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A B S T R A C T   

In the studies of nuclear physics, one of the important parameters for nuclear reactions is the reaction cross- 
section. It can be obtained from experimental data or by different theoretical models. In this study, we imple
ment machine learning (ML) algorithms to the regression analysis of the nuclear cross-section of neutron-induced 
nuclear reactions of Germanium isotopes. The data for the training of the machine was borrowed from the 
TENDL-2019 library for the total cross-section data of possible nuclear reactions after the bombardment of the 
different target materials by neutrons. Three ML models, Artificial Neural Networks (ANN), K-Nearest Neighbors 
(KNN) and, Support Vector Machines (SVM), were developed to fit nuclear data from the TENDL-2019 database 
in order to predict neutron induce reaction cross sections. The performance of each algorithm is determined and 
compared by evaluating the mean square error (MSE) and the correlation coefficient (R2). According to the 
results obtained, we demonstrate that cross-section information can be obtained safely with ML techniques and 
the regression curve generated by our models is in good agreement with the evaluated nuclear data library. From 
our study, ANN and KNN are found to be better compared to SVM algorithm. ML models can enhance classical 
physics-guided models and play a role in nuclear data analyses. They can be used as an alternative to the esti
mation of cross-sections for neutron energies of an unknown energy value.   

1. Introduction 

The neutron-induced reactions at low and medium energies have 
great importance in nuclear physics studies such as fusion and medical 
applications (Hamid et al., 2021). Because of the easy production of a 
high-intensity beam, the low stopping compared to heavier particles, 
relatively high cross-sections, and the production of high-intensity 
neutrons via break-up, one of the most important particles is neutron 
(Tárkányi et al., 2020). The accurate knowledge of the neutron-induced 
reaction cross-sections is important for selecting and validating the best 
structural materials for fusion studies. The accuracy of neutron 
modeling and theoretical techniques strongly depends on the quality of 
the nuclear data. These data are generated in the form of libraries such 
as the Evaluated Nuclear Data File (ENDF) (Chadwick, n.d.), the Joint 
Evaluated Fission and Fusion (JEFF) (Plompen, 2020), or the Japanese 
Evaluated Nuclear Data Libraries (JENDLs) (Shibata et al., 2011) 
combining data for fission product yields, energy differential 
cross-sections, covariance for neutron cross section, product 
energy-angle distributions, etc. However, in certain energy ranges, 

experimental nuclear cross-sections for some nuclear reactions are not 
available due to experimental difficulties. Compared to the database for 
proton-induced reactions, the neutron-induced reactions database was 
relatively poor (Tárkányi et al., 2021). In recent years, Machine 
Learning (ML) and Artificial Intelligence (AI) have been very popular 
spanning a wide range of scientific applications. The main idea behind 
ML algorithm is to learn the pattern from training a model with a 
pre-existing dataset and successfully make accurate and powerful 
predictions. 

The investigation of neutron interaction with Ge yields important 
information for the study of nuclear forces, nuclear structure, and nu
clear reaction. Therefore, it is important to measure the cross-sections of 
Ge isotopes induced by neutrons. Few experimental data for Ge isotopes 
exist, but a survey of available cross-section data showed that existing 
data cover a wide energy range but they also show many discrepancies 
(Haque et al., 2009). Lederer-Woods et al., measured the 73Ge (n, γ) 
reaction cross-sections experimentally (Lederer-Woods et al., 2019). 
Iwamoto et al., evaluated the neutron cross-sections for 70,72,73,74,76Ge 
isotopes (Iwamoto et al., 2005). Meierhofer et al.,., experimentally 
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measured thermal neutron capture cross-sections of 74Ge and 76Ge iso
topes (Meierhofer et al., 2010). In this study, the reaction cross-sections 
of the isotopes 70,72,73,74,76Ge with different neutron energies were 
estimated using machine learning technique. Pedro Vicente-Valdez 
et al., used a variety of ML such as K-Nearest Neighbors (KNN) and 
Decision Trees (DT) to predict total neutron-induced reactions 
cross-section for 233U and 35Cl (Vicente-Valdez et al., 2021). Z.M.Niu 
et al., predicted the nuclear mass using Bayesian neural network (BNN) 
approach (Niu and Liang, 2018). In our work, we applied three different 
algorithms which are the artificial neural network (ANN), K-Nearest 
Neighbors (KNN) and, Support Vector Machines (SVM). We tried to 
reach our goal by using ML methods and a small number of input pa
rameters. According to the results obtained from the ML calculations for 
five Ge isotopes performed using the dataset obtained from the 
TENDL-2019 database (Koning et al., 2019), it was concluded that these 
techniques are alternative tools for this purpose. This shows potential in 
building a ML model for generating nuclear cross-section data for both 
well-studied and understudied nuclear reactions. 

2. Materials and method 

The accuracy of neutron modeling depends on the quality of the 
nuclear data. Data libraries are generated by evaluators combining 
physics-based model codes and experimental data. Here, we define the 
computational cross-section datasets from TENDL-2019 (Koning et al., 
2019). TENDL-2019 is one of the most complete nuclear data libraries 
used to simulate the nuclear reaction that involves protons, photons, 
neutrons, deuterons, and alpha particles with incident energy up to 200 
MeV. In this study, although data filtering or splitting data ranges can 
improve performance in the range where there is a change of 107 factors 
in cross-sections from 0 to 200 MeV energy for the reactions, we per
formed our calculations without preferring this restriction in our study. 
Calculations were made to include all Ge isotopes in the data set used, 
and separate operations were not performed for the isotopes. That is, 
when applying ML methods, both the training and test datasets contain 
data for 70Ge, 72Ge, 73Ge, 74Ge and, 76Ge isotopes. 

The enormous amount of experimental data gathered over the years 
provides a logical opportunity for ML applications to inform cross sec
tions in regions of uncertainty, iterate quicker through the assessment 
processes, and ultimately decrease, if not remove, human bias from the 
process. For this proof-of-concept work, three simple yet well-proven ML 
algorithms were used for the prediction of the total neutron-induced 
reaction (n, γ) cross-sections of 70Ge, 72Ge, 73Ge, 74Ge and, 76Ge iso
topes. There are two main components to the input to feed into our 
machine learning algorithms, which are the incident energy of the 
neutron (E), and the neutron number (N) of the isotopes. The output is 
the cross-section (XS) for the neutron-induced reaction. The properties 
related to the reactions on Ge isotopes are in given in Table 1. 

To construct a reliable model to predict the neutron-induced reaction 
cross-sections of Ge isotopes, Pearson’s correlation coefficient (r) is 
calculated for all possible combinations of our input descriptors (Ben
esty et al., 2009). The correlation between the variables is seen in Fig. 1. 
As expected, there is almost no correlation among descriptors (N and E) 
of the Ge isotopes (r = 0.014) which lowers the cost of training and 

reduces the possibility of an overfitting or under fitting problems (Die
tterich, 1995). 

To avoid overfitting, cross-validation method was used in the current 
work, aiming to make optimal use of each sample and to obtain more 
justified models. Therefore, the datasets are divided using k-fold cross- 
validation. Then, it is partitioned into k randomly selected subsets of 
equal size, with one of the subsets utilized for testing. The technique is 
then continued until at least one of the k subsets is used as the testing 
dataset. In this paper, 5-fold cross-validation is used, in which the 
dataset is randomized and divided into 5 subsets, the machine is trained 
using 4 of the subsets (80%), after that, the testing part is done using the 
remaining subset (20%), these steps are repeated until each subset is 
used for testing once, and the root-mean square error for each cross- 
validation is estimated. The whole data (602 data points) belonging to 
the problem is divided into two randomly chosen subsets of unequal size 
set. One of them will be used for training the machine learning model 
using 75% of the dataset and the testing is done using the remaining 
(25%). The performance for each algorithm is analysed and compared 
using mean square error (MSE) (Chai and Draxler, 2014). In addition, 
the correlation coefficient (R2) as a quality criteria were used to describe 
the proportion of variability in a dataset that can be explained by the 
model. 

MSE =

∑n

i=1
(yi − ŷi)

2

n
(1)  

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi− < y >)

2
(2)  

where n is the number of observations, yi is the actual value, ŷi is the 
predicted value, and <y> is the overall mean. 

3. Model description and numerical algorithm 

In this supervised regression ML problem, we apply three types of 
learning techniques, K-Nearest Neighbors (KNN), Support Vector Ma
chines (SVM), and Artificial Neural Network (ANN). This Section con
tains a basic description of these algorithms. Python 3 with the Scikit- 
learn package was used for building all machine learning models 
(Pedregosa et al., 2011). 

Table 1 
The properties of the isotopes and the related reactions (A, Z and N are the mass, 
proton and neutron numbers of the Ge isotopes).  

Isotope  Number of Data 

A, Z, N Abundance (%) Reaction Training Test 

70, 32, 38 20.52 70Ge + n -> 71Ge+γ 94 28 
72, 32, 40 27.45 72Ge + n -> 73Ge+γ 85 34 
73, 32, 41 7.76 73Ge + n -> 74Ge+γ 89 32 
74, 32, 42 36.52 74Ge + n -> 75Ge+γ 88 32 
76, 32, 44 7.75 76Ge + n -> 77Ge+γ 93 27  

Fig. 1. Correlation between descriptors N and E used as inputs for the 
ML model. 
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3.1. K-Nearest Neighbors (KNN) 

The KNN method, a supervised learning algorithm, is a basic 
regression and classification method (Goldberger et al., n.d.; Tong et al., 
2021). The KNN regression technique determines the value of a new 
data point by first searching the K nearest data points in the training 
dataset and classifying them by increasing distance, thus the model’s 
name. K is a hyper-parameter that must be set before the training step. 
There are several distance metrics available, including Manhattan and 
Euclidean, that may be used to calculate the distance between points in 
the i dimensional space, where i is the number of trained variables. 

In the Euclidean example (Eq. (3)), the distance between points x and 
y is computed by calculating the square root of the squared difference 
between (x1, x2,…, xn) and (y1,y2,…,yn). On the other hand, the Man
hattan distance (Eq. (4)) is determined by taking the absolute distance 
between points x and p. The distance function of KNN algorithms take 
the form: 

d(x, y)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − yi)

2

√

(3)  

d(x, y)=
∑n

i=1
|xi − yi| (4) 

The value of the new data point (Eq. (5)) is equal to the mean of the K 
nearest values if the weights are uniform. As an alternative, the K closest 
points can be weighted according to distance, which means that closest 
points have a greater impact on the value of the new data point (they are 
weighted by the inverse of their distance). 

newpoint=
1
k
∑k

i
ki (5) 

The accuracy and performance of the model usually depend on the 
choice of hyper-parameters. Bayesian optimization of the hyper
parameters is performed, choosing the ones that minimize cross- 
validation error. These parameters need to be adjusted for the model 
to generate a good function that fits and explains the cross section data 
accurately although, these parameters can give too much flexibility 
consequently under fitting or overfitting the data. For KNN, Bayesian 
optimization is performed using cross validation to find the optimal 
value of the parameter K (number of nearest neighbors). Fig. 2 repre
sents the RMSE of the cross-validation (CV) and test set as a function of 
the parameter K. Larger values of K result in models with higher bias and 
lower variance, whereas smaller values of K generate models with high 
variance and small bias. We can see that the best performance of our 
model is when the value of K is equal to 1. 

3.2. Support Vector Machines (SVM) 

Support Vector Machine (SVM), was first developed by Vapnik. It has 
become a hot topic of intensive study due to its successful application in 
classification tasks and regression tasks. SVM was first formulated as 
supervised learning that utilizes hyperplanes for the separation of clas
ses (Chang and Lin, 2011). Essentially, SVM converts a non-linear 
regression into a linear regression by projecting input space to new 
feature space by using kernel functions. After employing hyperplanes to 
classify data points into clusters, the algorithms create a line or hyper
planes that decrease the error or loss function. The SVM approach was 
more recently extended to regression problems, a domain in which it 
was SVR. In SVM regression, a fixed (non-linear) mapping is used to first 
map the input x onto an N-dimensional feature space, and then a linear 
model is built in this feature space (Cherkassky and Ma, 2004; Dewi and 
Chen, 2019; Yang et al., 2002). The SVR gives prediction solutions based 
on the functional form equation: 

f (x,w)=
∑N

n=1
wnK(x, xn)+w0 (6)  

where wn and xn are respectively the model weight and the position of 
ach SVs. In addition n is the number of SVs, w0 is the bias and K (x,xn) is a 
kernel function corresponding to xn. 

Now the question is to determine wn and w0 from the training data by 
minimizing the empirical risk, Remp(w), based on the empirical risk, 

Remp(w)=
1
n

∑n

i=1
Lε(yi, f (xi,w)) (7) 

Absolute value error and squared error are two common loss func
tions used for minimizing empirical risk. SVM regression employs a 
novel loss function known as ԑ-insensitive loss. 

SVM regression uses ԑ -insensitive loss to perform linear regression in 
the high-dimensional feature space while simultaneously attempting to 
minimize model complexity by minimizing ‖w‖

2.This may be charac
terized by inserting (non-negative) slack variables ξi, ξ∗i i = 1, ...n, to 
assess the deviation of training samples beyond the 1-insensitive zone. 
As a result, SVM regression is defined as the minimizing of the following 
functional: 

1
2
‖w‖2

+ C
∑n

i=1

(
ξi + ξ∗i

)
(8)  

Where C is a positive constant (regularization parameter). 
A single kernel function is employed in the conventional method, 

and its form is determined by a set of parameters. The quality of the 
regression, like other kernel-based techniques, depends on the selection 
of the kernel function and its parameters, which must be appropriate for 
the present data. It is well known that SVM generalization performance 
(estimation accuracy) depends on a good setting of hyper-parameters 
‘C’, ‘ԑ’ and kernel function. In the current work, the hyper-parameters 
for SVM model were determined using the grid search function. 
Search range for C and ԑ was in between 10 to 100 and 1 to 0.01 
respectively. Kernel function considered is linear or ‘rbf’. Based on the 
grid search results, the value of C and ԑ had little effect on the model, and 
they were finally set to 100 and 0.1 respectively. Kernel function was 
fixed as ‘rbf’. Changes in parameters other than ԑ and C had little effect 
on the model accuracy and were therefore left at the default values 
implemented in the Scikit-learn package. 

3.3. Artificial Neural Network 

As a nonlinear mathematical method, ANN is a powerful and ver
satile method that mimics the human brain functionality and consists of 
several processing units called neurons (Hornik et al., 1989; Otchere 
et al., 2021). It is a network composed of three types of layers: input, 

Fig. 2. Test and cross validation RMSE as a function of the number of neigh
bors (k). 
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hidden, and output layers, each has a number of neurons linked to those 
in nearby levels (Fig. 3). The basic components of an ANN are the 
neurons which are organized in a different layered structure and con
nected via adaptive synaptic weights. The weights are calculated be
forehand during a training phase. The first layer forwards the input 
vector to be identified to the first neurons. Input layer neurons receive 
the data from the environment and the output layer neurons give the 
result as close as to the desired ones. A neuron receives the outputs of the 
previous neurons as input, performing weighted addition of them, 
evaluating the result on an activation function, and forwarding the 
outcome to the next layer. Furthermore, there is no rule for the number 
of hidden layers and neurons between input and output layers. In the 
application of the ANN method, different numbers of hidden neurons 
have been considered. One of the structures chosen is composed of two 
hidden layers with ten hidden neurons along with the input and output 
layers (with two and one neurons, respectively) as it has also been 
enough to achieve high accuracy with the target dataset. In the training 
stage, the adaptive weights between neurons are adjusted to construct 
ANN. The weights play an important role in solving the problem. If 
weight is adjusted well, it works for all similar types of data that have 
never been seen in the training stage. Therefore, this training stage 
continues until the acceptable error level. Parameter optimization is 
focused on the activation function, and on early stopping of training to 
limit overfitting. In this application, Levenberg-Marquardt’s 
back-propagation algorithm for the training and tangent hyperbolic 
activation function for the hidden neurons were used. 

4. Results and discussion 

Since cross-section values corresponding to different energies take 
numerical values in a very wide range, the data range needs to be nar
rowed. One of the methods used for this purpose is to use the logarithms 
of the values. In the results presented in this study, the cross section is 
meant by the logarithms of the total cross-section values. Therefore, in 
the ML calculations performed, the logarithms of the total cross-section 
values of the neutron induced reactions taken from the TENDL-2019 
database were used. The datasets for 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge 
total cross-sections (Koning et al., 2019a, 2019b, 2019c, 2019d, 2019e) 
were fed into the algorithm of feed-forward multilayer ANN, SVM and 
KNN to build a machine learning model with a nuclear cross-section 

library as the target output. 
In the first stage of our study, we estimated the neutron induced 

reaction cross sections on isotopes using ANNs of different structures. 
The performance of our ANN model for the 70Ge, 72Ge, 73Ge 74Ge and 
76Ge neutron induced total cross-sections are tabulated in Table 2 in 
terms of R2 and MSE. Figs. 4 and 5 show the graph of the estimated 
versus actual values, from which the accuracy of the prediction made by 
the ANN algorithm can be seen. 

As can be seen in Table 2, according to the results obtained by using a 
single hidden layer and 8 hidden neurons ANN structure, R2 and MSE 
values were obtained as 0.96 and 0.14 mb2, respectively. The increase in 
the number of neurons in the hidden layer to 20 led to a noticeable 
improvement in training. R2 and MSE values were obtained as 0.97 and 
0.10 mb2 by using this structure. This noticeable decrease in MSE meant 
that increasing the number of neurons in the hidden layer would have 
positive effects on the results. However, increasing the number of hid
den layers to 2 and the inclusion of 10 neurons in each layer did not 
create a significant improvement in the results of the training data. In 
Fig. 4, the results obtained from ANN structures with different hidden 
layers are presented graphically. In this figure, in which the ANN esti
mates are presented against the theoretical literature data, it is seen that 
the ANN predictions in the range where the cross section is about − 2 to 
2 mb are better. At larger values, the deviations are clearly evident. 
While the maximum deviation in the single hidden layer 8-neuron 
structure was 3.20 mb, the maximum deviation in the 20-neuron 
structure was 2.73 mb. Whereas, the maximum deviation in the dou
ble hidden layer structure is 2.74 mb. 

The figure in which the estimates on the test data of the different 
ANN structures used are examined is presented in Fig. 5. Again, it is 
clearly seen that the estimations in the range of about − 2 to 2 mb are 
more successful, but the deviations in the larger cross-section values are 
higher. It was observed that the maximum deviation of the structure 
with a single hidden layer and 8 neurons was 3.20 mb, and the deviation 
in the structure of 20 neurons was 2.76 mb. On the other hand, the 
maximum deviation of the double hidden layer and 10-neuron structure 
is 2.72. The increase in the number of neurons in a single-layer structure 
and over 20 increases the performance of the ANN, which is approaching 
memorization, on the training data, but it reduces the estimations on the 
test data below the acceptable limit. Therefore, we did not consider it 
necessary to present the results we obtained from more than 20 struc
tures in this study. The different ANN structures, also presented in 
Table 1, are the results in which the results for the training and test data 
are acceptably balanced. This is the reason why we do not present the 
results of our ANN calculations in other structures, whether single layers 
or double layers. 

After examining the ANN results using different structures, we also 
addressed the problem with SVM and KNN machine learning ap
proaches. Figs. 6 and 7 depict the predicted versus actual plot where we 
can observe the accuracy of the prediction made by KNN and SVM al
gorithms, respectively. The performance of three proposed machine 
learning algorithms has been investigated using the correlation coeffi
cient R2 and MSE as reported in Table 3. 

For the training stage, we can evaluate from Table 3 that the ANN 
algorithm have the highest correlation coefficient with R2 = 0.97 and 
MSE = 0.09, whereas the KNN algorithm has the lowest error with MSE 
= 0.07 mb2 for the testing stage compared to ANN and SVM algorithms. 

Fig. 3. One of the used ANN structure with two hidden layers of 10 hidden 
neurons in each. 

Table 2 
The performance of our ANN model using TENDL-2019 input. R2 is the corre
lation coefficient while MSE is the mean square error.  

Training Data Test Data  

R2 MSE R2 MSE 
ANN (h¼8) 0.96 0.14 0.94 0.20 
ANN (h¼20) 0.97 0.10 0.95 0.17 
ANN (h¼10–10) 0.97 0.09 0.95 0.15  
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From Figs. 5–7, we observed the comparison of the performances of our 
machine learning models. We can see that ANN and SVM algorithms 
exhibit the same trends were, the KNN algorithm performs better in term 
of MSE. For KNN, the predicted nuclear cross-section shows a good fit 
with TENDL-2019 library data points when being fed input sets. 

In Figs. 8 and 9, energy values versus total reaction cross-section 
graphs of (n, γ) reactions performed with neutrons sent on five 
different Ge isotopes are given. The results of the double hidden layer 
(10-10) ANN structure, which is the machine learning with the highest 
performance in this study, are presented in comparison with the TENDL- 
2019 data. In Fig. 8, the ANN estimates on the training data set are given 
and it is seen that the ML results are in agreement with the literature. In 
Fig. 9, the results of the ANN predictions on the test data set are pre
sented comparatively. It is seen that a few ANN estimates at very small 
values, where the energy value is close to zero, are lower than the 
literature on both training and test data. This may be due to the fact that 
the energy value is close to zero, so it is treated as zero in the input 
neuron in the ANN calculations. It is worth reminding again that the 
logarithms of the cross-section values were used in the calculations for 
the estimations. 

5. Conclusion 

In this study, we proposed an alternative approach to the existing 
theoretical models in generating nuclear reaction cross-section data 
using machine learning techniques. The predictions of total neutron- 
induced reactions on 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge isotopes with 
neutron energy from 0.5 to 200 MeV have been performed by using 
artificial intelligence methods. The data for the cross-section of the 
different reactions by different energy values is highly non-linear. 
Therefore, it is a very difficult task to predict cross-section values with 
great accuracy. We tried to reach our goal by using three different ma
chine learning algorithms, which are ANN, SVM, and KNN. We have 
used ANN in different structures with single and fence layers. After many 
trials, we concluded that using two hidden layers with ten hidden neu
rons, and tangent hyperbolic activation function gives good results. We 
also examined the effects of increasing the number of layers on the 

Fig. 4. Predictions of cross-section by using ANN with different hidden neuron 
structures on the training data set. 

Fig. 5. Predictions of cross-section by using ANN with different hidden neuron 
structures on the test data set. 

Fig. 6. Predictions of cross-section by using KNN on the test data set.  

Fig. 7. Predictions of cross-section by using SVM on the test data set.  

Table 3 
Evaluated ML models predictions error on the TENDL-2019 library Measure
ments for Ge Reactions.  

Training Data Test Data  

R2 MSE R2 MSE 
KNN 0.95 0.07 0.94 0.07 
SVM 0.94 0.09 0.84 0.27 
ANN (h¼10–10) 0.97 0.09 0.95 0.15  
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results and performed our calculations with structures with 2 hidden 
layers. Among them, we also presented the results of the bilayer struc
ture with 10 neurons each. However, we cannot say that the use of 
double layers causes significant improvements in the results. According 
to the results, ANN and KNN are found to be better compared to SVM 
algorithm. Another contribution of this study to the literature from a 
different perspective is that it is a cross-validation method for calcula
tions based on theoretical calculations. In addition, although it is 
concluded that the ML results are more compatible with the experi
mental data than the other theoretical results, the theories can be 
improved by updating them. Moreover, one can also apply these ap
proaches to improve and predict other nuclear properties with many 
experimental data, such as β-decay half-lives, nuclear masses, nuclear 
charge radii, and so on. 
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