
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=icot20

Cutaneous and Ocular Toxicology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/icot20

Comparison of three different dosages of
low-level laser therapy on expression of cell
proliferation and inflammatory markers following
ovariohysterectomy in rats

Bülent Polat, Damla Tuğçe Okur, Armağan Çolak, Sıtkıcan Okur, Mustafa
Özkaraca & Kader Yilmaz

To cite this article: Bülent Polat, Damla Tuğçe Okur, Armağan Çolak, Sıtkıcan Okur,
Mustafa Özkaraca & Kader Yilmaz (2023) Comparison of three different dosages of
low-level laser therapy on expression of cell proliferation and inflammatory markers
following ovariohysterectomy in rats, Cutaneous and Ocular Toxicology, 42:4, 273-282, DOI:
10.1080/15569527.2023.2252075

To link to this article:  https://doi.org/10.1080/15569527.2023.2252075

Published online: 14 Sep 2023.

Submit your article to this journal 

Article views: 121

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=icot20
https://www.tandfonline.com/loi/icot20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15569527.2023.2252075
https://doi.org/10.1080/15569527.2023.2252075
https://www.tandfonline.com/action/authorSubmission?journalCode=icot20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=icot20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/15569527.2023.2252075
https://www.tandfonline.com/doi/mlt/10.1080/15569527.2023.2252075
http://crossmark.crossref.org/dialog/?doi=10.1080/15569527.2023.2252075&domain=pdf&date_stamp=14 Sep 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/15569527.2023.2252075&domain=pdf&date_stamp=14 Sep 2023


RESEARCH ARTICLE

Cutaneous and oCular toxiCology
2023, Vol. 42, no. 4, 273–282

Comparison of three different dosages of low-level laser therapy on 
expression of cell proliferation and inflammatory markers following 
ovariohysterectomy in rats
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and Kader Yilmaze 
adepartment of obstetrics and gynecology, atatürk university, erzurum, turkey; bBil-tek, ata teknokent, erzurum, tr, turkey; cdepartment of 
surgery, atatürk university, erzurum, turkey; ddepartment of Pathology, sivas Cumhuriyet university, sivas, turkey; eCelal oruç animal 
Production school, ağrı İbrahim Çeçen university, ağrı, turkey

ABSTRACT
The objective of the current study was to evaluate Low-level laser therapy (LLLT) on the healing of 
incisional wounds following ovariohysterectomy in rats, by means of subjective histopathological 
and immunohistochemical analysis. A total of 72 female Wistar rats were categorised into four 
treatment groups (Group I; sacrification 4 hours following only one LLLT application, Group II; 
sacrification 7 days following only one LLLT application, Group III; sacrification 4 hours after two LLLT 
applications, and Group IV; sacrification 7 days after two LLLT applications). Each group was further 
divided into four different doses subgroups (Group Control [C, off mode LLLT application], L1 [1 J/
cm2], L3 [3 J/cm2], and L6 [6 J/cm2]), with equal representation in each subgroup. Ovariohysterectomy 
was employed using two 2-cm-length midline abdominal incisions in the left and right sides of line 
alba. The Group C was assigned to the left side incision to each rat in the study. After irradiation, 
the tissue was subjected to histopathological analysis to determine the extent of mononuclear cell 
infiltration, edoema, and epithelialization. Additionally, immunohistochemical analysis was performed 
to evaluate the expression of proliferating cell nuclear antigen (pCNA) and inducible nitric oxide 
synthase (iNOS). Group L1 and L3 significantly decreased mononuclear cell infiltration compared with 
Group C in all treatment groups (p < 0.05). Group L3 significantly decreased edoema compared with 
Group C in all groups except for treatment Group I (p < 0.05). Group L2 and L3 significantly increased 
epithelization in treatment Group IV (p < 0.05). Moreover, Group L2 and L3 significantly increased 
pCNA in all groups, while L2 and L3 significantly decreased iNOS expression in treatment Group II, 
III, and IV (p < 0.05). However, no statistical difference was found between subgroups of treatment 
Group I in iNOS expiration (p > 0.05). The results of the current examination demonstrated that LLLT 
can modulate mononuclear cell infiltration and edoema, and improve epithelization, as well as 
increase pCNA expression, whereas decrease iNOS expression during the wound healing process, 
therefore enhancing wound healing following ovariohysterectomy in rats.

1.  Introduction

The skin also called the outer layer of living tissue, is respon-
sible for protecting the inner body from the external environ-
ment and maintaining homeostasis as a preventive barrier. 
Thus, the wound healing process must occur successfully and 
rapidly for the body to remain healthy. The wound healing 
process occasionally may not produce the desired outcomes 
due to excessive inflammation, severe injuries, and infection 
[1]. For these reasons, several therapy methods are used to 
enhance the wound healing process and quality of healing 
tissue [2,3].

The incisional wound healing model in rats is a commonly 
employed experimental model for investigating the different 
phases of wound healing and assessing the effectiveness of 
potential interventions for wound healing. The proposed 

methodology entails inducing a regulated wounds on the 
dermis of a rat specimen, followed by the systematic obser-
vation of the ensuing recuperative indeed. The utilisation of 
the incisional wound healing model in rats offers a regulated 
and consistent platform for investigating different aspects of 
wound healing, including cellular reactions, extracellular 
matrix reorganisation, and the impacts of interventions [4–6]. 
Additionaly midline incision with abdominal approach com-
monly used for ovariohyterectomy [7–10].

Acceleration of the wound healing is a critical part of 
patients in returning to a normal life style earlier following 
surgery. Wound healing is a complex process that includes 
the induction of an acute inflammatory process, migration 
and proliferation of parenchymal and connective tissue cells, 
synthesis of extracellular matrix proteins, remodelling of 
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connective tissue and parenchymal components, and finally 
colagenization and wound strength acquisition [11,12]. 
Following the third day, granulation tissue begins to invade 
the incision area and collagen fibres appear [13]. After day 5, 
neovascularization has reached its peak, and fibroblasts are 
proliferating. Collagen collection and fibroblast growth persist 
during the second week [14].

Low-level laser therapy (LLLT) or defined as Low-intensity 
laser therapy, is an increasingly popular therapy modality, 
used for the treatment of various diseases, including fracture 
healing [15,16], tendinitis [17], rheumatoid arthritis [18], and 
wound healing [9]. Although the action mechanism of LLLT is 
unclear, it reduces edoema and inflammation, and increases 
wound epithelization, granulation tissue, fibroblastic prolifera-
tion, extracellular matrix synthesis, neovascularization, tissue 
oxygenation, and nutrition [17–19].

Previous studies conducted on rodents have indicated the 
advantageous effect of LLLT on biosynthesis and collagen 
metabolism in experimental models of dermal skin injury 
[20,21]. Nevertheless, a number of other conflicting informa-
tion regarding LLLT’s impact on wound healing has been doc-
umented in the literature, including a decrease in collagen 
synthesis [22,23]. This discrepancy of result could be due to 
different energy density and intensity, irradiation time, and 
irritation modes [20,24]. Furthermore, a number of studies on 
various cell types have also demonstrated that the beneficial 
effect of LLLT depends on light parameters including wave-
length (nm), energy dose (J/cm2), and intensity (W/cm2) 
[16,24,25].

Previously studies have demostrated that application of 
LLLT at different doses has the potential to influence the 
recuperative process of burn injuries and bone fractures in 
rats [26, 27]. For this reason, the aim of the current study was 
to investigate the effect of the different treatment protocols 
and dosage of LLLT on the incisional wound healing model 
following ovariohysterectomy in rats. We hypothesised that 
LLLT will produce positive results in wound healing following 
ovariohysterectomy in a dose-dependent manner.

2.  Materials and methods

2.1.  Animals

Atatürk University Local Board of Ethics Committee for Animal 
Experiments, which depend on the guidelines proposed by 
the recommendations of National Institutes of Health Guide 
for Care and Use of Laboratory Animals, approved the current 
study (Decision no: 2019/110).

A total of seventy-two female Wistar rats (120 days of age 
and average weight of 300 g) were randomly obtained from 
the Medical Experimental Application and Research Centre of 
Atatürk University. The animals were housed six per cage 
prior to the beginning of the study and were acclimated for 
ten days in the experimental room. The humidity ranged 
from 40 to 60%. A uniform temperature of 22 ± 2 °C was main-
tained during a 12-h light/dark cycle. The rats were allowed 
access to water and a standard pelleted diet ad libitum during 
the study.

2.2.  Surgery

Animals were anaesthetised with intramuscular 11.4 mg/kg 
xylazine (Xylazin Bio 2%, 50 ml Bioveta) and 114 mg/kg ket-
amine (Ketasol 10%, 10 ml Interhas-Richter Pharma, Wels, 
Austria) with mixed in the same syringe. Each animal was 
placed with dorsoventral recumbency, and the skin was 
shaved and washed with 70% ethanol and povidone iodine, 
respectively. Ovariohysterectomy was performed using two 
midline abdominal incisions (2 cm in length) in the left and 
right sides of line alba. The ovarian ligament and cervix were 
ligated with 4-0 silk (Dogsan, Turkey), using a single-clamp 
method. The abdominal wall was closed with four interrupted 
sutures using 2.0 vicryl suture (Ethicon, Johnson & Johnsonand) 
then, four interrupted sutures were placed in the skin using 
3.0 nylon for each side. The left-side incision was used for the 
control groups (Group C), while the right-side incision was 
used for the treatment groups.

2.3.  Groups

Animals were randomly assigned to one of four groups 
(n = 18, Group I; sacrification 4 h following only one LLLT 
application, Group II; sacrification 7 days following only one 
LLLT application, Group III; sacrification 4 h after two LLLT 
applications, and Group IV; sacrification 7 days after two LLLT 
application). These groups were categorised into 4 subgroups 
consisting of 6 rats (Group C, L1, L3, and L6, Figure 1). The end 
of the treatment protocols, rats were sacrificed with a lethal 
dose of an anaesthetic substance (Thiopental Sodyum, Pental 
Sodyum 1 g, I.E Turkey). Additionaly, Each group was treated 
with off-mode LLLT on the left side of the abdominal incision 
to avoid a placebo effect.

2.4.  Laser irradiation

A mono-diode laser probe (MLA 1/25) and a GaAs (gallium 
arsenide) laser device (Lasermed 2200, Eme Phsio Italy) with a 
mean output power of 17 mW; spot size 1 cm2; continuous 
mode; and wavelength (λ) of 904 nm were used with an expo-
sure time of 40, 120, and 240 s in L1, L3, and L6 groups, respec-
tively. LLLT was applied immediately after the surgery and was 
performed transcutaneously upon a single point directly to 
the incision side. LLLT application was conducted by the same 
person and at the same time of day (10:00–11:00 am).

2.5.  Histopathologic evaluation

Following the rats sacrificed, the skin wound was removed 
and fixed with a 10% neutral formalin solution. The tissues 
were taken into paraffin blocks after routine alcohol-xylol 
follow-up procedures. 3-µm thickness sections taken on slides 
with polylysine were stained with haematoxylin-eosin staining. 
The tissues were evaluated by light microscopy (Olympus BX 
51, JAPAN) in terms of mononuclear cell infiltration, edoema, 
and epithelialization as absent (0), mild [1], moderate [2], 
severe [3], according to their histopathological property [28].
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2.6.  Immunohistochemical evaluation

Following the rats’ sacrificed, the skin wound was removed 
and fixed with a 10% neutral formalin solution. The tissues 
were taken into paraffin blocks after routine alcohol-xylol 

follow-up procedures. 3-µm thickness sections taken on poly-
lysine slides were passed through xylol and alcohol series, 
after washing with phosphate-buffered saline (PBS) for 10 min 
in 3% H2O2, and endogenous peroxidase inactivation was 
achieved. To reveal the antigen in the tissue, they were 

Figure 1. timeline overview of the experimental study. C; (group Control; lllt application with off mode in the left side of incisional wound), l1; (lllt application 
with 1 J/cm2 dosage in right side of incisional wound), l3; (lllt application with 3 J/cm2 dosage in right side of incisional wound), and l6; (lllt application with 
6 J/cm2 dosage in right side of incisional wound).
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treated with antigen retrieval solution for 2 × 5 min at 500 
watts. The tissues washed PBS after protein blocking were 
incubated with inducible nitric oxide synthase (iNOS, Abcam, 
Cat. No: ab15323 1/200 dilution ratio) and proliferating cell 
nuclear antigen (pCNA, Abcam, Cat No: ab92552, 1/200 dilu-
tion ratio) primary antibodies at room temperature for 20 min. 
Seconder antibodies; anti-Polyvalnet, HRP (Thermofischer, Cat 
No: TP-125-HL) were used as recommended by the manufac-
turer and 3,3′-Diaminobenzidine (DAB) was used as chromo-
gens in tissues. Following counterstaining with Mayes’s 
Haematoxylin, it was covered with Entellan and examined 
under a light microscope. The examination was performed as 
no immunopositivity in skin tissue (–), mild (+), moderate 
(++), and severe (+++). The stained sections were examined 
using a light microscope (Zeiss, Axio, Germany) [28].

2.7.  Statistical analysis

Statistical analysis was used by the SPSS version 20.0 soft-
ware (IBM Corp., Armonk, NY, USA). Prior to analysis, the data 
distribution was checked using the Shapiro–Wilk test. The 
Kruskal-Wallis test was used to compare each group in 
non-normally distributed data, followed by the Mann-Whitney 
U test as a post hoc test. Descriptive data were addressed as 
mean ± standard deviation (SD). The significant level was set 
to 0.05 for all tests.

3.  Results

There was a significant difference between the treatment and 
LLLT groups in mononuclear cell infiltration, edoema, and epi-
thelization (p < 0.05, Table 1). In the Group I skin tissues, 
severe mononuclear cell infiltration was found in Group C 
(2.83 ± 0.40). Moderate mononuclear cell infiltration was iden-
tified in Group L1 (2.16 ± 0.32) and L3 (2.12 ± 0.14), whereas 
mild mononuclear cell infiltration was observed in Group L6 
(1.16 ± 0.40), (Figure 2(a)).

In the Group II skin tissue, severe mononuclear cell infiltra-
tion and moderate edoema were found in Group C 
(2.83 ± 0.40). Moderate mononuclear cell infiltration and 
edoema were observed in Group L1 (2.10 ± 0.22). Moderate 
mononuclear cell infiltration and severe edoema were 
detected in Group L3 (2.13 ± 0.12 and 2.83 ± 0.22, respectively). 
Mild mononuclear cell infiltration and edoema were observed 
in Group L6 (2.16 ± 0.40 and 1.16 ± 0.38, respectively). Moderate 
epithelization was shown in all groups (Figure 2(b)).

In Group III C and L1 skin tissue, severe mononuclear cell 
infiltration (2.83 ± 0.40 and 2.70 ± 0.14, respectively) and 
edoema (2.80 ± 0.13 and 2.73 ± 0.22, respectively), and mild 
epithelization (1.31 ± 0.51 and 1.39 ± 0.72, respectively) were 
observed. Moderate Mononuclear cell infiltration (2.12 ± 0.16) 
and mild edoema (1.26 ± 0.34), and epithelization (1.16 ± 0.40) 
were found in Group L3, whereas mild mononuclear cell infil-
tration (2.16 ± 0.40), edoema (1.16 ± 0.21) and epithelization 
(1.10 ± 0.34) were observed in Group L6 (Figure 2(c)).

In Group IV C and L1 skin tissue, moderate mononuclear cell 
infiltration (2.84 ± 0.18 and 2.83 ± 0.30, respectively), edoema 
(2.22 ± 0.23 and 2.19 ± 0.52, respectively) and epithelization 

(2.56 ± 0.51 and 2.39 ± 0.62, respectively) were detected. Severe 
epithelization (2.88 ± 0.22) and moderate mononuclear cell infil-
tration (2.11 ± 0.31) and edoema (2.16 ± 0.22) were observed in 

Table 1. Comparison of mononuclear cell infiltration, edoema, and epitheliza-
tion levels in all treatment groups.

groups
Mononuclear cell 

infiltration edoema epithelization

group i
 C 2.83 ±  0.40a 0.00 ±  0.00a 0.00 ±  0.00a

 l1 2.16 ±  0.32b 0.00 ±  0.00a 0.00 ±  0.00a

 l3 2.12 ±  0.14b 0.00 ±  0.00a 0.00 ±  0.00a

 l6 1.16 ±  0.40c 0.00 ±  0.00a 0.00 ±  0.00a

group ii
 C 2.83 ±  0.40a 2.10 ±  0.33a 1.83 ±  0.34a

 l1 2.10 ±  0.22b 2.16 ±  0.21a 1.90 ±  0.18a

 l3 2.13 ±  0.12b 2.83 ±  0.22b 2.01 ±  0.30a

 l6 2.16 ±  0.40b 1.16 ±  0.38c 2.16 ±  0.40a

group iii
 C 2.83 ±  0.40a 2.80 ±  0.13a 1.31 ±  0.51a

  l1 2.70 ±  0.14a 2.73 ±  0.22a 1.39 ±  0.72a

  l3 2.12 ±  0.16b 1.26 ±  0.34b 1.16 ±  0.40a

  l6 2.16 ±  0.40b 1.16 ±  0.21b 1.10 ±  0.34a

group iV
 C 2.84 ±  0.18a 2.22 ±  0.23a 2.56 ±  0.51a

 l1 2.83 ±  0.30a 2.19 ±  0.52a 2.39 ±  0.62a

 l3 2.11 ±  0.31b 2.16 ±  0.22a 2.88 ±  0.22b

 l6 2.16 ±  0.40b 1.16 ±  0.38b 2.83 ±  0.44b

the different letters in the same column indicate significant difference (p < 0.05). 
data were expressed as mean ± sd. group i (lllt application once and sacri-
fication following 4h); ii (lllt application once and sacrification following 
7 days); iii (lllt application twice with 24 intervals and sacrification 4h follow-
ing the last application), and iV (lllt application twice with 24 intervals and 
sacrification 7 days following the last application). C; (group Control; lllt 
application with off mode in left side of incisional wound), l1; (lllt applica-
tion with 1 J/cm2 dosage in right side of incisional wound), l3; (lllt applica-
tion with 3 J/cm2 dosage in right side of incisional wound), and l6; (lllt 
application with 6 J/cm2 dosage in right side of incisional wound).

Table 2. Comparison of proliferating cell nuclear antigen (pCna) and inducible 
nitric oxide synthase (inos) expression levels in all treatment groups.

groups pCna inos

group i
 C 1.33 ± 0.51a 2.93 ± 0.32a

 l1 1.16 ± 0.41a 2.85 ± 0.14a

 l3 2.16 ± 0.33b 2.60 ± 0.51a

 l6 2.83 ± 0.23c 2.49 ± 0.34a

group ii
 C 0.16 ± 0.02a 2.83 ± 0.34a

 l1 1.17 ± 0.18b 2.66 ± 0.49a

 l3 2.13 ± 0.34c 1.33 ± 0.55b

 l6 2.83 ± 0.28d 1.16 ± 0.14b

group iii
 C 1.33 ± 0.11a 2.16 ± 0.22a

 l1 1.16 ± 0.44a 2.80 ± 0.44b

 l3 2.16 ± 0.29b 2.78 ± 0.82b

 l6 2.83 ± 0.38c 1.15 ± 0.42c

group iV
 C 1.19 ± 0.14a 2.81 ± 0.42a

 l1 2.22 ± 0.18b 2.66 ± 0.55a

 l3 2.14 ± 0.44b 1.33 ± 0.31b

 l6 2.80 ± 0.30c 1.11 ± 0.12b

the different letters in the same column indicate significant differences 
(p < 0.05). data were expressed as mean ± sd. group i (lllt application once 
and sacrification following 4h); ii (lllt application once and sacrification fol-
lowing 7 days); iii (lllt application twice with 24 intervals and sacrification 4h 
following the last application), and iV (lllt application twice with 24 intervals 
and sacrification 7 days following the last application). C; (group Control; lllt 
application with off mode in left side of incisional wound), l1 (lllt applica-
tion with 1 J/cm2 dosage in the right side of incisional wound), l3 (lllt appli-
cation with 3 J/cm2 dosage in the right side of the incisional wound), and l6 
(lllt application with 6 J/cm2 dosage in right side of incisional wound).
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Group L3, whereas severe epithelization (2.83 ± 0.44), moderate 
mononuclear cell infiltration (2.16 ± 0.40), and mild edoema 
(1.16 ± 0.38) were found in Group L6 (Figure 2(d)).

There was a significant difference between the groups in 
iNOS and pCNA immunopositivity, edoema, and epithelization 
(p < 0.05, Table 2). In Group I skin tissue, mild pCNA expression 
was observed in Group C (1.33 ± 0.51) and L1 (1.16 ± 0.41), while 
moderate and severe pCNA expression was in L3 (2.16 ± 0.33) 
and L6 (2.83 ± 0.23), respectively. Additionally, severe iNOS 
expression was found in all groups (Figure 3(a and b)).

In Group II skin tissue, there was no observed pCNA 
expression in Group C. Mild pCNA expression was found in 
Group L1 (1.17 ± 0.18), while moderate and severe pCNA 
expression was in Group L3 (2.13 ± 0.34) and L6 (2.83 ± 0.38), 
respectively. Severe iNOS expression was observed in Group 
C (2.83 ± 0.34) and L1 (2.66 ± 0.49), while moderate iNOS 
expression in Group L3 (1.33 ± 0.55) and L6 (1.16 ± 0.14), (Figure 
4(a and b)).

In Group III skin tissue, mild pCNA expression was noted 
in Group C (1.33 ± 0.11) and L1 (1.16 ± 0.44), whereas moderate 

Figure 2. Mononuclear cell infiltration, edoema, and epithelization indicate as arrowhead, asterisks, and arrow, respectively. (a) group i, (a) severe mononuclear 
cell infiltration in group C, (B-C) moderate mononuclear cell infiltration in group l1 and l3, (d) mild mononuclear cell infiltration in group l6; (b) group ii, (a) 
severe mononuclear cell infiltration, moderate edoema and mild epithelization in group C, (B) moderate mononuclear cell infiltration, edoema and mild epithe-
lization in group l1, (C) moderate mononuclear cell infiltration, severe edoema and mild epithelization in group l3, (d) moderate mononuclear cell infiltration 
(arrowhead), mild edoema and mild epithelization in group l6; (c) group iii, (a-B) mild epithelization, severe mononuclear cell infiltration, and edoema in group 
C and l1, (C) moderate mononuclear cell infiltration, mild epithelization and edoema in group l3, (d) mild mononuclear cell infiltration, edoema, edoema in group 
l6; (d) group iV, (a) modarete edoema, severe mononuclear cell infiltration and epithelization in group C, (B) modarete edoema, severe mononuclear cell infiltration 
and epithelizayion in group l1, (C) severe epithelization, moderate mononuclear cell infiltration and edoema in group l3, (d) modarete mononuclear cell infiltra-
tion, mild edoema, and severe epithelization in group l6. skin-He 40x;.
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and severe pCNA expression was detected in Group L3 
(2.16 ± 0.29) and L6 (2.83 ± 0.38), respectively. Moderate iNOS 
expression was observed in Group C (2.16 ± 0.22). Severe iNOS 
expression was noted in Group L1 (2.80 ± 0.44) and L3 
(2.78 ± 0.82), whereas mild iNOS expression in Group L6 
(1.15 ± 0.42), (Figure 5(a and b))

In Group IV skin tissue, mild pCNA expression was found 
in Group C (1.19 ± 0.14). Moderate pCNA expression was 
noted in Group L1 (2.22 ± 0.18) and L3 (2.14 ± 0.44), whereas 
severe pCNA was in Group L6 (2.80 ± 0.30). Severe iNOS 

expression was noted in Group C (2.81 ± 0.42) and L1 
(2.66 ± 0.55), whereas mild iNOS expression was in Group L3 
(1.33 ± 0.31) and L6 (1.11 ± 0.12), (Figure 6(a and b)).

4.  Discussion

The experimental research demonstrated that dosage depen-
dence of LLLT reduced mononuclear cell infiltration and 
edoema and increased epithelization in incision wound 

Figure 3. (a) grup i, (a-B) mild pCna expression (arrowhead) in group C and l1, (C) moderate pCna expression in l3, (d) severe pCna expression in group l6; (b) 
grup i (a-B-C-d) severe inos expression in all group (C, l1, l3, and l6). skin-iHC.

Figure 4. (a) group ii, (a) pCna immunonegative in group C, (B) mild pCna expression (arrowhead) in group l1, (C) moderate pCna expression in group l3, (d) 
severe pCna expression in group l6; (b) group ii (a-B) severe inos expression (arrowhead) in group C and l1, (C-d) mild inos expression in group l3 and l6. 
skin-iHC.
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healing following ovariohysterectomy in rats. Additionally, 
dosage dependence of LLLT increased pCNA expression and 
reduced iNOS expression. Although all LLLT treatment groups 
were effective in wound healing, the most effective results 
were obtained in the L6 (6 J/cm2) groups in all groups. In 
physical medicine, a laser with a wavelength of 600–984 nm 
is typically employed, with 632.8 nm for a He-Ne laser and 
904 nm for a Ga-As laser being the most common possibilities 
for wound healing. In the current study, we used a Ga-As 

laser with a 904 nm wavelength since red light is optimum for 
wound healing and Ga-As needs a lower dose owing to its 
strong pulse power and high penetration [29].

Wound healing is a complicated, active, and organised bio-
logical process. During wound healing, three stages have 
been identified: inflammation, proliferation, and maturation. 
Within the initial phase, inflammatory cells and keratinocytes 
release cytokines and growth factors that promote fibroblast 
development and chemotaxis. An increased intensity or 

Figure 5. (a) group iii, (a-B) mild pCna expression (arrowhead) in group C and l1, (C) moderate pCna expression in group l3, (d) severe pCna expression in 
group l6; (b) group iii, (a) moderate inos expression (arrowhead) in group C, (B-C) severe inos expression in group l1 and l3, (d) mild inos expression in group 
l6. skin-iHC.

Figure 6. (a) group iV, (a) mild pCna expression in group C, (B-C) moderate pCna expression in group l1 and l3, (d) severe pCna expression in group l6; (b) 
group iV, (a-B) severe inos expression (arrowhead) in grup C and l1, (C-d) mild inos expression in group l3 and l6. skin-iHC.
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duration of this phase can cause healing to be delayed and 
angiogenesis and neocollagenesis to be impaired, ultimately 
leading to amputation procedures [12,30]. In this study, 
LLLT-treated groups decreased mononuclear cell infiltration. 
Similarly, a previous study reported that LLLT can help accel-
erate wound healing, possibly because acute inflammation is 
reduced quickly and the proliferation phase of healing occurs 
earlier [31]. Thus, the LLLT reduced the inflammatory response 
of wound healing. Furthermore, the LLLT reduces inflamma-
tory cell infiltration, enhances wound healing processes by 
increasing collagen production, and provides rapid closure of 
the wound tissue [32,33]. A study conducted on rats demon-
strated that LLLT irradiation (4 J/cm2) reduced inflammatory 
cells in the wound area, which is in agreement with this 
study [34].

LLLT has been shown to regulate the inflammatory process 
as well as the immune reaction [35]. This treatment has the 
potential to normalise or decrease inflammatory reactions such 
as edoema and inflammatory cell migration [36,37]. The cur-
rent study noted that Group L6 (6 J/cm2) was the most effective 
group in reducing edoema in all groups. Many studies have 
shown that LLLT can help reduce edoema and inflammatory 
signs [38–40]. Unexpectedly, Group II L3 increased edoema in 
the current study. This discrepancy may be explained as a 
result of symptomatic pain reduction caused by LLLT, leading 
to enhanced activity that causes more edoema [41].

Epithelization is crucial because it restores the integrity of 
the skin, making it less susceptible to infection [42]. Our find-
ings indicated that Group L3 (3 J/cm2) and L6 (6 J/cm2) in all 
groups increased wound healing, as demonstrated by the sta-
tistical results of epithelization following 7 days when com-
pared with that in Group C in all groups. A similar result was 
previously reported in rats, which seem LLLT modulation  
epithelization in rat with third-degree burn wounds [43]. 
Accelerated keratinocyte proliferation and migration, as a 
result of LLLT’s local or systemic effects, could be a possible 
explanation for rapid and better epithelization [44]. 
Additionally, LLLT enhances the transmembrane electrochem-
ical proton gradient in the mitochondria, which causes an 
antiport process to release calcium from the mitochondria 
into the cytoplasm, triggering or stimulating biological mech-
anisms including RNA and DNA synthesis, cell mitosis, protein 
secretion, and cell proliferation [45,46]. Interestingly, Group L3 
in all groups did not change epithelization formation com-
pared with Group C in all groups. A possible explanation for 
this result is that the combination of given energy density or 
fluency (J/cm2) and a number of exposures is insufficient for 
LLLT stimulant effects on epithelization.

The indicator of pCNA is a well-established marker for 
detecting cellular proliferation during wound healing. pCNA is 
a nuclear protein that contributes to cell proliferation by mod-
ulating DNA polymerase and it is clinically reliable diagnostic 
for proliferation [46]. A previous study described that rats 
exposed to LLLT showed a higher number of pCNA-positive 
cells, indicating enhanced cell proliferation [47]. According to 
the study by Wu et  al. (2010) [48], increased pCNA expression 
causes cellular proliferation during early tendon healing. This 
research also indicated that pCNA may be an effective marker 
for assessing cellular proliferation throughout the development 

of healing. In another study conducted by Gupta et  al. [49], on 
a laboratory model of partial-thickness cutaneous abrasion, 
increased pCNA expression led to enhanced proliferation after 
treatment with 635-nm and 819-nm LLLT, which is in agree-
ment with the current study.

The iNOS are not normally found in cells but rather are 
released in response to stimuli involving cytokines including 
interleukin-1, tumour necrosis factor-α, and γ-interferon [50, 
51]. Overload of nitric oxide, according to elevated iNOS 
expression, may contribute to pre-existing oxidative and 
nitrosative stress by reacting with reactive oxygen species to 
produce peroxynitrite [52]. A previous study reported that 
LLLT significantly decreased iNOS expression, as well as 
improved histological abnormalities and reduced collagen 
concentration [29]. According to the study by Young et  al., 
wavelengths between 660 nm and 870 nm induce macro-
phages to produce substances that promote fibroblast 
growth, but a wavelength of 880 nm suppresses this release 
[52]. Additionally, Albertini et  al., indicated that LLLT that 
demonstrated suppression of iNOS, and hence a decrease in 
nitric oxide production, resulted in an extensive decrease in 
nerve regeneration [53]. However, unexpected results were 
obtained in our study. This study reported that Group L6 (6 J/
cm2) decreased iNOS in all groups. Group L3 (3 J/cm2) 
decreased iNOS in Group II and IV, whereas increased in 
Group III. However, Group L1 (1 J/cm2) did not increase iNOS 
in any group. Although the reason for the increase in iNOS in 
L1 and L3 groups is unknown, it can be explained by an insuf-
ficient dosage of LLLT.

The current study had some limitations. It is possible that 
a more extensive sample size may be required to comprehen-
sively establish the advantages of this therapeutic approach. 
Quantitative wound healing evaluation is preferred over 
wound site evaluation. Instead of subjective wound site eval-
uations, quantitative wound healing assessment approaches 
are recommended [54]. Unfortunately, the current investiga-
tion centred its attention on the histological assessment. In 
order to ascertain the therapeutic effectiveness of LLLT in 
forthcoming investigations, it is advisable to undertake a 
quantitative evaluation of wound healing, encompassing 
measurements such as the area and distance of epithelial 
migration from the wound edge. This assessment should be 
complemented by a histological examination.

Conclusion

The current study findings would propose that although all of 
the LLLT-treated groups decrease mononuclear cell infiltration 
and edoema, and promote epithelialization, more effective 
results are obtained in a dosage of 6 J/cm2 (L6). Additionally, 
LLLT increased pCNA expression and decreased iNOS expres-
sion, thereby improving wound healing following ovariohys-
terectomy in rats.
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