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CAT	� Catalase
GPx	� Glutathione peroxidase
ROS	� Reactive oxygen
RNS	� Nitrogen species
NIH	� National Institute of Health
PTX group	� Paclitaxel induced group
i.p	� Intraperitoneal
CEJ	� Cementoenamel junction
qPCR	� quantitative real-time PCR

Introduction

Chronic pain is a common health condition problem that 
substantially reduces the quality of life; individuals often 
suffer from anxiety, depression, and restrictions in daily 
activities [1]. The pain exceeding the normal healing period, 
and a reduced neuronal threshold is considered a natural 
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Abstract
Background  Oxidative stress has a critical effect on both persistent pain states and periodontal disease. Voltage-gated sodium 
NaV1.7 (SCN9A), and transient receptor potential ankyrin 1 (TRPA1) are pain genes. The goal of this study was to investi-
gate oxidative stress markers, periodontal status, SCN9A, and TRPA1 channel expression in periodontal tissues of rats with 
paclitaxel-induced neuropathic pain-like behavior (NPLB).
Methods and results  Totally 16 male Sprague Dawley rats were used: control (n = 8) and paclitaxel-induced pain (PTX) 
(n = 8). The alveolar bone loss and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels were analyzed histometrically and immu-
nohistochemically. Gingival superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities 
(spectrophotometric assay) were measured. The relative TRPA1 and SCN9A genes expression levels were evaluated using 
quantitative real-time PCR (qPCR) in the tissues of gingiva and brain. The PTX group had significantly higher alveolar bone 
loss and 8-OHdG compared to the control. The PTX group had significantly lower gingival SOD, GPx and CAT activity 
than the control groups. The PTX group had significantly higher relative gene expression of SCN9A (p = 0.0002) and TRPA1 
(p = 0.0002) than the control in gingival tissues. Increased nociceptive susceptibility may affect the increase in oxidative 
stress and periodontal destruction.
Conclusions  Chronic pain conditions may increase TRPA1 and SCN9A gene expression in the periodontium. The data of the 
current study may help develop novel approaches both to maintain periodontal health and alleviate pain in patients suffering 
from orofacial pain.
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feature of chronic pain [2, 3]. Chronic pain can occur as 
a result of cancer, myofascial pain syndrome, trigeminal 
neuralgia, diabetes, infections, temporomandibular disor-
ders, and nerve-related diseases [4–7]. Neuropathic pain 
was shown to produce thermal hyperalgesia (increased pain 
sensitivity) and allodynia (pain resulting from non-painful 
stimuli) that contribute to the generation of reactive oxy-
gen and nitrogen species (ROS; RNS) and cytokines. Oxi-
dative stress (excessively increased ROS and, RNS) has a 
critical effect on persistent pain states such as inflammatory 
and neurogenic pain, neuropathic pain, and chemotherapy-
induced pain [8]. It was shown that the amounts of ROS 
are increased in the dorsal horn neurons and spinal cord 
during neuropathic pain and inflammatory pain models [9, 
10]. Excessively increased ROS formation causes damage 
to important compounds of cells such as lipids, protein, 
DNA, and carbohydrates. 8-hydroxy-2-deoxyguanosine 
(8-OHdG) is an oxidized nucleoside formed during DNA 
repair and used as a biomarker for oxidative DNA damage. 
In normal physiology, the antioxidant defense system main-
tains ROS activity and antioxidant balance by neutralizing 
excess free radicals, thus preventing damage. Superoxide 
dismutase (SOD), catalase (CAT), and glutathione peroxi-
dase (GPx) are important enzymatic antioxidants [11, 12].

Periodontitis is an inflammatory condition that affects 
tooth-supporting tissues [13]. An imbalance between oxi-
dant/antioxidant activities contributes to inflammation 
affecting the periodontium [14–16]. It has been suggested 
that the hydroxyl radical and superoxide anion are involved 
in bone reabsorption [17]. Oxidative stress causes periodon-
tal bone loss through direct damage to the extracellular 
connective tissue and also indirectly by leading to proin-
flammatory cytokines/chemokines production [13].

Calcium influx through voltage-dependent calcium chan-
nels is an important pathway for maintaining intracellular 
calcium homeostasis [18]. It was suggested that increased 
extracellular calcium levels might support the osteogenic 
differentiation of human periodontal ligament stem/pro-
genitor cells. It was reported that elevated extracellular 
and intracellular calcium levels inhibit bone resorption [18, 
19]. TRPA1 is a member of the transient receptor poten-
tial (TRP) channel family. TRPA1 which has a much higher 
permeability to calcium compared to other TRPs allows an 
inward cation current that can modulate intracellular cal-
cium-dependent pathways [20]. TRPA1 is often involved 
in pain, thermal, and chemical sensation is predominantly 
expressed in nociceptive sensory neurons [21]. TRPA1 can 
also be activated by various endogenous reagents involved 
in oxidative stress and inflammation [22, 23]. Nociceptive 
receptors on primary sensory fibers in periodontal tissues 
are involved in nociceptive mechanisms. Pulpitis and oral 
mucosal trauma were detected to trigger the expression 

of TRPA1 in dental tissues and oral mucosa [24, 25]. The 
SCN9A gene is involved in the formation of a part (alpha 
subunit) of the sodium channel called NaV1.7. These chan-
nels are found in small nociceptive fibers that transmit pain 
signals [26].

The present study intended to examine the impact of 
the paclitaxel-induced NPLB model on the oxidative stress 
level and status of periodontal tissues. The alteration in 
TRPA1 and SCN9A gene expressions in the tissues of the 
gingival and brain were investigated.

Material and method

In this study, the whole experiment procedure was per-
formed in accordance with University of Atatürk Animal 
Experiments Local Ethics Committee protocol (HADYEK 
protocol number 2019 − 193). All experiments were consis-
tent with the National Institute of Health (NIH) Guide for 
the care and use of animals.

The experiments were carried out on weighing 220–
295 g male Sprague Dawley rats (n = 16). The sample size 
was determined by accepting an 80% power and a 95% 
confidence interval (α = 0.05) [27]. All rats were housed in 
cages with constant temperature and light cycles (23 ± 1 °C, 
12:12  h dark/light cycles). Rodent chow and water were 
given ad libitum.

Experimental design

Two groups (n = 8) were created. Control and PTX: intra-
peritoneal (i.p.) paclitaxel (2  mg/kg) injection was per-
formed to create a NPLB model every two days and four 
times [28]. The pain-like behavior of rats was assessed by 
Randall–Selitto Analgesiometry Test at two points of the 
experiment (on days 7 and 21 of the first paclitaxel applica-
tion). The rats were sacrificed under anesthetized at the end 
of the 22nd day. The brain tissues and mandible along with 
the periodontal tissue were removed.

Randall–Selitto analgesiometry test

The mechanical hyperalgesia in the rats was evaluated by 
Randall-Selitto test. A linearly-increasing pressure (a cer-
tain gram per second) was exerted on the plantar face of 
hind paw with Randall Selitto analgesiometer (Ugo Basile, 
Italy) [29]. While the mechanical force was applied, the 
pressure value at which the rat pulled its paw was accepted 
as the nociceptive. This threshold level was determined in 
all animals. A contraction or escape response observed in the 
animal was considered the presence of pain-like behavior.
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Histopathological analyzes

The right mandibles of rats were removed and fixed in 10% 
neutral formaldehyde solution for 48 h. The samples were 
decalcified with EDTA. After, 10 sections of 20 μm thick-
ness were obtained from the samples embedded in paraf-
fin blocks. Then, sections of 5 μm were taken and stained 
with Hematoxylin-Eosin. All sections were taken along the 
1st and 2nd molars in the buccolingual plane. The equally 
distant sections of each tooth were selected for histometric 
analysis. The alveolar bone level of the first molars has mea-
sured the distance (µm) between the cementoenamel junc-
tion (CEJ) and the alveolar bone crest (CEJ-ABC).

Immunohistochemical analyzes

5  μm sections taken on polylysine slides were passed by 
xylol and alcohol series, after washing with PBS, and 
treated with 3% H2O2 for 10  min. Antigen retrieval was 
performed using antigen retrieval solution for 2 × 5 min at 
500 watts. After the tissues were washed with PBS were 
incubated with 8-OhDG primary antibody (Santa cruz, 
Cat no. sc-66,036) at a dilution rate of 1/200 at room tem-
perature for 45 min. Secondarily; Large Volume Detection 
System: anti-Polyvalent, HRP (Thermofischer, Catalog no: 
TP-125-HL) was used as recommended by the manufac-
turer. DAB (3,3′-Diaminobenzidine) was used as chromo-
gen. After counterstaining with Mayer’s Hematoxylin, it 
was covered with entellan and examined at a magnification 
of 40x under a light microscope. A semi-quantitative evalu-
ation was done. The immunopositive in all epithelium of 
the mandibular keratinized mucosa cells was evaluated as 
50%> severe (+++), 20–50% moderate (++), 20% < mild 
(+), no immunopositive = absent (-).

Enzyme activity analyzes

Rat gingival homogenates were prepared. Quantitative pro-
tein determination was performed spectrophotometrically at 
595 nm according to the Bradford method [30] using bovine 
serum albumin as a standard. SOD (EC 1.15.1.1), CAT (EC 
1.11.1.6), and GPx (EC 1.11.1.9) activities were spectro-
photometrically measured according to Sun [31], Aebi [32], 
and Beutler [33], respectively.

Real-time PCR (qPCR)

RNA was extracted from the gingival tissues including 
the sulcular epithelium around molar teeth (Invitrogen 
12,183,025 RNA Mini Kit). cDNA synthesis was performed 
from the isolated RNA using the cDNA synthesis kit (Bio-
labs, E6300S). qPCR was used to determine the levels of 

SCN9A and TRPA1 genes mRNA expression. Quantitative 
gene expression was detected by SYBR Green (Biorad-Cat 
no: 10,000,076,382) [34]. Table  1 presented the primers 
used. The ΔCT method was used to analyze relative gene 
expression results.

Statistical analysis

Results were evaluated by GraphPad Prism Software ver-
sion 8.0 (GraphPad Software, San Diego, CA). The values 
were presented as mean ± standard deviation. Student’s 
t-test was used to evaluate the difference between groups 
(p < 0.05).

Results

Behavioral tests

Figure  1 shows the nociceptive threshold values. In this 
study, the pain threshold was significantly lower in the 
PTX group (12.63 ± 2.77) compared to the control group 
(19.75 ± 1.49; p < 0.0001). These results indicate that NPLB 
occurs in PTX-treated rats.

Table 1  Gene-specific primers showing the names, gene symbols, and 
GenBank accession numbers
Gene 
Symbols

Accession 
Number

Primer Sequence (5’→3’)

Trpa1 NM_207608.1 Forward TCCAAACCTCC-
GAAATAG

Reverse ATGTTAGTGGCCTTGTGC
Scn9a NM_133289.2 Forward TCTCCCTTCAGTCCTC-

TAA
Reverse AACAAAGTCCAGC-

CAGTT
Gapdh NM_017008.4 Forward CCTTCATTGACCTCAAC-

TAC
Reverse TCGCTCCTGGAAGATG-

GTGAT

Fig. 1  Randall- selitto analgesiometer measurement values. Data 
shown are mean ± SD (n = 8/each group). ****p < 0.0001 significantly 
different from the Control group
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glutamate and inflammatory mediators, and excess glu-
tamate can lead to excessive ROS production in neurons. 
Studies indicate that ROS levels are elevated in the spinal 
cord, dorsal root ganglion (DRG), and dorsal horn neurons 
during neuropathic pain [9, 10, 36]. Komirishetty et al. [37] 
reported increased SOD activity accompanying increased 
oxidative damage in the spinal cord after the neuropathic 

Alterations in TRPA1 and SCN9A relative mRNA 
expression in the brain and gingival tissues

The PTX group showed significantly higher SCN9A mRNA 
expression in the brain (0.15 ± 0.03 fold; p = 0.0002) and 
gingiva (0.20 ± 0.04 fold; p = 0.0002) than in the control 
group (Fig.  2). The PTX group had significantly higher 
relative mRNA expression levels of TRPA1 in both brain 
(0.27 ± 0.04 fold; p < 0.0003) and gingiva (0.17 ± 0.01 fold; 
p = 0.0002) than the control (Fig. 3).

Gingival SOD, GPx, and CAT activity

Table 2 shows levels of SOD, GPx, and CAT activity in the 
gingival tissues. The PTX group (59.14 ± 16.3; p = 0.013) 
showed a significantly lower gingival SOD activity level 
than the control group (141 ± 29.27). There was a signifi-
cant decrease in the level of CAT activity in the PTX group 
(16.82 ± 3.08; p = 0.03) compared to the control group 
(25.08 ± 3.43). The gingival GPx activity level of the PTX 
group (0.58 ± 0.14; p = 0.0002) was significantly lower than 
the control group (1.17 ± 0.06).

Histopathological and immunohistochemical 
findings

Our results showed that there was a significant increase 
in distance measurements for CEJ–ABC in the PTX 
group (255.33 ± 3.88) than in the control (114.50 ± 7.23; 
p < 0.001) (Table 2; Fig. 4). Detected immunopositivity was 
in gingival epithelial tissue (Table 2; Fig. 4). No significant 
8-OhDG immunopositivity was observed in the control 
group (0.16 ± 0.40). A moderate level of 8-OhDG immu-
nopositivity was detected in the PTX group (1.83 ± 0.40; 
p < 0.05).

Discussion

Our results showed that increased nociceptive sensitivity 
causes lower SOD, CAT, and GPx activity, higher 8-OHdG 
immunostaining in gingival tissue, and alveolar bone loss. 
Furthermore, the results of this study showed high mRNA 
expression of SCN9A and TRPA1 genes in gingival tissues 
in a chronic pain-like behavior model. To the best of our 
knowledge, this is the first research to assess the relation-
ship between NPLB, oxidative stress, SCN9A, TRPA1, and 
changes in the periodontium.

Chronic pain activates multiple intracellular pathways 
including ROS formation such as protein folding leading 
to ROS generation [9, 35]. For example, increased affer-
ent inputs might increase the release of proteins such as 

Table 2  Comparison of distance for the CEJ–ABC around teeth and 
SOD, GPx, and CAT activity levels and semi-quantitative analyses of 
8-OHdG in the gingival tissues between the groups
Groups Control PTX
SOD (U/mg-protein) 141 ± 29.27 59.14 ± 16.3*
GPx (U/mg-protein) 1.17 ± 0.06 0.58 ± 0.14***
CAT (U/mg-protein) 25.08 ± 3.43 16.82 ± 3.08*
Distance for the CEJ–ABC 
(µm)

114.50 ± 7.23 255.33 ± 3.88***

8-OhDG immunopositivity 0.16 ± 0.40 1.83 ± 0.40*
Comparison of distance for the CEJ–ABC around teeth and SOD, 
GPx, and CAT activity levels and semi-quantitative analyses of 
8-OHdG in the gingival tissues between the groups (mean ± SD). 
Data shown are mean ± SD (n = 3/each group for SOD, GPx, and CAT 
analyses; n = 8/each group for analyses of 8-OHdG and distance for 
the CEJ–ABC). *p < 0.05, ***p < 0.001 significantly different from 
Control group

Fig. 3  The increase in gene expression of TRPA1 in paclitaxel-
induced chronic neuropathic pain. (A) q-PCR analysis of TRPA1 in 
brain tissues of groups. (B) q-PCR analysis of TRPA1 in periodontal 
soft tissues of groups. Data shown are mean ± SD (n = 3/each group). 
***p < 0.001 significantly different from the Control group

 

Fig. 2  The increase in gene expression of SCN9A in paclitaxel-induced 
chronic neuropathic pain-like behavior. (A) q-PCR analysis of SCN9A 
in brain tissues of groups. (B) q-PCR analysis of SCN9A in periodontal 
soft tissues of groups. Data shown are mean ± SD (n = 3/each group). 
***p < 0.001 significantly different from the Control group
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increase in the level of oxidative damage marker 8-OHdG in 
the gingival tissue.

Kerckhove et al. [39] show that oxidative stress in the 
case of paclitaxel-induced neuropathic pain causes damage 
to neuronal and non-neuronal cells, as well as macrophage 
activation and ultimately overproduction of proinflamma-
tory cytokines. The increased ROS/RNS stimulates the 
channel activities of TRPA1, mainly expressed in pepti-
dergic C fibres [21, 40]. Materazzi et al. [41] detected that 

pain model. Guedes et al. [38] suggested that GPx activity 
was elevated in the spinal cord of rats with neuropathic pain. 
Zhao et al. [36] showed a decrease in SOD activity and an 
increase in 8-OHdG level in the spinal cord after experi-
mental chronic neuropathic pain was induced. We did not 
find any study evaluating ROS levels in peripheral tissues 
in neuropathic pain conditions. Our results suggested that 
there was a significant decrease in SOD, CAT, and GPx lev-
els in the gingival tissue of the PTX group. We also found an 

Fig. 4  X and Y; Histopathological findings of gingival mucosal tissues 
from all groups in the buccolingual sections of mandibular first molars 
(H&E staining). (X) Control group section, a normal histologic view. 
(Y) PTX group section. CEJ; cementoenamel junction, ABC; alveolar 

bone crest. A and B; Immunohistochemical staining of 8-OHdG in 
the gingiva, presented as the cell number/unit square (mm2). (A) Con-
trol group section. (B) PTX group section. Arrow indicates positive 
staining
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reported that different sex-related immune cells and female 
hormones may increase pain sensitivity in women [60, 61]. 
In the current study, we studied male rats to exclude the 
action of estrogen on nociceptive behavior. But, the use of 
single-sex was another limitation of the study.

Conclusions

In this study, we found that oxidative stress and oxida-
tive DNA damage increased in healthy periodontium with 
increased nociceptive sensitivity and alveolar bone loss 
occurred, probably with the contribution of increased oxi-
dative stress. Our results indicated that SCN9A and TRPA1 
expressions increased in gingival tissues in chronic pain-like 
behavior condition. Considering that ROS/RNS increases 
alveolar bone resorption, which occurs as a result of the 
inflammatory process and that the expression of SCN9A 
and TRPA1 may be associated with inflammatory media-
tors, investigating the effect of these genes in periodontal 
diseases may help develop new approaches both to main-
tain periodontal health and alleviate pain in patients suffer-
ing from orofacial pain. This study may be a guide in this 
regard, but further studies at the molecular level are needed.
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paclitaxel application stimulated oxidative stress by prod-
ucts that ultimately activate TRPA1 in mice. It was reported 
that the activation of the TRPA1 increased on nerves carry-
ing pain induced by cold after dental bleaching [42]. TRPA1 
expression was observed to be upregulated in myelinated 
nerve fibers of teeth with pulpitis [43]. In the current study, 
TRPA1 mRNA expression was significantly increased in 
the gingival tissue of rats. This increase may have occurred 
in the nociceptive nerve endings in the periodontium. The 
human [44, 45] and rat studies [46] suggested that differen-
tial expression of SCN9A may be an important contributor to 
the development of trigeminal pain. Animal studies showed 
that SCN9A gene expression and function are increased in 
models of neuropathic pain, diabetic, inflammatory, and 
bone cancer [47–50]. Zhang et al. [51] revealed a signifi-
cant increase in the expression of the SCN9A gene with the 
qPCR method in DRG of rats with paclitaxel-induced neu-
ropathy. Li et al. [52] reported that the expression of the 
SCN9A gene in DRG was upregulated in paclitaxel-induced 
neuropathy in rats and humans with neuropathic pain. Our 
study demonstrated that the expression of the SCN9A gene 
was significantly increased in the gingival tissue of rats. 
Tumor necrosis factor-α and its downstream signal mol-
ecule nucleus factor-kappa B, and prostaglandin E2 were 
statemented to upregulate Nav1.7 mRNA expression [53, 
54]. Inflammation associated with oxidative stress in gingi-
val tissues may have contributed to the increase in SCN9A.

It was reported that there was an important relationship 
between oxidative stress biomarkers and gingival inflam-
mation and alveolar bone resorption [55]. It was indicated 
that increased intracellular ROS levels contribute to bone 
resorption by directly promoting osteoclast differentiation 
and activity [56]. It was shown that the gingival SOD, GPx, 
and CAT activity decreases [57, 58] or increases [13, 14, 55] 
in gingival inflammation and periodontal disease. Akalın et 
al. [58] suggested that relations may exist between peri-
odontal status and gingival SOD activity. Studies showed 
an important increase in 8-OHdG levels of gingiva in peri-
odontal disease [56, 59]. In our study, alveolar bone loss 
was found in the PTX group with increased oxidative stress.

Study limitations: First, this present study presented only 
results in the paclitaxel-induced NPLB model. The present 
research does not estimate SCN9A and TRPA1 levels in 
periodontal tissues in other diseases such as diabetes, tri-
geminal neuralgia, which cause neuropathic pain, orthodon-
tic treatment pain. Second, the levels of SCN9A and TRPA1 
gene expression were determined using qPCR in tissues. It is 
known that transcript levels generally do not reflect protein 
levels or protein activation status. Further experiments such 
as western blotting analysis should be carried out. Third, 
the study was not include micro-CT analysis, which better 
assesses alveolar destruction, and TRAP staining. Studies 
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