to abnormal charge radii
behavior in 181,183,185Hg (LI). The explicit formof the I2, δ,P and LI are given by
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The same input variables were used in all algorithms used in the study to estimate the atomic radius value in the
machine-learning training process.

All analyses, calculations, and data visualizations in the researchwere prepared in the R programming
environment [30]. The R libraryfiles used in this study are,kernlab for SVR andGPPK algorithms [31],
randomForest for RF algorithm [32],quantregForest forQRF algorithms [33, 34],xgboost for
XGBoost algorithm [35],RSNNS for Artificial neural network (ANN) algorithm [36],cubist for cubistmodel
[37],earth formultivariate Adaptive Regression Spline (MARS)model [38],caret for data processing, data
separation and optimization ofmachine learning algorithms [39],openair [40] andggplot2 [41] for cross-
validation, scatter diagrams, and data visualization.

2.2.Machine learning algorithms
In this study, eight algorithms (artificial neural network, Cubistmodel, Gaussian process with polynomial
kernel,multivariate adaptive regression splines, random forest, quantile random forest, support vector
regression, and extreme gradient boosting)were used. These algorithms are summarized below.Aswill be seen
in the next sections, the performancemetrics of the Cubistmodel are higher than the others for nuclear charge
radii predictions. Thereforemore details for theCubistmodel algorithm are given.

Artificial NeuralNetwork (ANN): Artificial neural networks (ANNs) [42–44], whichmathematically
simulate biological nerve cell structure and functionality, have been developing in different structures in recent
years to solve different problems [16, 45–49]. Artificial neural networks consist of small processing units called
neurons, and each neuron is connected to each other through adaptive synaptic weights [50].

Gaussian Processwith Polynomial Kernel (GPPK): Gaussian processes, developed to explain non-
parametric relationships on a Bayesian basis, provide point estimates aswell as confidence intervals for these
estimates [51]. In this approach, the common distribution of training and test data is represented by the
multidimensional Gaussian density function obtained on the basis of the Polynomial kernel, so the estimated
distribution for each test data is determined by the distribution conditions of the training data [51, 52]. Detailed
information for this algorithm can be found in the cited sources [53, 54].

Multivariate Adaptive Regression Splines (MARS): Thismethod, which is a nonparametricmodeling
technique, was developed by Friedman [55]. In theMARS approach, the entire data set is significantly divided
into sub-datasets and a separate linearmodel is established for each sub-dataset [56]. Thus, with the help of this
piecewise linearmodel, which is automatically adapted to all data, the nonlinear connection between the
independent variables and the target variable (splines) can be estimated [57, 58].MARS is a very useful algorithm
for problemswhere the relationships of the variables in the datasetmay be different in each region [59, 60].

RandomForest (RF): This algorithmdeveloped byBreiman [61] has been used inmany different fields in
recent years due to its high performance in classification and regression problems [62–67]. In the RF approach,
the entire dataset is divided into subsets andmore than one decision tree is createdwithin each subset. Then
Each tree is trainedwith randomly selected features. As a result, RF, an ensemble learning technique, is affected
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by specificweights from each tree for the finalmodel result [68]. Also, in the RFmodel, training each tree with
randomly selected features and generating each tree dataset using a subset avoids the overfitting problem [63].

Quantile RandomForest (QRF): Unlike the traditional RandomForest algorithm,QRFuses only values
from a certain percentile during splits in each tree [33]. Thus, it allows customizing each tree to include only
values in a certain percentile. Thismethod can showbetter results in some cases than a standard RandomForest
algorithm in regression problems by reducing the effect of outliers in the data set and allowing themodel to
better explain the distribution of the target variable (predicted variable) in certain percentiles [69–71].

Support Vector Regression (SVR): Thismethod is a regressionmethod that utilizes support vectors and the
Lagrangemultiplier approach for analyzing and predicting data [72]. The SVR algorithm is based on the Support
VectorMachine (SVM) algorithm,which provides effective solutions to classification problems [73]. SVR is
particularly useful when dealingwith outliers and non-linearities in data [74]. The SVR aims to obtain a
regression estimate that accurately predicts the response values based on a subset of high-dimensional prediction
variables [75]. It utilizes support vectors and the Lagrangemultiplier approach to achieve this goal [76, 77].

ExtremeGradient Boosting (XGBoost): This algorithm, developed byChen andGuestrin [35], has emerged
by optimizing theGradient BoostingMachine (GBM) [78] algorithm and expanding it to a scalable level.
XGBoost is particularly successful in large datasets and high-dimensional feature spaces. XGBoost is amachine
learning algorithm thatmodels nonlinear relationships usingmultiple decision trees and is based on the
principle of sequential error reduction [79, 80]. In thismethod, decision trees are created sequentially and each
tree is reconstructed according to the predictions of the previous tree with a focus on error reduction. Thus, each
tree created learns a new feature that increases the accuracy of themodel and reduces the error rate [81].
Furthermore, in the XGBoostmodel, a weight value is assigned to each tree and the contribution of each tree is
determinedmore clearly in order for the results to have higher performance. In addition, the XGBoost algorithm
hasmany regularization parameters to prevent overfitting [17].

Cubistmodel: The cubistmodel is a rule-basedmodel capable of handling both numerical and categorical
variables [82, 83]. It uses a ‘separate and conquer’methodology, to create a rule-based regression tree that
identifies different paths by iteratively splitting predictor variables within themodel [84, 85]. TheCubistmodel
results contain several sets of rules that can be broken down into sub-datasets with similar characteristics to
represent the entire dataset. Amultivariate linear regressionmodel isfitted to the subsets of data generated by
these rule sets to reveal the pattern of association between the predictor variables and the target variable [86].
Unlike other rule-based treemodels, Cubist uses a combination ofmodels togetherwith a smoothing coefficient
to combine the linearmodels at each node of the tree, as expressed in equation (5) [85, 87].

= ´ + - ´y a y a y1 5par k pˆ ˆ ( ) ˆ ( )( ) ( )

where y k(̂ ) is the prediction from the currentmodel (childmodel), y p(̂ ) is the prediction from the parentmodel
located above it in the tree, and a is the smoothing coefficient. This coefficient can be determined as expressed in
equation (6) [85]:
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whereVar[e(p)] is the variance of the errors (i.e., -y y k(̂ )) of the parentmodel, Cov[e(k), e(p)] is the covariance of the
residuals of the child andparentmodels, andVar[e(p)− e(k)] is the variance of the difference between the residuals.
This process is based on the covariance of the residuals of the child andparentmodels. The covariance indicates
that the errors of the twomodels are linearly related. If the variance of the errors of the parentmodel is greater than
the covariance, the childmodel isweightedmore than the parentmodel. In the opposite case, Cubist givesmore
weight to the parentmodel. Thus, themodelwith the lowest error value ismore dominant in the adjustedmodel.
If the error values of the twomodels are the same, bothmodelswill have equalweight [85]. Cubist combines the
linearmodels at eachnode according to equation (5), creating a single linearmodel for each rule. This allows the
models to be presented in amore organized and representativeway [85].Withnew regressionmodels developed at
each treewedding, brancheswith a high error are pruned, thus preventing overfitting for themodel [88, 89].

There are clear specific differences between theCubistmodel and other tree-basedmodels, such as
committeemodels (a boosting-like procedure for building iterativemodel trees), specific techniques used for
model smoothing, rule generation, and pruning, and instance-based corrections (using nearby points from the
training set data to adjust predictions) [85, 86]. In addition, the Cubistmodel is highly interpretable and can
provide insights into the decision-making process without the need for techniques such as SHAP (SHapley
Additive exPlanations) [90] and LIME (Local InterpretableModel-agnostic Explanations) [91].Moreover, the
ability to handle non-linear relationships between dependent and independent variables [17, 92] and to use both
numerical and categorical variables asmodel inputs give theCubistmodel significant advantages in terms of
high forecasting performance [93].
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2.3. Comparison of algorithms
Machine learning algorithms have their own strengths andweaknesses. The choice of algorithmdepends on the
specific problem and the characteristics of the dataset. It is important to carefully consider the advantages and
disadvantages of each algorithmbefore selecting themost appropriate one for a given task. The algorithms used
in this study have their advantages and disadvantages, which can be summarized as follows.

Artificial neural networks are known for their ability tomodel complex relationships andhandle large
amounts of data. They can learn fromexamples and generalizewell to unseendata.However, they can be
computationally expensive to train and require a large amount of data to achieve goodperformance [94]. They can
also exhibit illogical behaviorwhennotwell trained [95]. Cubistmodels are rule-basedmodels that can handle
bothnumerical and categorical variables. They are interpretable and canprovide insights into the decision-making
process.However, theymay not performaswell as other algorithmswhen the relationships between variables are
non-linear [93]. Gaussian processeswith polynomial kernels areflexiblemodels that can capture complex
relationships between variables. They can provide levels of uncertainty for predictions.However,Gaussian
processes are computationally intensive andmay not scale well to large datasets, and they offer a probabilistic
interpretation [96, 97].Multivariate adaptive regression splines are non-linearmodels that can capture complex
relationships between variables and they are usefulwhen the dataset is large and computation time is not an issue
[98]. Random forests are ensemblemodels that combinemultiple decision trees. They are robust to overfitting
and canhandle high-dimensional data. They can also provide estimates of variable importance.However, they
may not performwellwhen there are strong interactions between variables [99]. Quantile random forests are a
variation of random forests that canmodel the conditional distribution of the response variable. They can provide
more information about the uncertainty of predictions.However, theymay requiremore computational
resources andmay not perform aswell as other algorithmswhen the conditional distribution is highly skewedor
heavy-tailed [100]. Support vector regression can handle non-linear relationships between variables and can
provide good generalization performance.However, it can be sensitive to the choice of hyperparameters andmay
not performwellwhen the dataset is noisy or contains outliers [93]. Extreme gradient boosting (XGBoost) can
handle high-dimensional data and capture complex relationships between variables. XGBoost is known for its
high performance and scalability,However, XGBoost can be sensitive to outliers andmay not performwell on
unstructured and sparse data [101]. Additionally, XGBoostmay have a slower prediction speed compared to the
random forest due to the generation of sequential decision trees [102].

2.4.Model performancemetrics
In this study, three basicmetrics were used to evaluate the performance ofmachine learningmodels. These are
themean absolute error (MAE) and rootmean square error (RMSE). Themathematical expressions of these
performancemeasures can be shown as follows.
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=
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where n is the total number of data.Ai andPi indicates actual data and predicted value of ith sample, respectively.
TheRMSE andMAEmetrics should be close to zero for themodel with high predictive performance.

3. Result and discussions

3.1. Training process
In this study, the results of the nuclear charge radius estimations for the atomic nuclei fromeight different
machine-learningmethodswere obtained. All of the data (933nuclei)used in themachine learning processwere
separated into training (699nuclei) and test (234nuclei)data sets. The training process ofmachine learning
algorithmswas carried outwith 10-fold cross-validation processes and themodel hyperparameters that gave the
best results for each algorithmwere determined. Thus, it aims to increase eachmodel’s performance by ensuring
that it is optimizedwithin the training process. Table 1 shows the performancemetrics and optimizedmodel
hyperparameter values determined as a result of the 10-fold cross-validation process. According to table 1, along
with the learning performance of allmodels examined in the study being quite high, it can be determined that the
best-performingmachine learning algorithm is theCubistmodel (RMSE= 0.01199 fmandMAE= 0.0077 fm).

3.2. Testing process
The performances of themodels were evaluated by the test data and the results were shownwith discrepancy
distribution in figure 1. The onewith the lowestRMSE value among thesemethods is the Cubist model, where
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Table 1.Performancemetrics and optimizedmodel hyperparameter values determined as a result of the 10-fold cross-validation process ofmachine learningmodels.

Algorithm RMSE MAE Optimizedmodel hyperparameter Descriptions

Cubist 0.01199 0.00770 committees: 97 neighbors: 3 committees: The number of iterativemodel trees neighbors: The number of nearest neighbors

XGBoost 0.01533 0.01114 nrounds: 80 alpha: 0.001 lambda: 0.01 nrounds:Max number of boosting iterations alpha: L1 regularization termonweights. lambda: L2 regularization termonweights.

RF 0.01746 0.01173 ntree: 700mtry: 4 ntree: Number of treemtry: Splite number on the node

QRF 0.01791 0.01232 ntree: 750mtry: 4 ntree: Number of treemtry: Splite number on the node

GPPK 0.03715 0.02901 scale: 0.1 degree: 3 scale: The scaling parameter of the polynomial and tangent kernel degree: The degree of the polynomial

MARS 0.03462 0.02745 degree: 5 degree: The degree of the polynomial

SVR 0.04286 0.03300 sigma: 0.1 C: 20 sigma:Distribution parameter for Gaussian radial basis C: The penalty coefficient

ANN 0.03992 0.03174 Layer 1: 200 Layer 2: 60 Layer 3: 40 Layer1: The number of neurons in the first layer Layer2: The number of neurons in the second layer Layer3: The number of neurons in the

third layer
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the deviations of the estimation results from the experimental values are given in figure 1(a). Thismodel’s
RMSE andMAE values are 0.0102 fm and 0.0075 fm, respectively. As clearly seen from the figure, the
deviations from the experimental values are concentrated around the zero line except for a few atomic nuclei.
In figure 1(b), the graph of the deviations of the predictions from the XGBoost from the experimental data is
presented. The distribution in the curve, where the deviations are clearly seen to be concentrated around the
horizontal zero line, appears to be in the range of about−0.05 fm to+0.05 fm. TheRMSE andMAE values of
the results obtained from the XGBoostmodel are 0.0125 fm and 0.0125 fm, respectively, which is themethod
inwhich the best results are obtained after the Cubistmodel. After the XGBoost, the results of the RFmodel,
themethodwith the better predictions, are given in figure 1(c). It is seen that the distribution here is
concentrated in the range of−0.03 fm to+0.06 fm, around the horizontal zero line. TheRMSE andMAE
values of the results obtained from thismodel were 0.0138 fm and 0.0102 fm, respectively. Next better results
are obtainedwith theQRFmodel (figure 1(d)). Thismodel’sRMSE andMAE values are 0.0140 fm and 0.0104
fm, respectively. As can be seen from the figure, the distribution of deviations from the experimental data of
thismodel is concentrated in the horizontal zero line, in the range of−0.05 fm to+0.06 fm.When the results
obtained from theGPPKmodel given in figure 1(e) are examined, it is seen that theRMSE andMAE values are
0.0346 fm and 0.0273 fm, respectively. The distribution here appears to be in the range of−0.08 fm to+0.11
fm. The distribution of results in thismodel is concentrated on the positive side of the zero line, indicating that
the estimates are generally bigger than the experimental data. The results of the predictions of theMARS
method are given in figure 1(f), showing their deviations from the experimental values. TheRMSE andMAE
values of thismodel are 0.0346 fm and 0.0277 fm, respectively, and it is seen that the concentration is in the
range of−0.06 fm and+0.11 fm around the zero line. In figure 1(g), the distributions of the estimates obtained
from the SVRmodel are given. In themodel, in whichRMSE andMAE values were obtained as 0.0439 fm and
0.0336 fm, respectively. It is seen that the deviations of the estimations from the experimental data fluctuate
around zero. However, the distributionwas found to be in the range of−0.11 fm to+0.11 fm. Finally, the
results from the ANNmodel are presented in figure 1(h). In the graph showing the distribution, it is clearly
seen that the zero line disappears and the distribution is shifted down. It can also be seen from the figure that
the deviations from the experimental values spread around−0.05 fm to+0.12 fm. TheRMSE andMAE values
of the ANNmodel were found to be 0.0564 fm and 0.0494 fm, respectively. These results obtained by ANN
show close results to the findings of our previous study [21]. It should be noted that the results of Cubist,
XGBoost and RFmodel forRMSE andMAE are better than those of [23, 25, 27]. As seen in this study, the
Cubistmodel gives themost successful results in nuclear charge radius estimations. Cubistmodel success is
based on its algorithm, which correctly partitions the data and generates regression equations that best fit each
subset. This is due to its ability tomodel complex relationships using a combination of both tree structure and
regression equations.

This study used the bootstrapmethod tomeasure the uncertainty ofmachine learning predictions [103].
In thismethod, a large number ofmodels (1000 for this study) are trained by resampling from the original
training set and their predictions on the test data are recorded. The standard deviation of these predictions
represents the uncertainty. For the Cubistmodel, which gave the best prediction results in our study, the
minimum andmaximumvalues of the uncertainty in the test data were determined as 0.000 85 fm (for 199Hg)
and 0.050 21 fm (for 77Rb), respectively.

3.3. An application ofmachine learningmodels
In this subsection, we are searching for the feasibility of consideringmachine learningmethods based on
experimental data of Kr and Sr isotopic chains to check their prediction on shell closure atN= 50 because the
shell structure of nuclei aroundN= 50 is clearly visible in the experimental nuclear charge radii data where the
lowest values are located atN= 50 for Kr and Sr isotopic chains. (More details forN andZ dependence of
nuclear charge radii can be found in [4].)Wealso compare our results with the prediction of conventional semi-
empirical charge radii formulas andmeanfieldmodels. As it is well known the radius of the nucleus is
proportional to itsmass number. However, the conventional A-dependent RMS charge radius formulation in
equation (9) is not globally valid for all nuclei covered by nuclidic charts because some nuclei have different
numbers of neutrons and protons even if they have the samemass numbers. On the other hand, the experimental
nuclear charge radii values show that theR/A1/3 ratio is not constant through the nuclidic chart [104, 105].
Therefore,Z or isospin-dependent formulas have been developed and it has been found that they describe
nuclear charge radii of nucleimuch better (Details and references can be found in [104, 106]). Somewell-known
semi-empirical charge radii formulas are given below.

=R r A 9c A
1 3 ( )
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=R r Z 10c Z
1 3 ( )

= +R r Z
5

3
0.64 11c p

1 3 2 1 2(( ) ) ( )

Figure 1.Discrepancy distribution for nuclear charge radius estimated from (a)Cubist, (b)XGBoost, (c)RF, (d)QRF, (e)GPPK, (f)
MARSmodel, (g) SVR and (h)ANN. The units forRMSE andMAE are in fm.
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In these formulas,Rc,Z,N, andA are charge radii, proton number, neutron number, andmass number of
considered nuclei, respectively. rA, rZ, rp, b, and c arefitted parameters by using experimental data. These
parameters were fitted by [6] for a better description of nuclear charge radii in the case ofA> 40 region. For easy
follow, the formulas given in equations (9), (10), (11), (12), (13) and (14)will be named as to be F1, F2, F3, F4, F5
and F6 in the text and graphics, respectively. The prediction of theCubistmodel for nuclear charge radii of 72
−96Kr and 78−100Sr are shown infigures 2(a) and (b), respectively. The experimental data [5] and the predictions
of semi-empirical formulas are shown for comparison. As can be seen in the figures, the F1, F2, F3, and F6
formulas give results far away from experimental data. The F4 and F5 formulas give close results to experimental
data up toN= 50 neutron numbers then start to become far. On the right panels offigure 2(a) and (b) kinks
aroundN= 50 are seenwhichmeans that shell closure is visible on experimental charge radii ofKr and Sr
isotopes. TheCubistmodel predicts kinks aroundN= 50 forKr and Sr isotopic chains verywell. It should be
noted that the Cubistmodel predicts the experimental data quite successfully.

Furthermore, phenomenologicalmicroscopic nuclearmodels based on themean-field approach give close
charge radii values to experimental data for nuclei cover nuclidic chart [107, 108]. The kink on nuclear charge
radii aroundN= 50 for isotopic chains is produced verywell by the relativisticmeanfield (RMF)model with
NL3* interaction parameter [109]. Because of this reason, we have compared predictions of charge radius values
for 72−96Kr and 78−100Sr isotopes obtained from either Cubist,MARS, SVR,GPPK, XGBoost, RF,QRF, ANN
models together with the predictions ofmicroscopic nuclearmodels and the experimental data. Infigures 3 and
4, the predictions of consideredmachine learningmethods for nuclear charge radii of 72−96Kr and 78−100Sr are
shown, respectively. The experimental data [5] and calculated results of theHFB (Hartree-Fock-Bogoliubov)

Figure 2.Predicted charge radius values for 72−96Kr (a) and 78−100Sr isotopes from theCubistmodel together with the experimental
data [5] and the prediction of semi-empirical formulas given in the text. The units forRMSE andMAE are in fm.
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methodwith SLy4 force [108] andRMFmodel with non-linearNL3* interaction [109] are shown for
comparison. As can be seen from the figures, bothmicroscopicmodels and fourmachine learningmodels
(Cubist, XGBoost, RF andQRF) are successful in the prediction of the tendency of nuclear charge radii as a

Figure 3.Predicted charge radius values for 72−96Kr isotopes fromCubist,MARS, RF, XGBoost, QRF, ANN,GPPK, SVRmodels. The
experimental data [5] and the predictions ofHFB-SLy4 [108] andRMF-NL3* [109] are shown for comparison.
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function ofmass numbers. However, it should be noted that the kinks on nuclear charge radii aroundN= 50 in
figures 3 and 4 are producedwell with the RMFmodel and ourmachine learningmethods Cubist, XGBoost, RF
andQRF.

Figure 4.The same asfigure 3 but for 78−100Sr isotopes.
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4. Conclusions

The estimation of the nuclear charge radius for atomic nuclei inA� 40 andZ� 20 regionwas performedwith
eight differentMLmodels, which is a strong alternative to theoreticalmodels. In the training stage ofML
methods, using the available experimental data, it has been shown thatML is a good tool for this purpose, and it
is concluded that theCubistmodel produces themost successful results. After a detailed analysis of the radius
estimates, the success of theML results in theKr and Sr isotope chainswas comparedwith the results of some
available radius formulas. It has been seen that Cubist, XGBoost, RF andQRFMLmodels unambiguously detect
kinks for isotopes corresponding tomagic numbers. In the last stage, the radius values obtained from the
microscopicmodels were examined in comparisonwith theML results, again in theKr and Sr isotope chains. It
has been concluded that the fourMLmethod is successful in estimating the charge radii of atomic nuclei with
accuracy and even in capturing the unusual behavior in themagic number region.When comparedwith the
formulas obtained fromdifferentmodels and the results produced by themicroscopicmodels, it has been seen
thatML is a really powerful alternativemethod to the theoreticalmodels in estimating the radius, which is clearly
successful.
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