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Abstract: In this paper, we consider the inverse nodal problem for a quadratic pencil of the Sturm−Liouville equations
with parameter-dependent Bitsadze−Samarskii type nonlocal boundary condition and we give an algorithm for the
reconstruction of the potential functions by obtaining the asymptotics of the nodal points.
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1. Introduction
We consider the boundary value problem generated by the differential equation

ℓy := −y′′ + [2λp(x) + q(x)] y = λ2y, 0 < x < 1 (1.1)

with the boundary conditions

U(y) := y(0) = 0, V (y) := λy(1)− y (α) = 0, (1.2)

where λ is the spectral parameter, α is rational number in (0, 1) , the potential functions q(x) ∈ W 1
1 [0, 1] ,

p(x) ∈ W 2
1 [0, 1] are real valued functions such that p(x) ̸= const. for β = α, 1

∫ β

0

p(x)dx = 0 (1.3)

holds.
In what follows we denote the boundary problem (1.1)− (1.2) by L = L (p(x), q(x), α) .

In the present paper, we construct the functions p(x) and q(x) which are the potentials of operator L

from nodal points of its eigenfunctions and give an algorithm for solving the inverse nodal problem.
Inverse nodal problem consists in reconstructing the operator from a given dense set of zeros of its

eigenfunctions. McLaughlin gave firstly a solution for the inverse nodal problem for the specific Sturm−Liouville
operator. She sought to recover the potential q(x) by using the nodes (i.e. zeros) of the eigenfunctions (see [20]).
Hald and McLaughlin showed that coefficients in a second-order differential equation can be uniquely determined
from the positions of the nodes for the eigenfunctions. They proved unique results, derived approximate
∗Correspondence: ycakmak@cumhuriyet.edu.tr
2010 AMS Mathematics Subject Classification: 34A55, 34B10, 34L05, 34B24

This work is licensed under a Creative Commons Attribution 4.0 International License.
397

https://orcid.org/0000-0002-6820-1322
https://orcid.org/0000-0003-1689-8954


ÇAKMAK and KESKİN/Turk J Math

solutions, gave error bounds, and presented numerical experiments (see [12]). Yang gave an algorithm to
reconstruct the potential and the boundary condition of the Sturm−Liouville problem from nodal points of its
eigenfunctions (see [36]). Inverse nodal problems have been extensively studied by many researchers for various
operators (see [3], [4], [5], [7], [8], [13], [15], [17], [18], [19], [28], [29], [30], [34], [35] and references therein).

There are two kinds of nonlocal boundary conditions such as integral type conditions and Bitsadze
and Samarskii type conditions. These types of nonlocal boundary conditions appear in various fields such as
mathematical physics, biology, biotechnology, and when data cannot be measured directly at the boundary
(see [9], [11], [21], [27], [37] and references therein). Nonlocal boundary conditions were first applied to elliptic
equations by Bitsadze and Samarskii (see [2]).

In recent years, some inverse problems for various types of operators with nonlocal boundary conditions
have been investigated (see [1], [22], [23], [24], [33] and references therein). In addition, studies on inverse nodal
problems with nonlocal boundary conditions can also be seen in [14], [16], [25], [26], [31], [32]. As far as we
know, inverse nodal problem for quadratic pencil of the Sturm−Liouville equations with parameter-dependent
Bitsadze−Samarskii-type nonlocal boundary condition has not been considered before.

2. Preliminaries
Let the functions C = C (x, λ) and S = S (x, λ) be the solutions of the equation (1.1) satisfying the initial
conditions

C (0, λ) = 1, C ′ (0, λ) = 0 and S (0, λ) = 0, S′ (0, λ) = 1 (2.1)

respectively.
From [4] and [6], the functions C (x, λ) and S (x, λ) satisfy the following asymptotic representations for

|λ| → ∞

C (x, λ) = cos (λx−Q(x)) +O

(
1

λ
exp |Imλ|x

)
, (2.2)

S(x, λ) =
1

λ
sin (λx−Q(x)) +

1

2λ2
{(p(x) + p(0)) sin (λx−Q(x))− c1 (x) cos (λx−Q(x))

+

∫ x

0

(
q(t) + p2(t)

)
cos [λ (x− 2t)−Q(x) + 2Q(t)] dt

+

∫ x

0

p′(t) sin [λ (x− 2t)−Q(x) + 2Q(t)] dt

}
(2.3)

+
1

4λ3
{c3 (x) sin (λx−Q(x))− c4 (x) cos (λx−Q(x))}+O

(
1

λ4
exp |Imλ|x

)

where Q(x) =
x∫
0

p(t)dt, c1 (x) =
x∫
0

(
q(t) + p2(t)

)
dt, c2 (x) =

x∫
0

(
q(t) + p2(t)

)
p (t) dt,

c3 (x) = p2(x) + p2(0) +
(p(x) + p(0))

2

2
− 1

2

(
x∫
0

(
q(t) + p2(t)

)
dt

)2

,

c4 (x) =
x∫
0

(
q(t) + p2(t)

)
(p(x) + p(0) + 2p(t)) dt = (p(x) + p(0)) c1 (x) + 2c2 (x) .
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The eigenvalues of the problem L coincide with the zeros of its characteristic function given by

∆(λ) =

∣∣∣∣∣ U (C) U (S)

V (C) V (S)

∣∣∣∣∣ = λS (1, λ)− S (α, λ) . (2.4)

Thus, using the formulae (1.3), (2.2), (2.3), and (2.4), we obtain the following asymptotic formula for
∆(λ)

∆(λ) = sinλ+
1

2λ
{(p(1) + p(0)) sinλ− c1 (1) cosλ− 2 sinλα

+

∫ 1

0

(
q(t) + p2(t)

)
cos [λ (1− 2t) + 2Q(t)] dt+

∫ 1

0

p′(t) sin [λ (1− 2t) + 2Q(t)] dt

}
(2.5)

+
1

4λ2
{c3 (1) sinλ− c4 (1) cosλ− 2 (p(α) + p(0)) sinλα+ 2c1 (α) cosλα}

+O

(
1

λ3
exp |Imλ|

)
, |λ| → ∞.

By the method in [10], using (2.5) and Rouchè theorem and taking ∆(λn) = 0 we can prove that the
eigenvalues λn have the form

λn = nπ +
c1 (1)−An

n + 2 (−1)
n
sinnαπ

2nπ

+
(p(1) + p(0)) c1 (1) + 2c2 (1) + 2 (−1)

n
(p(α) + p(0)) sinnαπ − 2 (−1)

n
c1 (α) cosnαπ

4n2π2

+o

(
1

n2

)
, |n| → ∞,

(2.6)

where, for n ∈ Z\ {0} , x0
n = 0, xn

n = 1, j ∈ Z,

Aj
n =

∫ xj
n

0

(
q(t) + p2(t)

)
cos (2nπt− 2Q(t)) dt−

∫ xj
n

0

p′(t) sin (2nπt− 2Q(t)) dt.

3. Main results
In this section, under condition (2.1) we obtain the asymptotics for the zeros of the function φ(x, λn) called
the nodal points of the problem L and develop a constructive procedure for solving the inverse nodal problem.

It is clear from (2.6) that for sufficiently large |n| , there is exactly one eigenvalue λn in the domain
Γn = {λ| |λ− nπ| ≤ 1} and since the functions p(x) and q(x) are real-valued, λn are real. Thus, the functions
φ(x, λn) are real-valued and

φ(x, λn) = U (C(x, λn))S(x, λn)− U (S(x, λn))C(x, λn) = S(x, λn) (3.1)

are the eigenfunctions corresponding to the eigenvalues λn for sufficiently large |n| .
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From (3.1), (2.3), and (2.6), we get

λnφ(x, λn) = sin (nπx−Q(x)) +
1

2nπ
{[(c1 (1)−An

n + 2 (−1)
n
sinnαπ)x− c1 (x)] cos (nπx−Q(x))

+ (p(x) + p(0)) sin (nπx−Q(x)) +

∫ x

0

(
q(t) + p2(t)

)
cos [nπ (x− 2t)−Q(x) + 2Q(t)] dt

+

∫ x

0

p′(t) sin [nπ (x− 2t)−Q(x) + 2Q(t)] dt

}
+

1

4n2π2
{[((p(1) + p(0)) c1 (1) + 2c2 (1)

+2 (−1)
n
(p(α) + p(0)) sinnαπ − 2 (−1)

n
c1 (α) cosnαπ)x (3.2)

+(p(x) + p(0)) (c1 (1) + 2 (−1)
n
sinnαπ)x− c4 (x)] cos (nπx−Q(x))

+
[
c1 (x) (c1 (1) + 2 (−1)

n
sinnαπ)x − (c1 (1) + 2 (−1)

n
sinnαπ)

2
x2 + c3 (x)

]
sin (nπx−Q(x))

}
+o

(
1

n2

)
, |n| → ∞,

uniformly in x ∈ [0, 1] .

We can see from (3.2) that for sufficiently large |n| and j ∈ Z , the eigenfunctions φ(x, λn) have exactly
|n| − 1 nodal points xj

n in (0, 1) as

0 < x1
n < x2

n < ... < xn−1
n < 1 for n > 0

and

0 < x−1
n < x−2

n < ... < xn+1
n < 1 for n < 0.

Lemma 3.1 The numbers xj
n satisfy the following asymptotic formula for sufficiently large |n| :

xj
n =

j

n
+

Q(xj
n)

nπ
+

1

2n2π2

[
c1

(
xj
n

)
− c1 (1)x

j
n −

(
Aj

n −An
nx

j
n

)
− 2 (−1)

n
xj
n sinnαπ

]
+

1

2n3π3

[
c2

(
xj
n

)
−

(
c2 (1) +

(p(1) + p(0)) c1 (1)

2

)
xj
n + (−1)

n
(p(α) + p(0))xj

n sinnαπ

− (−1)
n
c1 (α)x

j
n cosnαπ

]
+ o

(
1

n3

)
,

(3.3)

uniformly with respect to j.

Proof From (3.2), taking φ
(
xj
n, λn

)
= 0 , we get

sin
(
nπxj

n −Q
(
xj
n

))
+

1

2nπ

{[
(c1 (1)−An

n + 2 (−1)
n
sinnαπ)xj

n − c1
(
xj
n

)]
cos

(
nπxj

n −Q
(
xj
n

))
+
(
p
(
xj
n

)
+ p(0)

)
sin

(
nπxj

n −Q
(
xj
n

))
+
∫ xj

n

0

(
q(t) + p2(t)

)
cos

[
nπ

(
xj
n − 2t

)
−Q

(
xj
n

)
+ 2Q(t)

]
dt

+
∫ xj

n

0
p′(t) sin

[
nπ

(
xj
n − 2t

)
−Q

(
xj
n

)
+ 2Q(t)

]
dt
}
+

1

4n2π2
{[((p(1) + p(0)) c1 (1) + 2c2 (1)

+2 (−1)
n
(p(α) + p(0)) sinnαπ − 2 (−1)

n
c1 (α) cosnαπ)x

j
n
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+
(
p
(
xj
n

)
+ p(0)

)
(c1 (1) + 2 (−1)

n
sinnαπ)xj

n − c4
(
xj
n

)]
cos

(
nπxj

n −Q
(
xj
n

))
+
[
c1

(
xj
n

)
(c1 (1) + 2 (−1)

n
sinnαπ)xj

n − (c1 (1) + 2 (−1)
n
sinnαπ)

2 (
xj
n

)2
+ c3

(
xj
n

)]
sin

(
nπxj

n −Q
(
xj
n

))}
+o

(
1

n2

)
= 0, |n| → ∞.

This implies

tan
(
nπxj

n −Q
(
xj
n

))
=

1

2nπ

[
c1

(
xj
n

)
− c1 (1)x

j
n −

(
Aj

n −An
nx

j
n

)
− 2 (−1)

n
xj
n sinnαπ

]
+

1

2n2π2

[
c2

(
xj
n

)
−
(
c2 (1) +

(p(1) + p(0)) c1 (1)

2

)
xj
n + (−1)

n
(p(α) + p(0))xj

n sinnαπ

− (−1)
n
c1 (α)x

j
n cosnαπ

]
+ o

(
1

n2

)
, |n| → ∞.

Using Taylor’s expansion formula for the arctangent, we get

nπxj
n −Q

(
xj
n

)
= jπ +

1

2nπ

[
c1

(
xj
n

)
− c1 (1)x

j
n −

(
Aj

n −An
nx

j
n

)
− 2 (−1)

n
xj
n sinnαπ

]
+

1

2n2π2

[
c2

(
xj
n

)
−
(
c2 (1) +

(p(1) + p(0)) c1 (1)

2

)
xj
n + (−1)

n
(p(α) + p(0))xj

n sinnαπ

− (−1)
n
c1 (α)x

j
n cosnαπ

]
+ o

(
1

n2

)
, |n| → ∞.

Therefore, the proof is concluded by the last equality. 2

Let X be the set of nodal points and α = k
ℓ , k, ℓ ∈ Z. It is obvious from (3.3) that the set X of all

nodal points is dense in the interval [0, 1] . We can choose a sequence {jn} ⊂ X so that lim
|n|→∞

xjn
n = x . Clearly

the subsequence
{
xjm
m

}
converges also to x for m = 2nℓ. Then, there exist finite limits and corresponding

equalities hold:
π lim
|m|→∞

(
mxjm

m − jm
)
:= Q(x), (3.4)

2π lim
|m|→∞

m
[
π
(
mxjm

m − jm
)
−Q

(
xjm
m

)]
:= f(x), (3.5)

π lim
|m|→∞

m
{
2mπ

[
π
(
mxjm

m − jm
)
−Q

(
xjm
m

)]
− f

(
xjm
m

)
(3.6)

+Ajm
m −Am

mxjm
m + 2 (−1)

m
xjm
m sinmαπ

]
:= g(x)

and
f(x) = c1 (x)− c1 (1)x, (3.7)

g(x) = c2 (x)−
(
c2 (1)−

(p(1) + p(0)) c1 (1)

2

)
x− c1 (α)x. (3.8)

Thus, the following theorem for the solution of the inverse nodal problem can be proved.
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Theorem 3.2 Given the specification of any dense subset of nodal points X0 ⊂ X uniquely determines the
functions p(x) and q(x) which can be found by the following algorithm.

Step 1. Denote m = 2nℓ and for each fixed x ∈ [0, 1] , choose a sequence
(
xjm
m

)
⊂ X0 such that

lim
|m|→∞

xjm
m = x,

Step 2. Find the function Q(x) via (3.4) and calculate

p(x) = Q′(x), (3.9)

Step 3. Find the function f(x) via (3.5) and determine

r(x) := q(x)−
∫ 1

0

q(t)dt = f ′(x)− p2(x) +

∫ 1

0

p2(t)dt, (3.10)

Step 4. For each fixed x ∈ [0, 1] and 2Q(x)−(p(1) + p(0))x−2αx ̸= 0, find g(x) via (3.6) and calculate

∫ 1

0

q(t)dt =
2

2Q(x)− (p(1) + p(0))x− 2αx

[
g(x)−

∫ x

0

(
r(t) + p2(t)

)
p(t)dt (3.11)

+x

∫ 1

0

(
r(t) + p2(t)

)
p(t)dt+

(p(1) + p(0))x

2

∫ 1

0

(
r(t) + p2(t)

)
dt

]
,

Step 5. Calculate the function q(x) from the formula

q(x) = r(x) +

∫ 1

0

q(t)dt. (3.12)

Proof It is clear from the formula Q(x) =
x∫
0

p(t)dt that the formula (3.9) is provided. If we differentiate (3.7),

we get f ′(x) = q(x)+ p2(x)−
∫ 1

0

(
q(t) + p2(t)

)
dt. If we denote r(x) := q(x)−

∫ 1

0
q(t)dt , we obtain immediately

the formula (3.10). Substituting the function q(x) = r(x)− 1
π

∫ π

0
q(t)dt in (3.8) and taking (1.3) into account,

we get the formula (3.11). Finally, from (3.10) and (3.11), we arrive at the formula (3.12). 2
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