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A B S T R A C T   

In this study, we have estimated the (n,2n) reaction cross-section for 14.6 MeV incident neutron energy by using 
the artificial neural network (ANN) method. We have also predicted the reaction cross-sections whose experi
mental data are not available in the literature. For the construction of the present ANN, available experimental 
data in the literature has been borrowed. The ANN estimations have been compared with the available exper
imental data and the results from a theoretical calculation and the two commonly used computer codes. Ac
cording to the results that the ANN results are in good agreement with the experimental data than the codes and 
this shows that the method can be a powerful tool for the estimation of cross-section data for the neutron-induced 
reactions. Considering the predictions of the ANN of the cross-sections whose experimental data are not available 
in the literature, it is seen that they are in line with the trend of the experimental data, but far from the results 
given by the theoretical calculations and two computer codes.   

1. Introduction 

The nuclear activation cross-sections are very useful in the applica
tions such as fusion research, radiation safety, neutron dosimetry, rare 
isotope production and material damage. Values of the neutron cross- 
section around 14.6 MeV energy are important for the design of fusion 
reactors in issues such as secondary particle generation, radiation 
damage to the first wall, toroidal coils and the prediction of surrounding 
materials (Konobeyev et al., 1996). A large amount of data is available in 
the EXFOR library (Otuka et al., 2014) regarding (n,2n) reaction 
cross-sections for fusion reactor applications. However, due to the lack 
of experimental data in the literature, theoretical models and computer 
codes based on these models have been developed in order to make 
better predictions in addition to using different techniques to measure 
reaction cross-sections experimentally. Also, the use of systematic for
mulas from semi-empirical approaches has also been used to predict the 
cross-section data. 

In this work, ANN method as an alternative tool has been used for the 
estimations of the (n,2n) reaction cross-section data at 14.6 MeV inci
dent neutron energy in the mass range between A = 48 and A = 209. The 

experimental data are taken from the literature (Yigit, 2020). By using 
experimental data for the training of the machine, we obtained ANN 
results for the (n,2n) reaction cross-section. Then, we compared the 
experimental values with the present ANN results, a theoretical model 
results and the two commonly used computer codes results. The 
considered codes in this study are TALYS-1.95 (Koning and Rochman, 
2012) and EMPIRE-3.2 (Herman et al., 2017). Our results indicate that 
the ANN method is one of the successful tool for calculating 
cross-sections of (n,2n) reactions. 

ANN is a machine-learning tool as a mathematical model that imi
tates brain functionality, which is composed of layers including neurons 
in each (Haykin, 1999). The method generates its own output as close as 
the desired values. One of the advantages of the method is that it does 
not need any relationship between input and output data variables. 
Another advantage of the method is that in the case of missing data, it 
can be completed automatically due to its learning ability. Recently, 
ANN has been used in many fields in nuclear physics. Among them, the 
studies performed by our group are developing nuclear mass systematic 
(Bayram et al., 2014), obtaining fission barrier heights (Akkoyun and 
Bayram, 2014), obtaining nuclear charge radii (Akkoyun et al., 2013), 
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estimation of beta decay energies (Akkoyun et al., 2013), an approxi
mation to the cross-sections of Z boson (Akkoyun and Kara, 2013; 
Akkoyun et al., 2014a,b), determination of gamma-ray angular distri
butions (Yildiz et al., 2018), estimations of radiation yields for electrons 
in absorbers (Akkoyun et al., 2016) and estimations of fusion reaction 
cross-sections (Akkoyun, 2020), estimations of the cross-section of (n,p) 
reactions at 14.5 MeV neutron energy (Akkoyun and Amrani, 2021). In 
the present study, by training ANN through the known experimental 
cross-section values with two inputs, we have predicted reaction 
cross-sections for different (n,2n) reactions at 14.6 MeV. According to 
the results, the ANN estimations are closer to the experimental data than 
the theoretical results. Also, we have predicted the cross-section values 
whose experimental data are not available in the literature and 
compared them to the results of a theoretical calculation (Konobeyev 
and Korovin, 1999) and the two computer codes (Koning and Rochman, 
2012; Herman et al., 2017). 

2. Material and methods 

Artificial neural network (ANN) (Haykin, 1999) is one of the strong 
tools that can be handled when standard techniques fail. This mathe
matical method imitates the function of the human brain and nervous 
system. ANN can be in a layered structure with three main layers, which 
are the input, hidden and output layers. Each layer has its own pro
cessors, called neurons. The neurons in each layer are fully connected to 
each of the neurons in the next layer. This structure is called a fully 
linked ANN. The input neurons receive the data that are independent 
variables of the problem. The received data in the input neurons are 
transmitted to the hidden layer neurons by multiplying the weight 
values of the connections. At the entrance of the hidden neuron, all data 
going into the neurons are summed by using an appropriate function and 
the total net data are activated by an appropriate function before exiting 
the neuron. The hidden neuron activation function can be theoretically 
any well-behaved nonlinear function (Hornik et al., 1989). In this study, 
the tangent hyperbolic function has been used for the activation of the 
data in the hidden neurons. Data from hidden neurons is transmitted to 
output neurons. All data entering the output neurons is first summed and 
then activated, just like the process with hidden neurons. The data 
coming out of the output neuron are the dependent variables of the 
problem and include the desired results of the problem. In Fig. 1, we 
have shown the 2-10-1 ANN structure that is used in this study for the 
prediction of the (n,2n) reaction cross-sections. 

In the present work, the input parameters are proton (Z) and neutron 
(N) numbers of the target material. The desired output parameter is 
(n,2n) reaction cross-sections for the targets at 14.6 MeV incident 
neutron energy. There is no rule in determining the hidden layer and the 
number of neurons in this layer, and the optimum numbers were 
determined after the trials. In this work, one hidden layer with 10 
neurons structure is used which gives the optimum results for the 
problem. 

The main goal of the ANN method is the assignation of the final 
weight values of the connections between the neurons. The constructed 
final ANN with the optimum weights can give the outputs as close as to 
the desired values. ANN calculations consist of two stages, and thus the 
data is divided into two separate sets. In the first stage, called the 
training stage, the inputs of the problem and the desired outputs are 
given to the network and the weight values are tried to be changed so 
that the network can reach these outputs. By the modifications of the 
weights, ANN modifies its weights until an acceptable error level be
tween ANN outputs and desired values. The error function for this stage 
is the mean square error (MSE) in this study. The MSE gives the average 
of the squares of the difference between the desired and the neural 
network output values. In the training step, Levenberg–Marquardt 
(Levenberg, 1944; Marquardt, 1963) back-propagation algorithm using 
to solve non-linear least squares problems was used for the modification 
of the weights. Levenberg–Marquardt uses neural neighborhood to 

increase the behavior of both memory and time constraints. The Lev
enberg–Marquardt algorithm adaptively changes by updating the 
parameter between the Gaussian Newton update and the gradient 
descent update. Factors such as having highly correlated variables 
during the training phase and low diversity due to the uniformity of the 
training set may cause overfitting problems. Due to the fact that there 
were only 2 input parameters in our study and the number of data point 
was low, we prevented the occurrence of overfitting by stopping in line 
with our observations during the training phase. 

In the second stage (test), another dataset of the problem is given to 
ANN and the results are predicted by using the final weights that are 
determined in the training stage after the modifications. If the pre
dictions on the test data are good, the ANN is considered to have learned 
the relationship between input and output data. In this work, the data is 
divided into two separate sets for training (75% of the whole) and test 
(25% of the whole) stages. The whole experimental data were obtained 
from a previous study (Yigit, 2020). 

Here we present some basic information about the ANN method. For 
ANN with a single hidden layer, the desired output vector y→ (XS in 

Fig. 1) is approximated by a network multi-output vector f
→

. The multi- 
output vector is defined by Eq. (1) as given below 

f
→

: Rp → Rr

: f
→

k( x→)=
∑h1

j=1
βjG

(
Aj( x→)

)
, x→∈Rp, βj ∈R,Aj ∈Ap, and k= 1, ..., r (1)  

where Ap is the set of all functions Rp→R defined by A( x→) = w→. x→+ b, 
w→ is weight vector from the input layer to hidden layer, x→ is the input 
vector of ANN (2 inputs in Fig. 1), b is the bias weight and p (r) number 
corresponds to each input (output) variables. In this study, we have used 
two input layer neurons (p = 2), one output layer neuron (r = 1) and ten 
hidden layer neurons (h = 10) with no bias (see Fig. 1). The total number 
of adjustable weights (ΣW) is calculated as 30 by Eq. (2). The weights 
were randomly assigned in the beginning and modified accordingly with 
the algorithm used. 

ΣW = p.h + h.r = h. (p+ r) (2) 

Fig. 1. The (2-10-1) ANN structure for the prediction of (n,2n) reaction cross- 
sections performed on different targets at 14.6 MeV incident neutron energy. 
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In Fig. 1, the weight matrices w1 and w2 correspond to weight vectors 
defined in A( x→) and β

→ in Eq. (1). However, as seen in Fig. 1 and Eq. (1) 
that the correspondences w1→A( x→) and w2→ β

→ are valid only for the 
ANN structure having a single hidden layer. For the ANN with more than 
one hidden layer, both Eq. (1) and the correspondences must accord
ingly be changed. The activation function for hidden neurons G : R→ R 
in Eq. (3) can be theoretically any well-behaved nonlinear function. 
Commonly G is chosen as a nonlinear sigmoid type function which is 
defined by Eq. (3). The type of activation functions G in Eq. (3) is used 
hyperbolic tangent [tanh = (ex - e-x)/(ex+ e-x)] for hidden and output 
layers. 

G : R → [− 1, 1], non − decreasing, limλ→∞G(λ)= 1, and limλ→− ∞G(λ)= − 1
(3)  

3. Results and discussion 

The total number of data used in the ANN calculations performed in 
this study was 149. Of these, 98 were obtained from the available 
experimental data and 51 of them included the results of theoretical 
calculations. 79 of the experimental data was used for the training of the 
ANN and the remaining part for the test stage. The theoretical data, 
whose experimental values for the studied reaction energy are not 
available in the literature, were used to compare the results generated by 
the constructed ANN through experimental data. ANN calculations were 
also made for the cross-section data, whose experimental data are not 
available in the literature, but theoretically calculated in the literature. 
The obtained ANN results were compared with both the theoretical re
sults in the literature and the results of two commonly used computer 
codes. 

In the training stage, the maximum number of epoch was chosen as 
1000. After the determination of the final weights, the constructed ANN 
was first tested on the training dataset (Fig. 2). For the determination of 
the goodness of the results, the root mean square error (RMSE), mini
mum (MIN) and maximum (MAX) absolute error values were used as 
given in Eqs. (4)–(6). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(xi − yi)
2

N

√
√
√
√ (4)  

MAX =max (xi − yi) (5)  

MIN =min (xi − yi) (6)  

where xi and yi are calculated and experimental values, N is the total 
number of data under consideration. The RMSE, MIN and MAX values, 
which show the deviation from the experimental data, were obtained as 
95.2 mb, 2.1 mb and 407.2 mb, respectively. However, these values of 

the calculations performed with the TALYS-1.95 code were obtained as 
225.4 mb, 2.4 mb and 550.5 mb, respectively. For the results of the 
calculations made with the EMPIRE-3.2 code, these values are 222.5 mb, 
1.0 mb and 543.0 mb. If we look at these numerical data, we can 
conclude that the ANN predictions are better on the training data than 
the values given by the other codes used in this study. But in our study, 
we used these codes with their default parameters without making 
any modifications suitable for our purpose. Therefore, this can be 
an expected situation. Our aim is not to emphasize that ANN is 
better than these, but to show that ANN also gives alternative 
acceptable results. The rmse value of the ANN results is 2.4 and 2.3 
times better than the rmse values of the results obtained from the 
TALYS-1.95 and EMPIRE-3.2 codes. It shows that ANN estimates are 
compatible with nonlinear experimental data and a useful alternative 
method for the (n,2n) reaction cross-section calculations. 

In Fig. 3, we give the estimates of the (n,2n) reaction cross-sections 
on the test dataset in comparison with the experimental data and the 
results of the calculations of the two computer codes. As can be seen 
from the figure, the ANN estimates are more compatible with the 
experimental data than the others. The RMSE, MIN and MAX values of 
ANN estimations on the test data set were obtained as 132.7 mb, 9.9 mb 
and 359.5 mb, respectively. The RMSE, MIN and MAX values of the 
calculations performed with the TALYS-1.95 code are 214.3 mb, 8.2 mb 
and 447.9 mb, respectively. However, the values of the results obtained 
from the EMPIRE-3.2 code were obtained as 229.4 mb, 9.0 mb and 
476.0 mb. It is seen that the RMSE values of the ANN calculations are 1.6 
and 1.7 times better, respectively, than the RMSE values of the TALYS- 
1.95 and EMPIRE-3.2 codes, which have not been modified or improved. 

After the training and test stages, new estimates of the (n,2n) reac
tion cross-section data, which do not have experimental values in the 
literature, were made with the present ANN. It is worth remembering 
that for these predictions, the ANN trained using the experimental data 
is used. Therefore, we can expect that the new predictions of the ANN, 
learning the behavior at the experimental values of the cross-sections, 
will also be compatible with the experimental data. In order to see the 
success of the method and generate the new cross-section data to 
contribute to the literature, we have generated the (n,2n) cross-sections 
for different isotopes at 14.6 MeV incident neutron energy. In Table 1, 
these results obtained with ANN are given in comparison with the results 
of theoretical calculations and the results of two computer codes. As can 
be clearly seen from the table, the results of the theoretical calculations 
and the results of the calculations performed by using two computer 
codes are close to each other. On the other hand, it is seen that the ANN 
results are far from these values and generally have smaller numerical 
values. If we look at the experimental values given in the appendix in the 
form of tables containing the training and test data sets, it is seen that the 
ANN results are more in line with the experimental values as expected. 
When the experimental cross-sections of the isotopes in the close 
neighbors of the estimated isotopes in Table 1 are examined in the tables 
in the appendix, it can be concluded that the ANN results catch the 
experimental trends. Table 1 also shows that the convergence of the 
ANN results with the theoretical results and the results of the computer 
codes starts after the isotope where the Z and A numbers are 60 and 145. 
This may have pointed to the results of the theoretical calculations, 
which are compatible with the experimental data, only after this isotope 
approximation. 

4. Conclusions 

Since experimental data on (n,2n) reaction cross-sections are limited 
in the literature, obtaining cross-sections for these reactions can be done 
with the help of theoretical calculations and computer codes. In this 
study, we used an alternative approach, the ANN method, to obtain 
these cross-sections. We have seen that the cross-sections of the (n,2n) 
reactions that will occur as a result of the incoming neutrons with 14.6 
MeV energies hitting different target materials can be obtained 

Fig. 2. Differences between theoretical results and experimental values on the 
training dataset for (n,2n) reaction cross-sections at 14.6 MeV incident 
neutron energy. 
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successfully with this method. First of all, we compared the results of 
ANN calculations and the results obtained from theoretical calculations 
with the experimental data available in the literature. In this compari
son, we saw that the ANN results are closer to the experimental data than 
the results from other methods. After obtaining the confidence of the 
ANN, we generated new cross-section values for the reactions whose 
experimental data were not available in the literature. We have seen that 
the obtained ANN results are consistent with the trend in the experi
mental data, but far from the theoretical calculations. In this study, it 
was seen that the ANN results were 1.6–2.4 times closer to the experi
mental data than the results of the theoretical codes we used without any 
improvement. This was to be expected, as we did not make any effort to 
ensure that these codes yielded good results in our study. However, we 
presented our results in this way, aiming to emphasize that ANN can be 
an alternative tool. 
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APPENDIX  

Table A1 
The cross-sections of (n,2n) reactions on different targets at 14.6 MeV incident neutron energy for the training dataset.  

Z N A Experiment ANN TALYS-1.95 EMPIRE-3.2 

20 28 48 616 645.9 1042.7 820.5 
25 30 55 643 631.3 876.7 754.0 
26 30 56 519 499.0 674.3 409.8 
27 32 59 633 609.1 918.0 480.5 
29 34 63 615 568.7 953.2 446.8 
29 36 65 808 798.9 891.3 772.2 
30 36 66 588 678.9 829.6 412.5 
31 38 69 803 764.9 912.5 676.2 
32 38 70 588 611.5 781.4 260.4 
32 44 76 914 859.0 1257.3 928.8 
33 42 75 835 830.1 1114.3 730.0 
34 40 74 442 520.7 796.1 148.9 
35 44 79 741 727.8 1141.6 784.2 
35 46 81 751 797.1 1234.1 904.5 
37 48 85 698 754.1 1248.0 891.4 
37 50 87 838 862.4 1286.0 1074.6 
39 49 88 1111 703.9 1165.8 975.0 
39 50 89 685 818.3 1059.8 649.8 
40 50 90 588 750.8 820.1 389.2 
40 56 96 1539 1510.7 1492.2 1488.5 
42 58 100 1418 1435.7 1543.8 1253.0 
43 56 99 1227 1200.4 1484.6 1322.2 
44 54 98 790 803.0 1302.4 1019.7 
44 60 104 1230 1240.3 1475.2 1258.3 
46 64 110 1392 1368.9 1511.1 1423.4 

(continued on next page) 

Fig. 3. The (n,2n) reaction cross-sections from ANN calculation and the computer codes in comparison with the available experimental data on the test dataset at 
14.6 MeV incident neutron energy. 
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Table A1 (continued ) 

Z N A Experiment ANN TALYS-1.95 EMPIRE-3.2 

47 60 107 1096 1087.7 1247.5 1112.3 
48 58 106 827 751.0 1000.0 679.9 
48 60 108 865 967.9 1243.8 1051.9 
48 68 116 1337 1368.8 1604.0 1468.5 
50 62 112 772 831.6 1014.6 783.5 
50 64 114 1080 964.1 1219.3 1109.6 
50 70 120 1444 1333.3 1637.8 1497.6 
51 70 121 1180 1260.9 1514.0 1468.4 
51 72 123 1245 1358.9 1599.1 1031.0 
52 70 122 1204 1165.1 1379.1 1113.1 
52 78 130 1325 1353.7 1681.4 1694.9 
53 76 129 1490 1418.8 1663.0 1643.0 
54 70 124 997 1012.0 1105.7 1031.6 
54 80 134 1460 1437.1 1714.4 1683.3 
54 82 136 1700 1706.6 1544.2 1547.1 

(continued on next page) 

Table 1 
The ANN cross-section data predictions for (n,2n) reactions on different targets 
at 14.6 MeV incident neutron energy. The results are compared to the theoretical 
calculation, TALYS-1.95 (Koning and Rochman, 2012) and EMPIRE-3.2 (Her
man et al., 2017) results.  

Z N A Konobeyev ANN TALYS-1.95 EMPIRE-3.2 

20 23 43 883 575.7 791.8 777.6 
22 27 49 1000 725.9 895.2 904.4 
23 27 50 739 617.9 814.2 644.7 
24 29 53 1088 696.1 981.4 958.9 
26 31 57 1150 653.4 1050.0 1002.7 
28 33 61 1133 592.1 1008.3 966.1 
30 37 67 1180 735.9 1113.6 1044.3 
32 41 73 1368 799.5 1271.4 1327.9 
34 43 77 1330 779.0 1325.6 1259.9 
36 47 83 1409 821.4 1317.6 1316.1 
38 49 87 1412 783.7 1169.8 1202.2 
40 51 91 1507 733.3 1256.2 1409.1 
42 53 95 1523 692.6 1391.5 1422.1 
42 55 97 1578 1266.6 1417.1 1556.8 
44 55 99 1525 1075.9 1482.2 1471.7 
44 57 101 1613 1171.1 1536.6 1634.9 
46 59 105 1604 1073.8 1505.3 1589.7 
48 63 111 1666 1087.8 1584.6 1701.6 
48 65 113 1702 1185.2 1640.7 1772.7 
50 65 115 1664 1044.1 1436.1 1543.0 
50 67 117 1716 1141.8 1597.0 1695.1 
50 69 119 1751 1257.5 1657.1 1779.9 
52 71 123 1744 1222.4 1646.7 1741.4 
52 73 125 1783 1350.2 1702.2 1812.0 
54 75 129 1793 1310.4 1620.1 1775.8 
54 77 131 1837 1400.0 1687.7 1854.2 
56 79 135 1834 1317.6 1673.4 1822.1 
56 81 137 1854 1440.1 1716.4 1835.4 
57 81 138 1820 1338.7 1683.9 1794.9 
60 83 143 1921 1387.9 1786.4 1934.2 
60 85 145 1944 1924.8 1752.0 2005.8 
62 85 147 1931 1719.8 1807.4 2009.3 
62 87 149 1985 1882.0 1804.8 2059.3 
64 91 155 2000 1741.2 1844.7 2074.9 
64 93 157 2013 1875.5 1953.0 2093.7 
66 95 161 2041 1838.3 1972.6 2115.4 
66 97 163 2068 1999.2 2035.1 2137.2 
68 99 167 2080 1966.2 2035.0 2141.1 
70 101 171 2092 1932.7 2036.5 2138.7 
70 103 173 2119 2089.3 2084.7 2167.1 
71 105 176 2145 2146.8 1898.1 2186.1 
72 105 177 2144 2058.3 2112.1 2174.7 
72 107 179 2179 2200.7 2037.8 2198.3 
73 107 180 2164 2117.4 2065.6 2181.6 
74 109 183 2199 2173.2 2127.0 2217.2 
76 111 187 2224 2144.7 2140.5 2230.5 
76 113 189 2265 2241.6 2122.5 2273.3 
78 117 195 2294 2020.1 2083.7 2308.8 
80 119 199 2257 1977.4 2094.2 2306.4 
80 121 201 2320 2170.8 2174.9 2358.5 
82 125 207 2273 2294.5 2295.2 2399.0  

S. Akkoyun et al.                                                                                                                                                                                                                               



Applied Radiation and Isotopes 191 (2023) 110554

6

Table A1 (continued ) 

Z N A Experiment ANN TALYS-1.95 EMPIRE-3.2 

59 82 141 1347 1273.6 1601.7 1501.4 
60 82 142 1101 1203.7 1428.6 1492.8 
60 84 144 1763 1758.9 1820.3 1652.5 
60 86 146 1937 1967.6 1735.6 1757.7 
60 90 150 2200 2128.6 1510.6 1533.8 
62 82 144 1200 1191.4 1027.2 1200.3 
62 86 148 1835 1863.1 1786.7 1640.8 
62 88 150 1931 1854.9 1680.0 1682.5 
62 92 154 1905 1974.6 1877.0 1696.0 
63 88 151 1803 1812.4 1733.9 1717.1 
63 90 153 1596 1800.3 1817.4 1702.4 
64 88 152 1867 1780.0 1652.0 1676.7 
64 94 158 1846 1856.4 1937.9 1609.7 
64 96 160 2087 2099.4 1785.7 1746.8 
65 94 159 1801 1775.1 1901.2 1772.2 
66 94 160 2020 1740.8 1841.9 1693.0 
68 94 162 1527 1631.6 1588.2 1562.9 
68 96 164 1528 1748.2 1829.2 1547.7 
69 100 169 1926 1937.9 2017.7 1798.1 
70 98 168 1873 1715.0 1780.4 1621.5 
70 106 176 2327 2337.3 1559.4 1825.1 
71 104 175 2094 2090.9 2045.2 1889.8 
72 102 174 1886 1856.3 1925.1 1998.4 
72 104 176 1915 2029.6 1990.5 2084.3 
74 106 180 1866 1941.4 2012.8 2053.8 
74 108 182 2076 2078.1 2063.2 2114.4 
74 112 186 2380 2262.5 1742.5 2103.6 
75 110 185 2221 2068.0 2093.2 2176.5 
76 116 192 2121 2224.2 1912.5 2184.1 
77 114 191 1923 2010.2 2119.7 2167.4 
77 116 193 2062 2111.9 1974.0 2209.2 
78 114 192 1810 1854.7 1798.6 2008.0 
79 118 197 2064 1988.5 2024.9 2217.2 
80 118 198 1920 1844.9 2061.1 2163.2 
80 124 204 2300 2286.2 2142.4 2294.1 
81 122 203 2185 2102.4 2173.3 2286.1 
82 122 204 1931 2004.7 2164.1 2255.8 
82 124 206 2028 2206.5 2277.2 2306.8 
83 126 209 2450 2317.1 2279.9 2282.5   

Table A2 
The cross-sections of (n,2n) reactions on different targets at 14.6 MeV incident neutron energy for the test dataset.  

Z N A Experiment ANN TALYS-1.95 EMPIRE-3.2 

28 32 60 410 458.7 602.2 443.2 
31 40 71 961 886.3 1085.9 507.4 
34 48 82 1133 773.5 1330.1 1233.4 
38 48 86 570 685.5 1031.4 573.3 
41 52 93 1150 979.8 1405.5 1122.9 
46 56 102 707 755.8 1221.3 584.2 
48 62 110 1221 1116.8 1410.4 1249.6 
50 74 124 1253 1280.6 1703.0 1486.6 
53 74 127 1120 1353.6 1522.3 1499.4 
55 78 133 1359 1401.6 1655.0 1644.0 
60 88 148 2160 1994.4 1617.0 1539.1 
62 90 152 1760 1862.7 1825.8 1157.8 
64 92 156 1780 1770.0 1878.0 1710.8 
67 98 165 2042 1895.8 1976.1 1638.5 
70 100 170 1976 1894.6 1981.1 1793.2 
73 108 181 2122 2163.1 2072.8 2158.3 
76 110 186 2004 1926.4 2048.6 2098.8 
78 120 198 2300 2209.6 2061.9 2239.8 
81 124 205 2307 2256.7 2205.6 2327.5  
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