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Qβ represents one of the most important factors characterizing unstable nuclei, as it can lead to a better10

understanding of nuclei behavior and the origin of heavy atoms. Recently, machine learning methods have11

been shown to be a powerful tool to increase accuracy in the prediction of diverse atomic properties such as12

energies, atomic charges, and volumes, among others. Nonetheless, these methods are often used as a black13

box not allowing unraveling insights into the phenomena under analysis. Here, the state-of-the-art precision14

of the β-decay energy on experimental data is outperformed by means of an ensemble of machine-learning15

models. The explainability tools implemented to eliminate the black box concern allowed to identify proton and16

neutron numbers as the most relevant characteristics to predict Qβ energies. Furthermore, a physics-informed17

feature addition improved models’ robustness and raised vital characteristics of theoretical models of the nuclear18

structure.19

DOI: 10.1103/PhysRevC.00.00430020

I. INTRODUCTION21

There are about 250 stable isotopes and over 3000 unstable22

ones are known. One way that unstable atomic nuclei decay23

into stable ones is β decay. As a result, the β-decay energy Qβ24

that goes with it is a fundamental property of unstable atomic25

nuclei. Qβ values can be determined via several methods, such26

as β endpoint measurements, counting in coincidence with27

annihilation radiation, electron capture EC/β+ ratio method,28

γ absorption with x-ray coincidence [1]. This process is29

complex to explore provided that its energy spectrum has30

a continuous structure. The decay energy seems to simply31

relate to the proton number and mass of the atomic nuclei.32

Experimental Qβ energies of nuclei can be verified in the Z ∈33

[4, 82], N ∈ [4, 126] regions, whereas unknown energies can34

be calculated using α-β energy cycles by means of reliable α35

spectroscopic data. Moreover, some β-decay energies can be36

obtained with the help of energy cycles from α-decay energy37

systematic [2].38

A. Explainable machine learning39

Machine learning (ML) has recently emerged as an im-40

portant tool for understanding physical phenomena, focusing41

on understanding how a model makes a particular decision,42
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rather than just accepting the output as a black box [3,4]. In 43

the supervised approach, an algorithm is used as a functional 44

approximation F (x) for an unknown function F (x). Thus, 45

it is possible to obtain the desired output for the collected 46

physical data x ∈ Rn. Classical statistical algorithms such as 47

linear regression models or principal components regression 48

(PCR) allow for characterizing the relevant predicting features 49

of the model, thus providing an understanding of the physical 50

phenomena underlying the data. However, they impose spe- 51

cific restrictions on the studied manifold, and thus, they are 52

not well suited to most of the complex phenomena observed 53

in nature [5]. On the other hand, modern approaches such as 54

deep learning (DL) allow for a comprehensive representation 55

of physical observables, as they work as universal function 56

approximators [6,7]. The trade-off comes when it is necessary 57

to understand what the algorithms are considering. To address 58

this issue, explainable ML allows identifying of underlying 59

characteristics such as feature importance [8–10], model the 60

dynamics of complex systems [11,12], conservation law dis- 61

covery [13,14], and symbolic expression extraction [15–17]. 62

Besides, simple ML models have previously been used in 63

the study of the β decay [18–22]; however, there is still 64

the need to obtain physical intuition out of these techniques. 65

Nuclear physics is not an exception, as determination of one 66

and two proton separation energies [23], developing nuclear 67

mass systematics [24], determination of ground state ener- 68

gies of the nuclei [19], identification of impact parameters 69

in heavy-ion collisions [25], estimation of fusion reaction 70

cross section [26], estimating nuclear rms charge radii [27], 71

decoding β-decay systematic [28], and determination of 72
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TABLE I. Numerical distribution of the AME2020 data for each one of the measured parameters.

N − Z N Z m excess δm Binding E Qβ δQβ p Atomic m δam

mean 27.783 86.782 58.999 −24262.379 115.570 7985.498 1546.938 149.663 145.043 713121.060 120.919114
std 16.501 42.272 27.627 59122.015 239.781 666.922 7441.595 231.639 69.683 388483.889 199.856141
min −3 1 0 −341875.725 0.000 0.000 −16673.000 0.000 1.000 99.560 0.000
25% 14 53 38 −67307.280 2.251 7731.891 −4103.108 5.004 91.000 171690.750 2.417
50% 26 85 59 −40851.305 10.614 8075.771 62.237 22.526 144.000 926617.954 11.394
75% 40 119 81 2679.998 179.083 8383.611 6087.989 206.267 199.000 954880.438 189.704
max 64 177 117 196397.000 8013.457 8794.555 32740.000 1082.000 294.000 999981.252 1078.000

fusion barrier heights [29] have already been studied via this73

tooling.74

B. ML for β decay75

To be precise, the β-decay energies [30] were estimated76

by considering the neutron and proton numbers of atomic77

nuclei as the only input parameters and the data values have78

been obtained based on the Hartree-Fock- Bardeen Cooper79

Schrieffer (BCS) method with the Skyrme force MSk7 [31].80

By contrast, here, the recent AME2020 experimental data [32]81

are considered and the input parameters are augmented by82

considering a full range of physical properties of atoms (see83

Table I below). By using the experimental Qβ values available84

in the literature, the systematics of atomic nuclei related to this85

energy was obtained here by performing ML, considerably86

decreasing the root mean squared error (RMSE) of previous87

approaches by a factor of 2.5. In addition, by calculating88

the importance scores, the fundamental parameters of atomic89

nuclei that have an impact on the Qβ energies are highlighted.90

C. The atomic mass table91

The dataset consists of the classical nuclear variables,92

numerically described in Table I, where entries with any non-93

computable data entrances were removed, leaving a total of94

2813 unstable isotopes. The relevant dataset variables are the95

number of neutrons in each isotope N , number of protons in96

each isotope Z , mass number A, difference between measured97

mass and the mass number Me and binding energy BE . Here,98

notice that a majority of the features are highly skewed. Fur-99

ther a description of the raw data is shown in the Appendix.100

It is possible to identify high correlations between some101

of the variables provided that some of the features are com-102

putable from the others (such as the mass number from the103

atomic and nuclear numbers). This needs to be addressed104

since it is known that algorithms that are susceptible to multi-105

collinear features generate unreliable predictions [33].106

Therefore, an exploratory dimensionality reduction analy-107

sis is implemented using principal component analysis (PCA)108

with the normalized variables and evaluating the performance109

of a naive predictor model. Here, both the explained variance110

and a principal component regression (PCR) used a fivefold111

cross-validation scheme [34]. As expected, more than two112

principal components are necessary to give a complete sense113

of Qβ by evaluating the RMSE of a linear regression model. In114

addition, Fig. 1 depicts the asymptotic behavior that is reached115

using more than three principal components. Nevertheless, 116

neither the second nor the third principal components are 117

negligible. 118

The PCA loadings, obtained as shown in Fig. 2, were 119

used to understand the importance of each of the parameters. 120

Interestingly enough, the second orthogonal component loads 121

more heavily the uncertainties, rather than the components 122

themselves, with a major role in the binding energy BE . This 123

suggests that there exists a significant contribution of the 124

features related to the experimental uncertainties reported in 125

the original dataset. However, the correlation analysis shown 126

in Fig. 3 accounts for part of this effect. Nonetheless, it is 127

expected that universal approximators can easily overcome 128

this issue. 129

II. MODELING Qβ: A REGRESSION APPROACH 130

To start the modeling of the phenomena in a systematic 131

and replicable way, training/testing/validation sets were gen- 132

erated with the dataset using a 70/20/10 split of the randomly 133

shuffled AME2020 dataset. A variety of tabular models were 134

fitted in an automatic manner, reporting the scores, and using 135

only the training and validation splits. In this approach, in each 136

one of the steps, the best-performing models are selected and 137

their hyperparameters are tuned via Bayesian optimization 138

techniques as designed by Ref. [35]. Based on a collection 139

of regression metrics (such as explained variance, RSME, 140

and their volatility among different splits of the training set), 141

the models obtaining high scores while keeping explainability 142
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FIG. 1. RMSE of the fit for a different number of components in
the PCA analysis.
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FIG. 2. Loadings of each one of the variables into the principal
orthogonal components. See text for more details.

were selected and further explored via hyperparameter tuning143

and feature importance measurement techniques.144

To have a baseline, the previous work [30] was replicated145

using a similar approach. Here, a vanilla fully connected146

multilayer perceptron (MLP) was implemented, but with the147

AME2020 dataset, which was trained only using the N and148
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FIG. 3. Correlations between variables in the Atomic Mass Table.
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FIG. 4. Schematic representation of the NN used when fitting the
Qβ .

Z of each one of the entries. The architecture consists of 149

a single hidden layer with 100 neurons, hyperbolic-tangent 150

nonlinearities, and classic stochastic gradient descent (SGD). 151

A. ML and AI models 152

1. Ordinary linear regression 153

Besides its simplicity, this approach is well suited to sci- 154

entific tasks because of the transparency, a general regression 155

allows. Thus, it serves both as a benchmark and brings insights 156

into the process. The ordinary least squares (OLS) approach 157

uses a projection model to fit the input vector X containing the 158

selected features to obtain an estimator Qβ via 159

Qβ = XT k + ε. (1)

The optimal parameters for the vector of coefficients k and 160

the scalar ε, which minimizes the difference between the 161

observation Qβ and the outputs Qβ are obtained via the OLS 162

procedure. 163

Moreover, this technique allows for obtaining a statistical 164

measurement of the fitted coefficients and their uncertainties, 165

thus, getting insight into the relevant features and characteris- 166

tics of the model. 167

2. Modern MLP 168

Multilayer perceptrons (MLPs) are a type of artificial neu- 169

ral network (ANN) in which neurons are connected via a 170

directed acyclic graph. They have one or more inputs, more 171

than one hidden layer, and one output layer. The hidden 172

neurons simply propagate information forward to the next 173

layer, each layer is a linear transformation of the previous 174

one via nonlinearities, which are required to allow a general 175

approximation of a black box function such as the studied 176

Qβ = Qβ (A, Z, N, . . .). Such functions are referred to as the 177

layer activation function and the output layer corresponds to 178

a prediction of Qβ . The neural network (NN) architecture 179

schema is shown in Fig. 4. 180

The Gaussian error linear unit (GeLU) activation function 181

was included as a nonlinearity, given that it has been shown 182
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that helps reduce several problems associated with small183

datasets [36]. In addition, an interlayer dropout is included,184

which discards random connections between layers with a185

probability of 0.1. This has been shown also to help in the186

optimization procedure [37].187

Several experiments modifying the hyperparameters via188

optimization methods were performed to obtain a suitable189

configuration of both the number of neurons per layer and the190

batch size [38]. A proper learning rate was also obtained using191

the method of cyclical learning rates as proposed in Ref. [39].192

The training process used a decaying learning rate and was193

implemented using the PyTorch Lightning library [40]. This194

used minibatch gradient descent to optimize the mean squared195

error loss (MSELoss) with the Adam optimizer [41]. Before196

starting the actual training process, three warm-up rounds197

were used.198

3. Gradient boosting machines199

Besides being increasingly known and used in different200

areas of physics, ANN are far from being the only avail-201

able option for an explainable and accessible model, a clear202

example is an extreme gradient boosting (with XGBOOST)203

algorithm [42], which uses the gradient boosted trees (BDT)204

method for fitting several tree regressors (or weak linear205

learners) using a regularized loss function. These are com-206

pared and later assembled with the approach of ML boosting.207

They perform especially well on tabular data and in most208

cases outperforming deep-learning approaches, requiring only209

fractions of the computational cost [43]. Here, the XGBoost210

model with the optimization of hyperparameters with Optuna211

[44] was implemented and several hyperparameters such as212

the depth, learning rate, and the number of learners were in-213

spected. Moreover, callbacks to avoid overfitting were added214

to the loss minimization process.215

4. Attention networks216

The attention mechanism [45] is implemented here to217

properly learning weights and relations within the input via218

learning queries and keys. Besides, this approach was found219

to be successful for unstructured data in several tasks such as220

protein unfolding and natural language processing, it had not221

been especially useful for tabular data until the the appearance222

of the TabNet model [46]. In this approach, the TabNet model223

was used with weighted Adam optimizer and early stopping224

callbacks to avoid overfitting.225

5. Ensemble model226

Even though the fitting generated with the methods above227

might fit accurately to the datasets, the models trained can228

generally either underfit, overfit, or just be poorly configured.229

The aim of the ensemble method is to facilitate the best230

of several base models to train a strong prediction model.231

This is achieved via a voting ensemble regression (VER), a232

linear combination of the predictions is done by weighting233

the individual models according to their performance on the234

validation split. Specifically, the weighting of the BDTs, the235

ANN, and the TabNet model is performed by evaluating both236

TABLE II. Regression metrics for the different classifiers trained
on the original AME2020 training set.

Model R2 MSE[MeV2] RMSE[MeV] MAE[MeV]

Baseline 0.926 4.134 2.033 1.518
OLS 0.868 7.943 2.818 2.043
ANN 0.946 2.724 1.650 1.289
BDT 0.958 2.271 1.715 1.275
Ensemble 0.957 2.305 1.518 1.191

the RMSE and the standard deviation over a fivefold in the 237

validation set. 238

B. Data augmentation techniques 239

From the initial evaluation of the feature importance, ex- 240

perimental uncertainties arose as noteworthy in the regression 241

of Qβ . Here, they come from the combination of both epis- 242

temic and systematic errors. Also, a characteristic often makes 243

it difficult for the models to improve their performance is the 244

limited experimental data they are training on. 245

Therefore, a method for obtaining more diverse and accu- 246

rate data is useful. A Monte Carlo sampling on each one of the 247

parameters with registered uncertainty is proposed. Assuming 248

that each one of the variables has an error normally distributed 249

and centered on the reported data. This allows obtaining a 250

significant data set for further improving the ML models with 251

increased robustness. This is only done in the training entries 252

so that no isotopes are overlapped between the split, ensuring 253

no data leakage. Notice that this approach can be followed by 254

the same procedure as an augmentation at testing time, as it 255

has been shown to considerably improve robustness [47]. 256

Following this procedure, the original training data was 257

overpopulated, from 1912 to a total of 573 600 samples, fol- 258

lowed by the removal of the columns related to uncertainties, 259

since this information has already been taken into account. 260

The models that were trained on the original data (which will 261

−10

0

10

20

30

Q β
[M

eV
]

−10 0 10 20 30
Qβ [MeV]

0

1

R
el

.
E

rr
or

2

4

6
E

rr
or

[M
eV

]

2.5
5.0
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inal AME2020 dataset.
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models trained in the original AME2020 dataset within the N and
Z plane, the size of the points represented is also determined by the
deviation in Qβ .

continue to be referred to as AME2020) were also trained and262

tuned on the augmented dataset.263

C. Periodic feature augmentation264

In the spirit of the augmentation technique presented265

in Sec. II B, physics-inspired features were added to both266

datasets (i.e., to the AME2020 and to the augmented dataset267

from Sec. II B). The periodic group was added to the data as a268

one-hot encoded feature. Moreover, the magic numbers such269

that they are arranged into complete shells in the nucleus were270

also taken for each one of the isotopes, both for N and Z . For271

this, the dataset includes the difference to the closes magic272

number (which we denote as mN and mZ , respectively). In273

addition, the ratio mZ/(mN + 1) and Z/N were also included.274

Given that this method heavily relies on the current atomic275

model, we denote the generated data as feature augmented.276

TABLE III. Results on the fitted coefficients for the OLS model.
ci is the coefficient and corresponds to the rate of change of Qβ

with respect to each variable, σ is the standard error, P > ‖t‖ is
the probability that the coefficient is measured, and C.I. @ 95%
is representing the range of the coefficients within 95% confidence
level.

Variable ci σ P > ‖t‖ C.I. @ 95%

N 533.02 10.91 0.00 [511.60, 554.43]
Z −925.62 16.08 0.00 [−957.19, −894.06]
ME −0.00 0.01 0.97 [−0.01, 0.01]
δME −196.84 578.31 0.73 [−1331.34, 937.66]
Eb 1.21 0.04 0.00 [1.13, 1.30]
δEb 263.86 20.87 0.00 [222.91, 304.80]
AM −0.001 0.00 −2.01 [-0.01, -0.00]
δAM 186.21 538.77 0.73 [-870.73, 1243.14]

TABLE IV. Regression metrics for both the original AME2020
and the augmented data.

Model R2 MSE[MeV2] RMSE [MeV] MAE[MeV]

Baseline 0.926 4.134 2.033 1.518
ANN 0.964 1.895 1.372 1.084
TabNet 0.958 0.995 1.149 0.987
BDT 0.986 0.749 0.865 0.371
Ensemble 0.987 0.686 0.828 0.460

III. RESULTS 277

For each one of the models described above, the coefficient 278

of determination (R2) of the fit, the mean squared error (MSE), 279

the RMSE, and the mean absolute error (MAE) were calcu- 280

lated. We use this collection of metrics to get an estimation 281

of how well distributed and big the deviations between Qβ 282

and Qβ is for the unseen testing dataset. Below, are the results 283

obtained using the approaches of different ML models with 284

several datasets. 285

1. AME2020 286

After fitting several regressors on the original split, modern 287

architecture clearly outperforms the previous state-of-the-art 288

RMSE. Notably, results obtained by the OLS are not con- 289

siderably bigger compared to the baseline ANN, as shown 290

in Table II. Moreover, experiments suggest that the number 291

of parameters that have to be trained on the TabNet requires 292

considerably more than one entry per isotope, thus the metrics 293

are not taken into account. 294

Besides the distribution of errors seems to be uniformly 295

distributed for different Qβ within the dataset as shown in 296

Fig. 5, it is remarkable that the distribution of outliers is not 297

with a clear higher deviation on low number of nucleons, 298

as illustrated in Fig. 6 and more notably, on the intersection 299

points for the atomic magic numbers. 300
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FIG. 7. Real Qβ versus predicted Qβ for the ensemble model
trained on the augmented dataset.
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FIG. 8. Deviation in predicted Qβ for the test isotopes by the
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Furthermore, the coefficients extracted by the OLS re-301

gression reflect the fact of not only interference but also of302

irrelevance for some fitted parameters, evidenced in Table III.303

2. Augmented dataset304

Since the amount of data used in this approach is con-305

siderably big, the OLS was not implemented, for all other306

algorithms the results are presented in Table IV.307

All the models were trained on the same test split that308

was established from the beginning of the process. And309

the good performance with no manifestations of overfitting310

shows that the models are capable of extrapolating to un-311

seen atomic feature configurations. Remarkably, the ensemble312

model achieves remarkable accuracy with fewer error outliers313

than all of the other models, taking advantage of the uncertain-314

ties with the original AME2020 dataset and the augmentation315

process. Moreover, the voting based on splits approach al-316

lows to effectively target robustness, as the ensemble method317

achieved a 12% lower maximum deviation in Qβ over the318

test isotopes. This allows for state-of-the-art metrics and a319

remarkably low MSE, as shown in Fig. 7 for the case of the320

ensemble model.321

TABLE V. Regression metrics for both the original AME2020
and the augmented data after performing feature augmentation.

Model R2 MSE[MeV2] RMSE[MeV] MAE[MeV]

AME2020
Baseline 0.926 4.134 2.033 1.518
ANN 0.950 2.583 1.607 1.252
BDT 0.981 0.756 0.869 0.613
Augmented
ANN 0.970 1.640 1.281 1.031
TabNet 0.982 0.993 0.997 0.774
BDT 0.989 0.576 0.759 0.534
Ensemble 0.991 0.511 0.714 0.510

−10

0

10

20

30

Q β
[M

eV
]

−10 0 10 20 30
Qβ [MeV]

0

1

R
el

.
E

rr
or

1

2

3

4

5

E
rr

or
[M

eV
]

2.5
5.0

FIG. 9. Real Qβ versus predicted Qβ by the ensemble model
after adding periodic features.

Furthermore, besides the error corresponding to isotopes 322

near magic numbers still having higher errors, the deviations 323

were reduced uniformly for test isotopes, as illustrated in 324

Fig. 8. 325

3. Feature augmented dataset 326

Within the same nature, the models trained on the dataset 327

containing the periodic group, and information related to the 328

magic numbers, as presented in Sec. II C. The first experi- 329

ments showed that the encoded periodic group is detrimental 330

to the performance, and thus those features were dropped. 331

This approach was implemented both on the augmented and in 332

the original AME2020 datasets, both of which are presented 333

in Table V. 334

This approach demonstrates the importance of generating 335

features based on theoretical models, as higher-level atomic 336
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FIG. 10. Distribution of deviations in Qβ as predicted by the
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periodic features.
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features, clearly allow models to fit the function better. This is337

noticeable in the distribution of deviations, as shown in Fig. 9.338

As expected, this approach allows a considerable reduction339

in errors, especially for the critical isotopes in not feature340

augmented approaches, and with the highest error at a low341

number of isotopes, as illustrated in Fig. 10. Notably, the342

two isotopes with an error above the percentile 90 correspond343

to helium (isotope with A = 6) and nitrogen (isotope with344

A = 24).345

IV. EXPLAINING THE BLACK BOX346

Up to this point, ML techniques have been shown to pro-347

vide a highly accurate regression of the β-decay energies.348
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FIG. 12. Permutational feature importance for the model trained
on the augmented set with magic-number features, only the eight
most important features are displayed.

FIG. 13. MSE Loss of the BDT model after hyper-tuning trained
on the augmented dataset with feature augmentation.
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FIG. 15. Initial distribution of the atomic features in the AME2020 dataset [32].

However, it is possible further to inspect the impact of each349

one of the features on the output of the model. This can be350

done via the evaluation of the shapley additive explanations351

(SHAP), a model-agnostic explainability method inherited352

from game theory, where the feature importance of the feature353

is calculated via a global analysis of the marginals per each354

input feature [48]. For this end, the KernelSHAP technique355

implemented in Ref. [49] is applied. The results are presented356

in Fig. 11 for the case of BDT, which was fully trained and357

hyperoptimized on the AME2020 training data.358

In accordance with our explorations with the PCA ap-359

proach, the uncertainties play a significant role in explaining360

the model output and that in general, the mass excess is 361

considered charged. The feature importance after training on 362

the augmented the dataset was also studied. It was found that 363

the importance scores for the physical features (N , Z , mass 364

excess, BE , atomic mass, and A) kept their assigned impor- 365

tance as expected from an orthogonal permutational scoring. 366

Moreover, the feature weights inside the trees for the BDT 367

and the feature permutation importance for the ANN, which 368

matches the overall order was also investigated. 369

The models thus fit the coefficients with a major impor- 370

tance of Z and N , which could in fact explain the good 371

results obtained in Ref. [35] with such a simple architecture. 372
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Furthermore, the relation found by the black boxes, in general,373

is inversely proportional for Z and direct for N .374

More importantly, the fact that the groups were detrimental375

to the performance of the regressors was validated by the per-376

mutational scoring. By considering the augmented periodic377

features, the high importance of the ratios N/Z , and the magic378

numbers give insights into why the critical isotopes near the379

magic numbers were predicted with lower errors [cf. Eq. (12)].380

Remarkably, the feature importance averaged over five381

runs for the models are shown to have a relative low F score,382

experiments show that augmenting the features with periodic383

variables allows the BDT model to achieve the same metrics384

as the augmented dataset, and to increase metrics on the aug-385

mented dataset with virtually no overfitting, as illustrated in386

Fig. 13.387

Further inspection of the augmented features also shows388

interesting behavior arising from physical phenomena. For389

instance, both for mZ (absolute difference between Z and the390

closest magic number) and mN (difference between N and391

the closest magic number) have alternating feature importance392

with parity as shown in Fig. 14. The oddness in the number393

of nucleons in relation to the magic numbers, in general,394

results in lower BE , which is in excellent agreement with the395

nuclear shell model [50] as well as theoretical approximations396

of nuclear structure such as the Weizsäcker formula [51].397

This alternation in the SHAP importance value is also398

larger near the magic numbers, which might explain the im-399

provement in deviations near magic numbers with the feature400

augmentation, and is clear evidence that the model is already401

capable of getting insights into the nuclear structure.402

V. CONCLUSIONS AND OUTLOOKS403

In this work, an ML model was developed to predict404

the β-decay energies of isotopes using the experimental405

dataset AME2020 [32]. Using modern techniques and data406

augmentation strategies, it was shown that our models can407

considerably decrease the error in estimating Qβ compared 408

with previous ML approaches while maintaining interpretabil- 409

ity. The importance of considering experimental uncertainties 410

was illustrated as the models incorporating sampling tech- 411

niques become considerably more robust to noise. Further- 412

more, it was demonstrated that by incorporating physical 413

features such as magic numbers, models can be highly im- 414

proved. Using explainability tools it is shown that the models 415

have learned fundamental features of the atomic structure. 416

We look forward to generating clearer physical intuition 417

from the explainability extracted from several ML techniques. 418

Clearly, the intersection between ML and physics is only 419

starting to showcase its potential. 420
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APPENDIX: DATA DISTRIBUTION 424

The tabular data used in this work compiles the atomic 425

features published in [32]. It contains the features: 426

(i) Neutron number N : Number of neutrons in each iso- 427

tope. 428

(ii) Proton number Z: Number of protons in each isotope. 429

(iii) Mass number A: Atomic mass (N + Z). 430

(iv) Mass excess Me: Difference between measured mass 431

and the mass number (A). 432

Binding energy BE : Measured per nucleon, refers to the 433

ionization potential. 434

The distribution of the features is shown in Fig. 15, 435

where no clear relationship between Qβ is evident, but well- 436

distributed samples for the atomic features are evident, both 437

in scattered and in the histograms. 438
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