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Abstract
Collecting-labeled images from all possible classes related to the task at hand is highly impractical and may even be

impossible. At this point, Zero-Shot Learning (ZSL) can enable the classification of new test classes for which there are no

labeled images for training. The vast majority of existing ZSL methods aim to learn a projection from the feature space into

the semantic space, where all classes are represented by a list of semantic attributes. To this end, they usually try to solve a

complex optimization problem. Nevertheless, the semantic features (attributes) may not be suitable to represent the images

because they are derived based on human knowledge and are, therefore, abstract. Alternatively, in this study, we introduce

a novel ZSL method called SOMZSL, which has its roots in Self-Organizing Maps (SOM), a famous data visualization

method. In particular, SOMZSL builds two SOMs of the same size and shape, one for the feature space and one for the

attribute space, and then establishes a correspondence between them. Instead of considering a direct projection between the

feature space and the attribute space, which is inherently different, SOMZSL connects them through comparable inter-

mediate layers, i.e., SOMs. In terms of performance, SOMZSL can classify novel test classes as well or even better than

existing ZSL methods without dealing with a complex optimization problem, thanks to the heuristic nature of SOM on

which it is based. Finally, SOMZSL uses unlabeled test images in the construction of SOMs and can thus mitigate the

domain shift problem inherent in ZSL.
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1 Introduction

Just like humans, machines need to see objects before they

can recognize them. This is a key to any autonomous object

recognition system. In particular, in the context of image

classification/recognition, this phenomenon requires that

images from each class of interest be present in the training

set. However, the environment in which we live is

dynamic; new classes emerge and evolve over time. For

example, new types of viruses are constantly being dis-

covered and futuristic objects such as the next generation

of concept cars are being designed. Additionally, labeling

images involves human effort and is therefore costly,

making the collection of labeled images from all possible

classes of interest impractical. Different from traditional

classification methods that are unable to handle new clas-

ses, at this point we need a new technology to classify these

classes. Zero-Shot Learning (ZSL) was developed for this

purpose [1–3].

ZSL can classify images even if they have no labeled

instances in a given training set. Typically, ZSL accom-

plishes this by leveraging labeled instances of other classes,

i.e., those that exist during training and are therefore called

training classes. ZSL assumes that both the training classes

and the test classes, i.e., the classes to be classified, are

represented with the same semantically meaningful attri-

butes, such as visual properties ‘‘has four legs’’, ‘‘is green’’

[2]. Using the (labeled) images of the training classes

together with their semantic attributes, ZSL learns how to

describe the images of the test classes with the semantic

attributes. Using these descriptions, ZSL eventually rec-

ognizes the test classes much like a human identifies new

cases when given a high-level description about them.

The initial studies on ZSL aimed at learning a set of

independent classifiers, one for each semantic attribute

[2, 4]. This was later criticized on the grounds that no
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interaction between the classifiers is allowed since they are

learned separately [3, 5]. Since then, the studies capable of

projecting the feature (visual) space of images into the

attribute (semantic) space of classes have come to domi-

nate the research on ZSL [5–9]. These studies have in

common that they aim at projecting the images near their

classes, which are represented by prototype vectors in the

attribute space, using a projection matrix. Here, the col-

umns of the projection matrices correspond to the semantic

attributes and are learned jointly. However, learning such a

matrix is nontrivial task and usually requires handling a

complex optimization function. In addition, representing

the images that are physically exist by the semantic fea-

tures may not be appropriate because such features are

derived on the basis of human knowledge and are thus

abstract [10].

The above mentioned methods also suffer from the

projection domain shift problem, which arises because the

projection is learned using only training class images,

while the ultimate goal of ZSL is to classify test classes

[11]. This is a severe problem, considering that the data

distributions of the classes are likely to be different,

causing the method to be biased towards the training class

images, which in turn degrades the performance of the ZSL

method. To overcome this problem, the obvious solution is

to incorporate the unlabelled test data into the learning

process, which is achieved by a tiny fraction of ZSL

methods [11].

In this paper, we introduce a fairly new method for ZSL

that has its roots in Self-Organizing Maps (SOM) [12].

Therefore, we first outline SOM and then explain our

proposed method. Briefly, SOM is a simple but robust data

visualization method that can represent data in high

dimensions in a regular grid (lattice) of neurons (units).

SOM achieves this visualization by assigning each data

instance to a neuron that best matches the instance and is

therefore called Best Matching Unit (BMU). In practise,

BMU is the neuron whose weight vector is closest to the

instance at hand and can be considered as a proxy for the

instance in SOM.

Learning the weight vectors specific to each neuron is

iterative, where at each iteration an instance is selected and

then the corresponding BMU is determined. Based on the

distance to the coordinates of the BMU, the weight vectors

corresponding to the neurons are updated, i.e., they con-

verge to the instance.

For ZSL, we propose to create two SOMs of the same

size and shape, one for the feature (input) space and one for

the semantic space, calling the former the input SOM and

the latter the attribute SOM. Our motivation is to transform

input and semantic spaces, which are inherently different,

into similar forms to make them comparable. To establish a

correspondence between two SOMs, we first utilize labeled

images of the training classes in the following way. We

take a pair consisting of an image and its class, find the

BMU in the input SOM for the image and the BMU in the

attribute SOM for its class based on its attributes. We then

update the weight vectors of the input SOM based on the

BMU in the attribute SOM. As a result, the input SOM is

created under the supervision of the semantic space. For

the attribute SOM, its weight vectors are updated based on

the BMU in the input SOM, similar to the previous case.

This creates a correspondence between the two SOMs,

which eventually leads to the input space and the attribute

space being connected via the SOMs.

In the second phase of SOMZSL, both unlabeled test

images and the semantic representations, i.e., class proto-

types, of the test classes come into play. In particular, the

test images are used to further train the input SOM in an

unsupervised manner, i.e., using only the features of the

images, not their classes. Likewise, the semantic repre-

sentations are used to further train the attribute SOM again

in an unsupervised manner, i.e., using only the attributes of

the classes. Here, the neurons of the two SOMs are updated

in a conventional way, i.e., based on the BMUs in their

own SOM.

As mentioned earlier, BMUs in a SOM are proxies for

instances in the original space, and training a SOM based

on these BMUs provides a representation of the original

space. In this sense, in the first phase of SOMZSL, we

update the input SOM based on the BMUs corresponding

to classes represented by a set of attributes. Similarly, the

attribute SOM is trained with the BMUs in the input SOM.

As a result, the input SOM (or attribute SOM) becomes a

representative of the attribute space (or input space) at the

end of the first phase. In the second phase of SOMZSL, the

SOMs start to represent their own spaces by considering

their own BMUs. Overall, both SOMs are trained with

instances of the input space and class representations in the

attribute space which establishes a correspondence

between them. The associated code for SOMZSL can be

found at https://github.com/FiratIsmailoglu/SOMZSL.

When it comes to classifying a test image, it is first

mapped to its BMU in the input SOM and then directly

transferred to the corresponding BMU in the attribute

SOM, which shares the same coordinates with the one in

the input SOM. As a result, the image is represented by the

weight vector of the BMU in the attribute SOM, whose

dimension is the same as that of the semantic space. This,

in turn, enables the representation of the test image in the

semantic space. To illustrate this classification rule, we

give Fig. 1.
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1.1 Research questions

In this study, by proposing a new ZSL method that is based

on SOM, we seek to answer the following research

questions:

• Is it possible to bridge the gap between the feature and

semantic space in ZSL that are inherently different by

abstracting and simplifying these spaces?

• Can we develop a simple but effective method to enable

the classification in ZSL without having to deal with an

optimization problem?

• Can SOM, a well-known and appreciated method for

data visualization, also be used for transfer learning?

1.2 Novelties and advantages of SOMZSL

To address the research questions listed above, we develop

a SOM-based ZSL method, SOMZSL, in this paper.

SOMZSL differs from existing ZSL methods in several

ways. In the following, we summarize them.

• Considering the training class images as auxiliary

(source) data and the test class images as target data,

ZSL is a form of transfer learning / domain adaptation.

As far as we know, SOMZSL is the first SOM-based

method not only for ZSL but also for transfer

learning/domain adaptation problem.

• SOMZSL establishes a correspondence between two

SOMs from two different spaces.

• Unlike most ZSL methods, which transform either only

the feature space or only the semantic space, SOMZSL

transforms both spaces into two different yet compara-

ble grids, i.e., SOMs.

• SOMZSL relies on a widely appreciated data visual-

ization method, SOM, which is easy to use.

SOMZSL offers several advantages over existing ZSL

methods, including:

• not having to deal with a costly optimization function,

• preserving the topology of the feature space and the

semantic space thanks to the SOMs included in it,

• mitigating the adverse effects of the projection domain

shift problem inherent in ZSL by allowing the use of

unlabeled test images as well as the semantic

representations of the test classes, which endows

SOMZSL with a trunsductive property.

In the remainder of the paper, we first review the work

related to ZSL and SOM. In the next section, we begin by

formalizing the problem of interest in this study, and then

proceed with a detailed explanation of the proposed

SOMZSL. We then report the results of the experiments

conducted to validate the performance of SOMZSL. In the

last section, we summarize what has been done in this

study and then provide an outlook on what can be done

next.

2 Related work

To structure the related work, we divide this section into

several parts. First, we give an overview of the history of

the ZSL problem, since ZSL is our main concern in this

study. Then we continue with the main approaches to ZSL

and then with the brief history of SOM, which is our

approach to ZSL. We also discuss uses of SOM more

related to the problem of interest. Finally, we conclude this

section in a way that leads us to the proposed SOM based

ZSL method.

Brief History of the ZSL Problem The lack of labeled

training instances for each class of interest is not a new

problem, nor is it specific to the image classification. In

fact, this problem has been studied for decades in the field

of lifelong learning, where learned knowledge is used for

new emerging tasks [13]. Nevertheless, most of the related

research is concerned with the image classification problem

and is considered in the context of Zero-Shot Learning

(ZSL) [3]. One of the earliest studies in this regard is [4], in

which Lampert et. al. introduced the concept of (semantic)

attributes, which can be defined as high-level descriptions

of classes. Using these attributes, they proposed to transfer

information from seen to unseen classes. Meanwhile

Palatucci et. al. formalized the ZSL problem by defining

the necessary notions such as attribute space, class proto-

type vectors and semantic output code classifiers [1]. Later,

this problem attracted the attention of the transfer learn-

ing/domain adaptation community, since the underlying

idea of ZSL is nothing but transferring information from

seen classes to unseen classes [14]. This led to an explosion

Fig. 1 The classification rule of

SOMZSL
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of studies that aim to project the feature (input) space into

the attribute space [5, 7]. While these studies remain

popular, a new trend is to develop generative models for

ZSL [15]. Specifically, these models generate synthetic

training instances for unseen classes based on their

semantic attributes, resulting in a transformation of the

ZSL problem into a traditional image classification

problem.

Main Approaches to ZSL Early approaches to ZSL

propose to learn a separate (binary) classifier for each

semantic attribute using the instances of training classes.

They then combine the resulting classifiers to obtain the

final classifier for test classes. DAP and IAP are the famous

examples of this kind [2]. However, these approaches are

highly criticized for not considering correlations between

the attributes. Later approaches focus on learning a pro-

jection matrix that helps transfer instances (i.e., images) in

the input space to the attribute space, resulting in both

instances and class prototypes being represented in the

same space. ALE [5], ESZSL [9] and SJE [8] are some

successful examples in this category. These methods try to

project the instances to points that are close to the corre-

sponding classes, while dealing with different optimization

problems. Moreover, they take into account correlations

between the attributes since the columns of the projection

matrix they generate correspond to the attributes and are

learned jointly.

The projection methods mentioned above are also crit-

icized for allowing the classification to take place in the

semantic space, which leads to discarding the discrimina-

tive power of visual features. With this in mind, some

studies prefer to use the feature (input) space as the

embedding space into which the semantically represented

classes are projected [10]. Nevertheless, these studies are

also subject to criticism, because of their inability to pre-

serve the semantic properties of the classes [16]. Alterna-

tively, [17] introduced model space, where the coordinates

correspond to the parameters of the classifiers (models),

each of which was trained to classify a particular (seen)

class. They then created two weighted graphs, one in the

semantic space and one in the model space, where the class

representations and the classifier parameters correspond to

the vertices of these graphs, respectively, and finally

aligned these two graphs using manifold learning. Speak-

ing of the ZSL methods that are embedding-based, a small

fraction of them aim at learning a common intermediate

embedding space where both the feature space and the

semantic space are mapped [18]. However, these methods

tend to assign test instances to seen training classes due to

the lack of labeled instances from test classes [10].

The problem of ZSL has also been studied from the

point of view of deep learning. In general, deep learning

serves ZSL in two ways. First, a Convolutional Neural

Network (CNN) can be built where the number of output

neurons is equal to the number of attributes, i.e., the

dimension of the attribute space [19]. In this case, the

output space of the CNN is served as the common

embedding space. Alternatively, [20] proposed learning

two multilayer perceptrons (MLPs) simultaneously, one for

the feature space and one for the semantic space, to embed

both spaces in an intermediate embedding space. However,

both approaches are prone to the domain shift problem as

the CNNs and MLPs are trained using only training (seen)

classes. Second, deep learning, particularly Generative

Adversarial Networks (GANs), is utilized to create syn-

thetic instances for test classes that are then used in training

a ZSL model [15]. Parallel to this idea, [21] utilizes a

conditional variational autoencoder to estimate the under-

lying probability distribution of image features conditioned

on the class embeddings, leading to the generation of the

required synthetic instances.

Brief History of SOM Teuvo Kohonen invented SOM in

the 1980s as a dimensionality reduction technique that can

provide an intuitive understanding of patterns and rela-

tionships in high-dimensional data [12]. Since then, SOM

has received widespread use and attendance, mainly due to

two reasons: (i) its ability to preserve the topology of input

data and (ii) its ease of implementation [22]. In such

applications, SOM has been used primarily for clustering,

abstracting, explaining, and visualizing high-dimensional

data. In addition, SOM has also been used for supervised

learning, such as classification [23] or even time series

prediction [24]. In the meantime, several extensions of

SOM have been proposed. One notable extension in the

history of SOM is Growing SOM (GSOM) [25]. Unlike

conventional SOM, in GSOM the number of neurons is not

predetermined, but can grow based on a heuristic: if the

error value of a neuron is above a certain growth threshold,

then let it grow in all possible directions, otherwise

increase the error value of the neuron. This provides some

flexibility in determining the SOM size. Another important

version is Batch SOM, which proposes to update the

weight vectors only at the end of each epoch, after all

instances have been seen [12]. This makes SOM com-

pletely deterministic, while the original online version is

stochastic. Speaking of determinism, Akinduko et. al.

proposed a PCA-based initialization scheme for the weight

vectors of SOM [26]. Instead of starting with completely

random vectors, this approach determines the weight vec-

tors based on linear combinations of the first two principal

components of the input space, guaranteeing that the same

weights are started with each run. Finally, a few words

about the theoretical aspects of SOM. Although originally a

heuristic method, there are quite a few studies in the history

of SOM that aim to explain the theory behind it [27]. These

studies focus on three aspects: (i) stability of the results (ii)
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organization of the weight vectors, (iii) convergence. Of

them, convergence is by far the most studied theoretical

aspect of SOM, but there is still no well-approved study

that can clearly explain whether and/or when a SOM

converges [27].

More Relevant Uses of SOM To our knowledge, SOM

has not been used for the zero-shot learning problem, nor

for the more general transfer learning problem. This may

be because SOM is inherently an unsupervised method,

whereas ZSL is a type of classification problem and

therefore requires supervised methods. The same is true for

transfer learning, where labeled data is expected from the

source data. Nevertheless, in terms of creating multiple

SOMs, as we do, it is possible to encounter relevant

studies. In these studies, first multiple (base) SOMs with

the same size and shape are generated based on the same

dataset with different initializations or based on different

datasets created using the bagging method. Then, these

SOMs are combined (aggregated) to obtain the final SOM

while preserving their topological properties. In determin-

ing the final SOM, it is common to seek correspondence

between the base SOMs. The underlying motivation of

such studies is to make the final SOM more stable and less

sensitive to the initialization [28].

Recall that when training the SOMs in the proposed

SOMZSL, i.e., the input SOM and the attribute SOM, the

weight vectors of one SOM are updated with respect to the

BMU in the other SOM. From this point of view, SOMZSL

and the Korresp algorithm have one thing in common [29].

Basically, Korresp associates each row of a given data

matrix with a column of the matrix in such a way that it is

the most probable given that row. Korresp then finds the

BMUs by considering only the row vectors, but updates the

weight vectors using the rows along with their associated

columns. Korresp performs the same steps for the column

vectors as well. As a result, Korresp yields a biclustering

(coclustering) of the input data.

To sum up, the problem of ZSL has long been of interest

to researchers because of its realistic scenario. Numerous

studies on ZSL have been devoted to develop projection-

based methods to make images represented by virtual

features compatible with their classes represented by a set

of semantic attributes. In these studies, either the feature

space or the semantic space was usually preferred as the

embedding space in which the projection takes place.

However, image features may not be appropriate to rep-

resent classes that do not physically exist, and semantic

attributes may not be appropriate to represent images

because such attributes are derived based on human

knowledge. Instead of preferring such a direct projection,

one can first project the feature space and the semantic

space onto some intermediate layers separately, making

sure that these layers are compatible, and then try to

establish a correspondence between these two layers. In

this study, for the first time in the literature, we propose to

use the well-known and well-appreciated SOM to construct

these layers. In fact, we establish the required correspon-

dence during the construction of the SOMs. In the fol-

lowing section, we explain the proposed idea in detail.

3 Methodology

3.1 Problem definition

In this study, we are concerned with constructing a ZSL

classifier defined as a function

f : X ! U ; ð1Þ

where X � Rd is the input (feature) space, which can be

extracted in various ways: for example, using the more

traditional methods SURF and SIFT, or with newer meth-

ods that use convolutional neural networks (CNN) [30]. U

is the set of unseen (test) classes. For this purpose, we have

a training set Dtr ¼ fðxi; yiÞ 2 X � SgNtr

i¼1, where S is the

set of seen (training) classes. We assume that S and U are

disjoint: S \ U ¼ ;; meaning that the classes that are pre-

sent during training are different from those to be classi-

fied. Using the classifier, the task we are interested in to

classify the instances of test set Dte ¼ fxi 2 XgNte

i¼1.

3.1.1 Attribute space

As mentioned above, ZSL is a special kind of classification

problem that involves classifying instances of unseen clas-

ses. Another special feature of ZSL is that there is usually an

additional source of information regarding seen and unseen

classes, which is encoded as a list of attributes. That is, we

assume that each class is represented by a vector whose

elements correspond to a semantic attribute. For example, in

the case of animal recognition, an attribute may indicate

whether an animal has a tail or a big nose. Alternatively, we

may have textual features extracted from the texts describing

classes. In either case, the attributes form a space called the

attribute (semantic) space A in which both seen and unseen

classes are represented. We think of A as a k-dimensional

real-valued space A � Rk, and denote the class representa-

tions in it by my, where y can belong to S or U .

3.2 SOM

A Self-Organizing Map (SOM) is a regular lattice of neurons

organized to reflect the topology of the original space in order

to preserve the local neighbourhoodswithin it [12]. In addition

to location information, each neuron is associated with a
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weight vector (also known as a code vector) with dimension

equal to the dimension of the original space. Training a SOM

consists of learning these vectors, and after the training phase,

each instance ismapped to a neuronwhoseweight vector is the

nearest to it, which is referred to as Best Matching Unit

(BMU). Starting from randomly initialized weight vectors, an

instance is picked randomly at each iteration, making the

SOM training stochastic, and then the corresponding BMU is

calculated. Finally, the weight vectors of the neurons are

updated depending on how close they are to the BMU.

Let x be the randomly picked instance at iteration t þ 1,

then the update rule for the jth neuron is given as follows:

wjðt þ 1Þ ¼ wjðtÞ þ aðtÞhjcðxÞðx� wjðtÞÞ; ð2Þ

where aðtÞ is the learning rate and hjcðxÞ is the neighbor-

hood function. Specifically, aðtÞ controls the magnitude of

the update and is a monotonically decreasing function of

time. A common choice is to use exponential decay:

aðtÞ ¼ a0e
�t�f ð3Þ

where a0 [ 0 is the initial learning rate and f[ 0 is the

decay rate. Getting back to (2), hjcðxÞ indicates how close

the jth neuron is to cðxÞ, the BMU for x, at time t. For this

purpose, it is common to consider the standard Gaussian

neighborhood function:

hjcðxÞ ¼ exp �
krj � rcðxÞk

2r tð Þ2

 !
; ð4Þ

where rj and rcðxÞ denote the coordinates of the j-th neuron

and the BMU respectively. rðtÞ controls the width of the

neighborhood and decreases over time, as in aðtÞ. In fact, it

can be updated using (3) replacing a0 with r0, initial value
for the width. When updating wj, the term hjcðxÞ becomes

more important as the jth neuron approaches the BMU, i.e.

cðxÞ. As a result, the neurons near cðxÞ, are most affected by

x, are, therefore, more strongly attracted to x than the others.

3.3 ZSL via SOM

We now proceed to the use of SOMs for the problem of

ZSL. In essence, we propose to create two SOMs of the

same shape and size, one for the input space and one for the

attribute space. We refer to the former as the input SOM and

the latter as the attribute SOM and aim to establish a cor-

respondence between them. The initial advantage of this

approach is that it ensures compatibility between the input

space and the attribute space through the created SOMs, so

that a connection between the two spaces is established.

Unlike the other studies on ZSL in the literature that try to

achieve this advantage, our proposed approach has nothing

to do with an optimization problem as it relies entirely on

the SOM learning. Moreover, we also leverage unlabeled

test instances as well as semantic representations of unseen

classes in the training phase, which makes the created SOM

transductive, and improves generalisation accuracy.

For both SOMs, we assume without loss of generality

that they have a rectangular shape of size p� q. Thus, the

training phase of the proposed ZSL method consists of

learning the weight vectors, i.e., the code vectors, of both

SOMs. For the j-th neuron, we denote the weight vector

corresponding to the input space by win
j 2 Rd and the one

corresponding to the attribute space by watt
j 2 Rk.

3.3.1 Phase - 1 : using training set

At first, we use the training set, i.e., Dtr, in a supervised

way to learn win
j and watt

j ðj 2 f1; :::; p� qgÞ. To this end,

at each iteration of the learning, we pick a random pair

ðx; yÞ from Dtr, and then compute two BMUs, one for x and

one for y:

cðxÞ ¼ argmin
j

kx� win
j k; ð5Þ

cðyÞ ¼ argmin
j

kmy � watt
j k; ð6Þ

wheremy is the class representation (prototype) of class y. Note

that cðxÞ and c(y) is not necessarily the same for pair ðx; yÞ.
Here,wepropose toupdate theweight vectors of the inputSOM

by considering the BMU for the attribute SOM, i.e., c(y), as the

winner neuron. Similarly, we update the weight vectors of the

attribute SOMbased on the BMU for the input space, i.e., cðxÞ.
This results in the following update rules for the j-th neuron in

the input SOM and in the attribute SOM:

win
j ðt þ 1Þ ¼ win

j ðtÞ þ aðtÞhjcðyÞðx� win
j ðtÞÞ; ð7Þ

watt
j ðt þ 1Þ ¼ watt

j ðtÞ þ aðtÞhjcðxÞðmy � watt
j ðtÞÞ: ð8Þ

This little trick makes it possible to order the neurons of the

input SOM (resp. attribute SOM) with respect to the

attribute space (resp. input space). In this way, the input

SOM is started to reflect the attribute space, while the

weight vectors of its neurons have the same dimension as

the input space. Similarly, the attribute SOM is created

based on the input space. Moreover, since the size and

shape of the two SOMs are identical, there is a one-to-one

correspondence between the SOMs. Consequently, instan-

ces of the input space can be first mapped to the input

SOM, and then can directly pass to the attribute SOM to

meet the class representations.

3.3.2 Phase - 2 : using test set and unseen classes

In the second phase of the proposed ZSL method, (unla-

beled) test instances and the semantic representations of
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unseen classes are included in the training of the SOMs,

which gives a transductive property to our proposed

method. This phase is similar to the conventional SOM

learning in that updating the weight vectors is performed

with respect to the BMUs in the SOM of interest. That is,

the input SOM is trained considering only the test instances

from the input space; BMUs of the attribute SOM do not

affect this training. The same holds for the training of the

attribute SOM. However, we also require that the SOMs

retain the properties of the opponent space, which is the

acquisition of the first phase. To this end, we consider two

regularization parameters k1 and k2, one for each SOM,

leading to the following update rules:

win
j ðt þ 1Þ ¼ win

j ðtÞ þ k1 aðtÞhjcðxÞðx� win
j ðtÞÞ

h i
; ð9Þ

watt
j ðt þ 1Þ ¼ watt

j ðtÞ þ k2 aðtÞhjcðyÞðmy � watt
j ðtÞÞ

h i
:

ð10Þ

Here, we note that the number of test instances usually far

exceeds the number of unseen classes, causing the weight

vectors of the input SOM to be updated much more fre-

quently than those of the attribute SOM. To solve this

problem, we recommend setting k1 much smaller than k2.
Below is a figure illustrating the two phases of the

proposed method just explained. Taking the second neuron

in both SOMs as an example, Fig. 2a shows how the cor-

responding weight vectors, i.e., win
2 and watt

2 , are updated.

Specifically, win
2 is pulled in the direction of x to the extent

that the second neuron is close to the BMU of its class, i.e.,

c(y), in the attribute SOM. Meanwhile, watt
2 is shifted

towards my, the semantic representation of class y, in

proportion to the neighborhood between the location of the

second neuron and the BMU of x, i.e., cðxÞ, in the input

SOM. On the other hand, Fig. 2 shows how win
2 and watt

2 ,

are updated when test instances and the representations of

unseen classes come into play. Here, the update of win
2

(resp. watt
2 ) is performed in a conventional way, i.e., with

respect to the BMU of the SOM to which they belong.

3.3.3 Classification

Once the SOMs are fully trained using the training set, the

test set, and the representations of the seen and unseen

classes, we can now classify test instances. To this end, we

propose the following rule. A test instance is first mapped

to its BMU in the input SOM using (5), and then passed to

the corresponding BMU in the attribute SOM, which has

the same coordinates as the one in the input SOM. Using its

weight vector, the test instance can now be represented in

the attribute space and compared to the semantic repre-

sentations of the unseen classes. Finally, the class whose

weight vector is the nearest can be considered the winning

class. Formally, this classification rule can be described as

follows:

argmin
y2U

kwatt
cðxÞ �myk: ð11Þ

Figure 3 illustrates the classification rule explained above.

Finally, to provide a complete guide to SOMZSL, we

Fig. 2 The two phases of

SOMZSL
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present its pseudocode in Algorithm 1 that aggregates

Phase-1 and Phase-2 as well as the classification rule

therein.

3.3.4 Space and computational complexity of SOMZSL

Space Complexity. SOMZSL has two SOMs: input SOM

and attribute SOM. The space required to store the input

SOM and attribute SOM is OðN � dÞ and OðN � kÞ,

respectively, where N denotes the number of neurons,

which is the same in both SOMs. Remember also that d (or

k) denotes the dimension of the input space (or attribute

space). At each iteration of Phase-1, SOMZSL requires an

array of the distances between an image and the neurons of

Fig. 3 Classification using

SOMZSL
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the input SOM. This array consists of scalers, so the

required space is OðNÞ. In addition, the algorithm requires

an array of neighborhoods between the BMU of that iter-

ation and the neurons; which again has a space requirement

of OðNÞ . These space requirements are also necessary for

the attribute SOM. Concretely, the required space is OðNÞ
for storing the distances between class prototype in the

semantic space and the neurons of the attribute SOM. Also,

a memory space of OðNÞ is required to store the neigh-

borhood measures to the BMU in the attribute SOM. Since

Phase-2 of SOMZSL begins as soon as Phase-1 is com-

pleted, the memory used in Phase-1 can be reused; Phase-2

requires no additional memory.

Time Complexity. The time complexity of Phase-1 of

SOMZSL is OðmaxIter1 � N � Ntr), and the time complexity

of Phase-2 is OðmaxIter2 � N � ðNte þ jU jÞ. If we consider

the maximum iteration numbers corresponding to the first

and the second phases of the algorithms as the same, then

the overall time complexity of SOMZSL

O maxIter � N � Ntr þ Nte þ jUjð Þð Þ;

where N;maxIter;Ntr;Nte and jU j are the total number of

neurons in each of the SOMs, the maximum iteration

number, the number of training and test instances, and the

cardinality of the set of unseen classes, respectively. This

indicates that the time required to train SOMZSL is linear

with the total number of neurons, the number of training

and test instances; and not quadratic with any of the inputs.

4 Experiments

The purpose of this section is to show the effectiveness of

the proposed SOMZSL and to explain which settings lead

to maximizing the performance of it. To this end, we

conduct a range of experiments on six benchmark datasets

and five state-of-the-art ZSL methods. In the following

subsections, we present the results of these experiments.

4.1 Datasets

We divide the datasets used in this study into two cate-

gories, depending on the semantic representation of the

classes. In the first category, we consider visual attributes

such as color, hasTail, hasFur, etc., while in the second

category we use textual attributes based on TF-IDF scores

extracted from the corresponding Wikipedia articles.

Below, we describe the datasets of these two categories in

detail.

Visual Attributes AWA1 [2], AWA2 [3], SUN [31] and

aPY [32] are the datasets considered in this study where the

classes have visual attributes. AWA1 and AWA2 are one

of the most commonly used datasets in ZSL. They consist

of images of 50 animals represented by 85 visual attributes.

AWA2 differs from AWA1 in that the images are taken

from public sources such as Flickr and Wikipedia. SUN

contains images of scene classes and therefore addresses

the problem of scene categorization in computer vision.

aPY is a rather small dataset compared to the other datasets

mentioned, containing object classes from aPascal and

aYahoo. For extracting the features from the images of

these datasets, we use CNNs trained on ImageNet-1K

leading to 101-layered ResNet and then use 2048-dim top-

layer pooling units of the ResNet.

Textual Attributes CUB [33] and NAB [34] are datasets

in this category. CUB and NAB contain images of bird

species that are similar to each other, making CUB and

NAB fine-grained datasets. NAB is larger than CUB, both

in terms of the number of classes and the number of ima-

ges. For these datasets, we employ the Visual Part Detec-

tor/Encoder network (VPDE-net) to extract the features of

the images, as explained in [35]. This results in 3583 and

3072 features for the images in CUB and NAB,

respectively.

Splits We split the classes AWA1, AWA2, SUN and

aPY into training, validation and testing as in a well-known

survey on ZSL [3]. For CUB and NAB, we follow the

settings proposed in [35]. That is, for every unseen class

there is at least one seen class from the same super-cate-

gory, which increases the relevance between seen and

unseen classes. We further split the seen classes into

training and validation sets.

Below is Table 1 which summarizes all the necessary

information about the above datasets, including the number

of attributes, the number of seen/unseen classes etc. Also,

the horizontal line separates the datasets in the first cate-

gory from those of the second category. Here jSj denotes
the number of (seen) training and validation classes sepa-

rated by the sum sign. The same is true for jDtrj, which
denotes the total number of training and validation

instances.

4.2 Benchmark methods

We compare the performance of the proposed SOMZSL

with that of several benchmark methods used for the zero-

shot learning problem: Deep Visual Semantic Embedding

(DeViSE) [7], Attribute Label Embedding (ALE) [5],

Structured Joint Embedding (SJE) [8] and Embarrassingly

Simple Zero-Shot Learning (ESZSL) [9]. Commonly, they

aim at learning a matrix, so-called projection matrix, that

allows projection from the input(visual) space to the attri-

bute (semantic) space. In doing so, they all aim to maxi-

mize the compatibility between the images represented in

the input space and the corresponding classes represented
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by their prototypes in the attribute space. With this in mind,

they deal with different optimization functions. Neverthe-

less, a survey [3] unifies these objective functions and gives

an overview of these methods, so we omit the details here.

4.3 Implementation details

SOMZSL The proposed method SOMZSL is based on

creating two SOMs, input SOM and attribute SOM, and

then trying to establish a one-to-one correspondence

between them. Thus, the use of SOMZSL starts with

determining the shape (structure) and size of the SOMs.

For the shape, a hexagonal lattice or rectangular lattice is

usually considered [12, 36]. From the point of view of

topology preservation, there is no significant difference

between the hexagonal and the rectangular lattice, both fit

the data in a similar way [37]. We also found no significant

difference in terms of SOMZSL performance during the

experiments, so we report here only the results obtained

with rectangular lattices. For determining the size of the

SOMs employed in SOMZSL, we leave the related dis-

cussion in Sect. 4.5.1.

For initializing the weight vectors (code vectors) asso-

ciated with the neurons of a SOM, there are two leading

approaches: random initialization and PCA-based initial-

ization [12, 26]. In the case of SOMZSL, the first approach

proposes to select a random image (either a training or a

test image) for each neuron of the input SOM and then use

its feature vector to initialize the neuron. Similarly, for

each neuron of the attribute SOM, a class representation

(either a seen or an unseen class) is randomly selected.

Unlike the random initialization, PCA-based initialization

is a deterministic approach that relies on linear combina-

tions of the first two principal components of the space to

be mapped [26]. In particular, in the case of SOMZSL, the

PCA-based initialization requires the use of linear combi-

nations of the first two principal components of feature

(visual) space for the input SOM and those of the attribute

space for the attribute SOM. During the experiments, we

tried both initialization techniques but did not observe a

notable difference in terms of the accuracy of SOMZSL,

while the PCA-based initialization generally provided

faster convergence. Also for the sake of reproducibility of

the results, we present here the results obtained with the

PCA-based initialization.

The proposed method SOMZSL has some parameters

need to be tuned. Below we provide Table 2 that shows the

parameters leading to the best performance based on vali-

dations sets for each dataset.

The learning rate (a) is an important parameter to set not

only for SOMZSL but also for the benchmark ZSL meth-

ods considered in the experiments. Below, we give Table 3

that shows the learning rates leading to the highest per-

formance for the ZSL methods based on the validation sets.

Finally, ESZSL has two regularization parameters:

gamma and lambda. W set them 0, 3; 0,3; 1,3; -1, 3; 0,3

and 0,3 for AWA1, AWA2, SUN, aPY, CUB and NAB,

respectively, based on its performance on the validation

sets.

4.4 Evaluation criterion

For ZSL, the most common criterion to evaluate the per-

formance of ZSL methods is the Top-1 accuracy [2, 3, 5].

Specifically, Top-1 accuracy differs from conventional

accuracy in that it averages the accuracy achieved for each

unseen class, preventing the evaluation measure from being

biased towards densely populated classes. Top-1 accuracy

is thus calculated using:

1

jUj
X
z2U

# correctly predicted test instances of z

# test instances of z
: ð12Þ

4.5 Results

Table 4 shows the results of the benchmark ZSL methods

and the proposed SOMZSL for the ZSL datasets. For

datasets AWA1, AWA2, and aPY; SOMZSL achieves the

highest Top-1 accuracy. For these datasets, the improve-

ment in the accuracy is between 2% and 4% compared to

the second best ZSL method for each dataset. On the other

hand, for SUN, SOMZSL achieves the worst accuracy. For

the datasets CUB and NAB, where the classes are repre-

sented with textual attributes, in contrast to the other

Table 1 Statistics of the

benchmark datasets used for

evaluation

Datasets Size Detail # Atts jSj jU j jDtr j jDtej Total

Inst.

AWA1 [2] Medium Coarse 85 27 ? 13 10 16864 ? 7926 5685 30475

AWA2 [3] Medium Coarse 85 27 ? 13 10 20218 ? 9191 7913 30475

SUN [31] Medium Fine 102 580 ? 65 72 11600 ? 1300 1440 14340

aPY [32] Small Coarse 64 15 ? 5 12 6086 ? 1329 7924 15339

CUB [33] Medium Fine 7551 100 ? 50 50 5875 ? 2946 2967 11788

NAB [34] Large Fine 13217 200 ? 123 81 25291 ? 13939 9332 48562
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datasets where the classes are represented with visual

attributes, SOMZSL achieves comparable results. In fact, it

performs better than ALE, where the difference in the

accuracy is about 4% in favour of SOMZSL. Also for CUB

and NAB, it can be clearly stated that ESZSL performs

better than the other methods. Finally, for the purpose of

visualizing the comparison between the performances of

the ZSL methods including SOMZSL, we provide Fig. 4.

The datasets where SOMZSL comes first have in com-

mon that they are coarse-grained datasets. For such data-

sets, due to large inter-class variations the task of image

classification is less challenging than for fine-grained

datasets, where the classes have similar appearances. Thus,

we can conclude that our proposed method SOMZSL

exhibits superior performance in a zero-shot learning

problem when the images in the problem are distinguish-

able to some extent. If this is not the case for a ZSL

problem, one can still achieve satisfactory performance

with SOMZSL as long as he/she is more careful in setting

the parameters of SOMZSL.

4.5.1 The effect of SOM size on the performance
of SOMZSL

For determining the ideal size of a SOM, several empirical

rules have been suggested [12, 36]. Of them, the common

practice suggested by Kohonen is to set the number of

Table 2 The parameters of SOMZSL used in the experiments

Datasets SOM size Max iter. for the SOMs Reg. params. Init. learn. rate Decay rate Init. neigh. rate

maxIter1 maxIter2 k1 k2 a0 f r0

AWA1 [2] 20� 20 15 20 0.01 5 0.01 0.1 0.01

AWA2 [3] 15� 15 10 10 0.01 5 0.01 0.1 0.001

SUN [31] 25� 25 15 15 0.01 10 0.1 0.01 0.01

aPY [32] 25� 25 5 10 0.001 5 0.01 0.01 0.001

CUB [33] 25� 25 7 7 0.01 10 0.01 0.001 0.001

NAB [34] 20� 20 15 15 0.01 5 0.1 0.001 0.01

Table 3 Learning rates that

provide the best results
AWA1 [2] AWA2 [25] SUN [31] aPY[32] CUB[33] NAB[34]

DeViSE [7] 0.01 0.001 0.01 1 1 1

ALE [5] 0.01 0.01 0.2 0.04 0.5 0.5

SJE [8] 1 1 1 0.02 1 1

Table 4 The Top-1 scores of the

benchmark ZSL methods and

SOMZSL for the benchmark

datasets

Datasets DeViSE [7] ALE [5] SJE [8] ESZSL [9] SOMZSL (Ours)

AWA1 [2] 0.556 0.566 0.585 0.556 0.628

AWA2 [3] 0.576 0.537 0.583 0.537 0.611

SUN [31] 0.545 0.591 0.534 0.554 0.489

aPY [32] 0.332 0.345 0.315 0.355 0.371

CUB [33] 0.381 0.332 0.381 0.391 0.361

NAB [34] 0.361 0.328 0.381 0.412 0.381

Fig. 4 A bar chart for

illustrating the Top-1 scores of

the ZSL methods
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neurons to 5
ffiffiffiffi
N

p
, where N is the number of data points [12].

In the case of SOMZSL, however, there are two SOMs that

must have the same number of neurons due to the one-to-

one correspondence that is sought. We thereby have two

candidates for N: the number of images and the number of

classes based on the input SOM and attribute SOM,

respectively. Considering that the number of images is

much larger than the number of classes, we base the

number of neurons common to both SOMs on the number

of classes; otherwise, the class prototypes would be rep-

resented quite sparsely in the attribute SOM.

For the datasets used in the experiments, the total

number of classes (seen and unseen) ranges from 32 to 717.

This suggests that the upper bound for the number of

neurons should be around 5
ffiffiffiffiffiffiffiffi
717

p
ffi 134, which can be

achieved with a SOM of size 15� 15. Nevertheless, we

double this number to examine the effect of SOM size on

SOMZSL on a larger scale. Therefore, we allow the size to

vary between 5� 5 and 30� 30. Figure 5 shows the results

in this regard.

Based on Fig. 5, we draw the following conclusions. The

immediate result is that the size of SOMs affects the per-

formance of SOMZSL. More specifically, increasing the

SOM size initially improves the performance of SOMZSL,

but further increase may lead to deterioration of the per-

formance. For AWA2, the decrease in the accuracy due to

the increase in the SOM size is up to 7%. Therefore, it is

unrealistic to conclude that the larger the SOM size, the

better the performance of SOMZSL. This may be due to

the sparse representation of images and/or class prototypes

in the SOMs. Moreover, the experiments suggest that both

20� 20 and 25� 25 are good choices for SOM size,

regardless of the size of the data. Despite the fact that aPY

is a rather small dataset compared to NAB (see Table 1, the

ideal SOM size is identical, i.e., 25� 25, for both datasets.

Finally, it is also interesting to note that SOMZSL can

perform well even when it uses very small SOMs inside.

For AWA2,for example, SOMZSL can achieve an accu-

racy of 0.59 with SOMs of size 5� 5, which is higher than

the other ZSL methods tested. This is an important indi-

cation that SOMZSL can provide fast and accurate classi-

fication for the zero-shot learning problem.

4.6 Comparison of time complexities of the ZSL
methods

We now compare the time complexity of the ZSL methods

considered in the experiments with ours. As discussed in

the Sect. 3.3.4, the time complexity of the proposed method

SOMZSL is O maxIter � N � Ntr þ Nte þ jU jð Þð Þ, where

N;Ntr;Nte and jU j are the total number of neurons, the

number of training and test instances, and the cardinality of

the set of unseen classes, respectively.

The objective function of the ZSL methods DeViSE [7],

ALE [5] and SJE [8] is inspired by the SVM. In fact, they

are all a variant of either ranking or the structured SVM,

thus are very similar. These functions are all convex and

are optimized by Stochastic Gradient Descent with the

same time complexity: OðmaxIter � Ntr � d � k � jSjÞ , where
d, k and jSj are the dimension of the input space, the

dimension of the attribute space and the cardinality of the

set of unseen classes, respectively. It is typical that the

Fig. 5 The Effect of SOM Size

on SOMZSL
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number of neurons in a SOM far less than the number of

instances, so N\\Ntr almost always holds. Also, ðNtr þ
Nte þ jUjÞ is usually less than d � k � jSjÞ; the statistics of

the datasets shown in Table 1 support this assertion. Thus,

we conclude that SOMZSL requires less time to train than

DeViSE, ALE and SJE. As for ESZSL [9], the method

involves two matrix inversions; and its time complexity is

OðN3
tr þ jSj3Þ, thus is much less efficient than SOMZSL.

5 Conclusions and future research

5.1 The ZSL problem

In many cases, it may be may be problematic to obtain a

certain number of labeled instances from each class of

interest, before building a classifier. At the extreme, a

classifier may be exposed to classes that are completely

different from those on which it was trained. In the context

of image classification, Zero-Shot Learning (ZSL)

addresses this problem. To classify test classes to be clas-

sified, ZSL utilizes training classes whose labeled images

are available during training, as well as high-level

descriptions of the test and training classes. Usually, these

descriptions are given as a vector of semantic attributes that

form the attribute space. Many ZSL methods aim to learn a

projection matrix/function to project images in feature

(input) space (input) into attribute space. However, this

usually involves an attempt to solve an optimization

function without leveraging unlabeled test images, leading

to the projection domain shift problem.

5.2 The Proposed ZSL method

In this study, we present a novel ZSL method based on the

well known SOM algorithm, called SOMZSL. Briefly,

SOMZSL creates two SOMs with the same size and

dimension, one for the feature space and one for the

attribute space. SOMZSL uses both labeled images of the

training classes and unlabeled images of the test class to

train the SOMs. When classifying an image, SOMZSL

maps it to the SOM of the feature space and then forwards

it to the SOM of the attribute space thanks to the one-to-

one correspondence. This results in the image being rep-

resented with a vector of the same dimension as that of the

attribute space, which in turn allows a direct comparison

between the test image and the test classes.

5.3 The impact and insights of the proposed
method

SOMZSL comes with several advantages. First, SOMZSL

does not have to deal with a costly optimization problem

thanks to the heuristic nature of the SOM algorithm on

which SOMZSL is based. Also, the SOM algorithm allows

SOMZSL to preserve the topology of the feature and the

semantic space. What is more, SOMZSL also incorporates

unlabeled test images in the training process, which helps

mitigate the projection domain shift problem inherent in

ZSL.

To see the above advantages of SOMZSL in practise, we

conducted several experiments on six benchmark datasets.

SOMZSL, achieves the highest (Top-1) accuracy for half

of these datasets compared to four state-of-the-art ZSL

methods, namely DeViSE [7], ALE [5], SJE [8], and

ESZSL [9]. Specifically, it increases the accuracy by up to

4% compared to the second best ZSL method in each case.

In addition, based on the time complexity analysis, we

showed that SOMZSL requires less time to build a ZSL

model than DeViSE , ALE, SJE , and ESZSL.

We observe that for fine-grained datasets, where classes

have similar appearances, SOMZSL exhibits comparable

performance though; it is is particularly successful on

coarse-grained datasets, where the classes are relatively

more distinguishable. As for the ideal SOM size that

SOMZSL requires, we find that the ideal size is usually

around 20� 20, which varies slightly depending on the

size of the dataset.

5.4 Limitations

The proposed method SOMZSL is mainly limited by the

capabilities of the SOM algorithm. As is well known, the

theoretical aspects of SOM still remain elusive 30 years

after its invention. Therefore SOMZSL cannot provide

theoretical guarantees for its performance.

5.5 Future research

Being a simple and robust method, SOM has long been

studied by researchers, which has led to the development of

various applications and extensions, such as growing SOM,

3D SOM. Considering these extensions for SOMZSL has

the potential to improve the efficiency of SOMZSL, and

thus can be a good direction for future research. It is also

evident that the problem of not having labeled instances for

certain classes is not limited to image classification, so

SOMZSL cannot be restricted to ZSL only. Therefore,

SOMZSL can be used in a wider range of object recogni-

tion tasks in the future.
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