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Abstract. In this article, pseudoparallel submanifolds for Lorentzian para-Kenmotsu manifolds are inves-
tigated. The Lorentzian para-Kenmotsu manifold is considered on the W, —curvature tensor. Submanifolds
of these manifolds with properties such as W;—pseudoparallel, W; —2 pseudoparallel, W; —Ricci generalized
pseudoparallel, and W; — 2 Ricci generalized pseudoparallel has been characterized.

1. Introduction

Para-Kenmotsu and special para-Kenmotsu manifolds, also known as Almost paracontact metric man-
ifolds, were defined in 1989 by Sinha and Sai Prasad [1]. Sinha and Sai Prasad obtained important charac-
terizations of para-Kenmotsu manifolds. In the following years, para-Kenmotsu manifolds attracted a lot
of attention and many authors revealed the important properties of these manifolds. In 2018, Lorentzian
para-Kenmotssu manifolds, known as Lorentzian almost paracontact metric manifolds, were introduced
[2]. Then, the concept of gq-semisymmetry for Lorentzian para-Kenmotsu manifolds is studied [3]. M.
Atgeken studied invariant submanifolds of Lorentzian para-Kenmotsu manifolds in 2022 and in this study
he gave the necessary and sufficient conditions for the Lorentzian para-Kenmotsu manifold to be total
geodesic [4].

Characterizing invariant submanifolds of manifolds is an important problem. Invariant submanifolds of
(LCS),— manifolds by S.K. Hui et al. [5], invariant submanifolds of LP-Sasakian manifolds by V.Venkatesha
et al. [6], invariant submanifolds of Kenmotsu manifolds by S.Sular et al. [7], invariant submanifolds
of (k, u) —contact manifolds by M.S. Siddesha et al [8] have been discussed and revealed many impor-
tant properties of this submanifolds. Similarly, this problem has been addressed by many other authors
([91,110],[11],[12],[13]). Similarly, S.K. Hui et al. studied the pseudoparallel contact submanifolds of Ken-
motsu manifolds in [14] and the Chaki-pseudoparallel invariant submanifolds of Sasakian manifolds in
[15].

Motivated by all these studies, we studied invariant submanifolds of Lorentzian para-Kenmotsu man-
ifolds on curvature tensors in this article. In this article, pseudoparallel submanifolds for Lorentzian
para-Kenmotsu manifolds are investigated. The Lorentzian para-Kenmotsu manifold is considered on the
Wi—curvature tensor. Submanifolds of these manifolds with properties such as W;—pseudoparallel, W; —2
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pseudoparallel, W;—Ricci generalized pseudoparallel, and W; —2 Ricci generalized pseudoparallel has been
characterized.

2. Preliminary

Let M" be an n—dimensional Lorentzian metric manifold. This means that it is endowed with a structure
(qb, &, g), where ¢ is a (1,1) —type tensor field, £ is a vector field, 1 is a 1-form on M" and g is a Lorentzian
metric tensor satisfying;

X = X+1(X) &, 9(0X,pY) = g(X, V) +n(X)n(Y) (1)

nE=-1,n1X) =g(X¢&) 2)

for all vector fields X, Y on M". Then M" (qb, &, g) is said to be Lorentzian almost paracontact manifold
[16].

A Lorentzian almost paracontact manifold M (¢, &, g) is called Lorentzian para-Kenmotsu manifold
if

(Vx¢) Y = =g (¢X, Y) £ - n(M) X, ©

forall X,YeT (TM) ,where VandT (TM) denote the Levi-Civita connection and differentiable vector fields
set on M", respectively.

Lemma 2.1. Let M" (qb, &, g) be the n—dimensional Lorentzian para-Kenmotsu manifold. The following relations
are provided for M" (cp, &, g).

Vxé = —¢’X, @)
Vxn)Y = g (X, V) =n(X)n (), 5)
REVNZ=9(,2)E-1n2D)Y, (6)
REVE=nY)E+Y, (7)
RV E=n(NX-n(X)Y, (8)
S(X/E) = (Tl—l)n(X), (9)
58 =m-1)¢, (10)
where R and S are the Riemann curvature tensor and Ricci curvature tensor of M" (cp, &, g), respectively.
For an n—dimensional (M, g) semi-Riemannian manifold, the W; —curvature tensor is defined as
Wl(X,Y)ZzR(X,Y)Z+ﬁ[S(Y,Z)X—S(X,Z)Y]. (11)

If we choose X = &,Y = ¢&,Z = £ in (11) for the n—dimensional Lorentzian para-Kenmotsu manifold,
respectively, we obtain

WiENZ=g(2)E- MDY + =5 (1 2)E, (12)

WiX,Y)E=2[n()X-n(X)Y], (13)
Wi(E,Y)E=2[n(V)E+Y]. (14)
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Let M be the immersed submanifold of a Lorentzian para-Kenmotsu manifolds M" ((j), &, g). Let

the tangent and normal subspaces of M in M" (¢, &n, g) be I'(TM) and I (T*M), respectively. Gauss and
Weingarten formulas for I'(TM) and I' (T*+M) are

TxY =vxY +h(XY), (15)
VxV = —AyX + ViV, (16)

respectively, forall X, Y € T (TM) andVeTl (TLM) ,where vV and v+ are the connections on M and T (TLM),
respectively, i and A are the second fundamental form and the shape operator of M. There is a relation

gAvX,Y) =g (X Y),V) (17)

between the second basic form and shape operator defined as above. The covariant derivative of the second
fundamental form / is defined as

(Vxh) (Y, Z) = Vxh (Y, Z) = h(VxY, Z) = h (Y, VxZ). (18)

Specifically, if Vh = 0, M is said to be is parallel second fundamental form [13].
Let R be the Riemann curvature tensor of M. In this case, the Gauss equation can be expressed as

RX,Y)Z=R(X,Y)Z+ Anxz)Y — AnyzX o
+(Vxh) (Y, Z) - (Vvh) (X, Z), )
forallX,Y,ZeT (TM) , where if
(Vxh) (v, 2) = (Vyh) (X, 2) =0,

then it is called curvature-invariant submanifold. Let M be a Riemannian manifold, T is (0, k) —type tensor
field and A is (0, 2) —type tensor field. In this case, Tachibana tensor field Q (4, T) is defined as

Q (Al T) (Xll ey Xk/ X/ Y) =-T ((X /\A Y) Xl/ ey Xk)
(20)
= =T (X1, ey Xim1, (X A4 Y) Xi),
where,
XMmYVZ=AY,2)X-AX,2)Y, (21)
k>1,X1,Xa, ..., Xi, X, Y € T (TM).

Definition 2.2. A submanifold of a Riemannian manifold (M, g) is said to be pseudoparallel, 2-pseudoparallel,
Ricci-generalized pseudoparallel and 2-Ricci generalized pseudopgarallel if

Rohand Q(g,h)
RV and Q(g, Vh)
R.hand Q (S, h)
RVhand Q(S,Vh)

are linearly dependent, respectively [5].
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3. Invariant Pseudoparalel Submanifolds of Lorentzian para-Kenmotsu Manifolds

Let M be the immersed submanifold of an n—dimensional Lorentzian para-Kenmotsu manifold M ((p, &, g) .
If ¢ (TxM) C TxM in every X point, the M manifold is called invariant submanifold. We note that all of
properties of an invariant submanifold inherit the ambient manifold. From this section of the article, we
will assume that the manifold M is the invariant submanifold of the Lorentzian para-Kenmotsu manifold

M (qb, &n, g) . So, it is clear that
(X, &) =0,h(¢X, Y) =h(X,¢Y) = ph(X,Y) (22)
forall X,Y e T (TM).

Lemma 3.1. Let M be the invariant submanifold of the n—dimensional Lorentzian para—Kenmotsu manifold M" (gb, &, g) .
The second fundamental form h of M is parallel if and only if M is the total geodesic submanifold [4].

Let us now consider the invariant submanifolds of the Lorentz para-Kenmotsu manifold on the
Wi —curvature tensor.

Definition 3.2. Let M be the invariant submanifold of the n—dimensional Lorentzian para-Kenmotsu manifold
M ((j), &, g). If Wy.hand Q (g, h) are linearly dependent, M is called Wy —pseudoparallel submanifold.

Equivalent to this definition, it can be said that there is a function k; on the set M; = {x eM ) h(x)#g (x)}
such that

Wi-h=kQ(gh).
If k; = 0 specifically, M is called a W;—semiparallel submanifold.

Theorem 3.3. Let M be the invariant submanifold of the n—dimensional Lorentzian para—Kenmotsu manifold
M (qb, &n, g). If M is Wy —pseudoparallel submanifold, then M is either a total geodesic or ky = 2.

Proof. Let’s assume that M is a W; —pseudoparallel submanifold. So, we can write
Wi (X, Y)- ) (U, V) =k Q(g,h) (U, V; X, Y), (23)

forall X, YU VeT (TM) . From (23), it is clear that

R X, Y)h(UV)-h(W1 (X, Y)U, V)

—h (U, Wy (X, Y) V) = —ky {1 ((X 7, Y) U V)

+h (U, (X 7, Y) V).
Easily from here, we can write

R*X,Y)h(ULV)-h(W1 (X, Y)U V)

~h(U W1 (X, Y)V) = -k {g (LU (X, V)

—g (X, WhY,V)+g(V)h(U X) (24)

-9 (X, V)h(UY)}.
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If we choose V = £ in (24) and make use of (13), (22), we get
h(U2[n(V)X-nX)Y])
(25)
=k [nMhUX)-nX)hUY)]
IIf we choose X = & in (25), we obtain
(ky—-2)h(UY)=0.
This completes the proof. [J

Proposition 3.4. Let M be an invariant pseudoparallel submanifold of the n—dimensional Lorentzian para—Kenmotsu
manifold M" <¢, &, g) . Then M is Wy —semiparallel if and only if M is totally geodesic.

Theorem 3.5. Let M be an invariant pseudoparallel submanifold of the n—dimensional Lorentzian para—Kenmotsu
manifold M" (qb, &, g) .Q(g, W1 - h) = 0 ifand only if M is totally geodesic.

Proof. Let’s assume that Q (g, Wy - ) = 0. So, we can write
Qg Wi (X, Y)-h) (W, Z; U, V) =0,
for all X,¥,Z, W, U, V € T (TM). Obviously that,
—g(V, W) (W1 (X, Y) - h) (U 2)
+g (U W) (W1 (X, Y) - h)(V,Z)
~g (V, 2) (W1 (X, V) - ) (W, L)
+g(ULZ) (W1 (X, Y)-h) (W, V) =0,
and and from the last equality we can write
—g (VW) [R* XV h (U Z) - k(W (X, Y) U Z)
—h (U, W1 (X, Y) 2)] + g (U W) [R* (X, Y)h (V, Z)

“h(W1 (X, Y)V,Z) = h (V, W1 (X,Y) Z)]

-9 (V,2)[R* (X, Y)h (W, U) = h (W1 (X, Y) W, 1) )
—h (W, W1 (X, V) U)] + g (U, Z) [R* (X, Y) h (W, V)
—h(Wy (X, Y)W, V) = h (W, W; (X, Y) V)] = 0.
If we choose Y = Z = U = W = & in (26) and use (22), we get
h(V, Wi (X,8) &) = 0. 27)

If we use (14) in (27), we obtain
h(V,X)=0.

This completes the proof. The proof of the other side of the theorem is obviously. [
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Definition 3.6. Let M be the invariant submanifold of the n—dimensional Lorentzian para-Kenmotsu manifold
M ((j), &n, g). If Wy - Vhand Q (g, Vh) are linearly dependent, then M is called Wy — 2 pseudoparallel submanifold.

In this case, it can be said that there is a function k; on the set
M, = {x € M( Vh(x) # g(x)} such that

Wi - Vh =kQ (g, Vh).
If k, = 0 specifically, M is called a W; 2—semiparallel submanifold.

Theorem 3.7. Let M be the invariant submanifold of the n—dimensional Lorentzian para-Kenmotsu manifold
M <¢, &, g). If M is Wy 2—pseudoparallel submanifold, then M is either a total geodesic submanifold or ky = 3.

Proof. Let’s assume that M is a W 2—pseudoparallel submanifold. So, we can write
Wi (X, Y)-Vh) (U, V, Z) = kaQ (g, V1) (U V, Z; X, Y), (28)
forall X,Y,U V,Z € T (TM) . If we choose X = Z = £ in (28), we can write

R (&, Y) (Ful) (V, &) = (Ywyenuh) (V, £)

— (Ful) (W1 (&, V) V, €) - (ul) (V, Wy (£, Y) &)
29)
=~k {(Fen ) V.0 + @b (£, V) V)

+(Tul) (V, (& Ay Y) &)}
Let’s calculate all the expressions in (29). So, we can write
R (&, Y) (Ful) (V, &) = WE (&, V) [vih (V,£)
—h(VuV, &) = h(V,vué)} (30)

= R (&, V) $2h (V, D),

(Fmenuh) (V) = Vi ey (V,E)

~h (Ve vV, &) = 1 (V, Yy nué) (31)
= —h(V,—¢*W1 (&, V) U)

= =20 (L) ¢*h(V,Y),

(Tuh) (W1 (£, Y) V, &) = Tih (Wi (£, Y) V, &)

—h (TuWi (&, Y) V, &) = h(W1 (£, Y) V, Vué)

=-h(g(LV)E-2n(V)Y + LS, V)& (32)
’ _(PZU)

= 20 (V) P (v, L),
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(Vuh) (V, W1 (£,Y) &) = (Vuh) (V,2[n(Y) £+ Y])
= 2(Tuh) (V,n(Y) &) + 2 (Tuh) (V, Y) 39)
==2h(V,Un(YV)E+n(Y)Vu &) +2(Vuh) (V,Y)

=2n(Y) ¢*h (V,U) +2(Vuh) (V,Y),
(ﬁ(gAyy)uh) V&) =9, 5 h V.9

(e V€)= 1 (V. ¥ en ) (34)
=-h(V,-¢?[g(, )&

=-n(Wh(V,Y),
@ul) (£ Ag Y)V,€) = 9Eh((E A, Y) V)
(% (& 8 V) V,8) (&, Y) Vi)

= h(gV)E-g(E V)Y, (35

~¢2U)

=-n(V)*h (L U),

@ul) (V, (& Ag Y)E) = (Fuh) (V,n () €+ Y)
= (Yuh) (V,n(Y) &) + (Fuh) (V, ) (36)

=n(Y)¢?h(V,U) + (Vyh) (V,Y).
If we substitute (30) ’ (31) ’ (32) ’ (33) ’ (34) s (35) ’ (36) in (29) , We obtain
R (&, Y) $h (V, U) + 21 (U) ¢*h (V, Y)

27 (V) §2h (Y, L) — 20 (Y) % (V, L)
“2(Ful) (V, Y) =~k {-n (V) ?h (U, Y) (37)
— (W) 21 (Y, V) + n (Y) $2h (V, L)

+(Vuh) (V, Y)}.
If we choose V = £ in (27) and by using (22), also if we use,
(Vul) (£, Y) = >R (LY),
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we get
[3-2k]h(Y,U) =0.
This completes of the proof. [J

Proposition 3.8. Let M be an invariant pseudoparallel submanifold of the n—dimensional Lorentzian para—Kenmotsu
manifold M" (gb, &, g) . Then M is Wy 2—semiparallel if and only if M is totally geodesic.

Definition 3.9. Let M be the invariant submanifold of the n—dimensional Lorentzian para-Kenmotsu manifold
M <¢, &, g). If Wy - h and Q(S,h) are linearly dependent, M is called W1—Ricci generalized pseudoparallel
submanifold.

In this case, there is a function k3 on the set M3 = {x € M| h(x)#S (x)} such that
Wi-h=kQ(Sh).
If k3 = 0 specifically, M is called a W; Ricci generalized semiparallel submanifold.

Theorem 3.10. Let M be the invariant submanifold of the n—dimensional Lorentzian para-Kenmotsu manifold
Wi (gb, &n, g). If M is Wy—Ricci generalized pseudoparallel submanifold, then M is either a total geodesic or
2

ks =

n—-1
Proof. Let’s assume that M is a Wi —Ricci generalized pseudoparallel submanifold. So, we can write
Wi (X, Y)-h) (U, V) =ksQ(S,h) (U, V; X, Y), (38)
that is
R*X,Y)h(ULV)-h(W1 (X, Y)U V)
—h(U W1 (X,Y)V) = —ks (h (X As V) U, V)
+h (U (X As Y) V).
forall X, Y, U,V € I'(TM). If we choose X = V = £ in from the last equality and make use of (22), we get
—h(U,W1(&,Y) &) =ksS (&, &) (U, Y). (39)
If we use (10) and (14) in (39), we have
2-(n-1k]h(Y)=0.
This completes the proof. O

Proposition 3.11. Let M be an invariant pseudoparallel submanifold of the n—dimensional Lorentzian para—
Kenmotsu manifold M" (¢, &, g) . Then M is Wy Ricci generalized semiparallel if and only if M is totally geodesic.

Theorem 3.12. Let M be an invariant pseudoparallel submanifold of the n—dimensional Lorentzian para—Kenmotsu
manifold M" ((j), &, g) .Q(S, W1 - h) = 0 if and only if M is totally geodesic.
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Proof. Let’s assume that Q (S, Wy - h) = 0. So, we can write
QWi (X Y)-h)(W,Z; U, V) =0,

forall X, Y, Z WUV eT (TM) . Obviously that,

-S(V,W) (W1 (X,Y).h) (U, 2)

+S(UW) (W1 (X, Y) h)(V,2)

-5 (V,Z2) (W1 (X, Y) .h) (W, L)

+5(U,2) (W1 (X, Y) .h) (W, V) =0,
and and from the last equality we can write

=S(VW)[R* (X, Y)h (U Z) -h(W1 (X, Y) U, Z)

—h (U, W1 (X, Y) 2)] + S(U W) [R* (X, V) h(V, Z)

“h(W1 (X, Y)V,Z) = h(V, W1 (X,Y) Z)]

=S(V,Z2)[R* (X, Y)h(W, U) = h (W1 (X, Y) W, ) 0
—H(W, W, (X, Y)U)] + S (U, Z) [R* (X, Y) h (W, V)
—h (W1 (X, Y)W, V) = h (W, W; (X, Y) V)] = 0.
If we choose Y = Z = U = W = & in (40) and use (22), we get
S(E &RV, Wi (X,6) &) =0. (41)

If we use (10) and (14) in (41), we obtain
h(V,X)=0.
This completes the proof. [J

Definition 3.13. Let M be an invariant pseudoparallel submanifold of the n—dimensional Lorentzian para—Kenmotsu
manifold M" (qi), &, g). If Wy - Vh and Q(S, Vh) are linearly dependent, M is called Wy 2—Ricci generalized
pseudoparallel submanifold.

Then, there is a function k4 on the set My = {x € ]\71| Vhx)#S (x)} such that
Wi - Vh = ksQ (S, Vh).
If k4 = O specifically, M is called a W; 2—Ricci generalized semiparallel submanifold.

Theorem 3.14. Let M be an invariant pseudoparallel submanifold of the n—dimensional Lorentzian para—Kenmotsu
manifold M" (qb, &n, g) . If M is Wy 2— Ricci generalized pseudoparallel submanifold, then M is either a total geodesic

4
ky = ——.
orf n—2
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Proof. Let’s assume that M is a W; 2—Ricci generalized pseudoparallel submanifold. So, we can write
Wi (X,Y)-Vh) (U, V,Z) = ksQ (S, Vh) (U, V, Z; X, Y), (42)
forall X,Y,U,V,Z € I (TM).If we choose X = V = £ in (42), we can write
RE(E,Y) (Ful) (&, 2) = (Ywe vuh) (€, 2)
—(Vuh) W1 (£, Y) &, Z) = (Vuh) (&, W1 (&, Y) Z)
(43)
=~k {(Teeamuh) (&, 2) + (Fuh) ( As V) &, 2)
+(Vuh) (&, (EAs Y) 2)}.
Let’s calculate all the expressions in (43). Firstly, we can write
RE(E,Y) (Tuh) (£,2) = Wi (&, V) {vEh (€, 2)
—h(VuZ,&) = h(Z,Vué)} (44)

= RE(E V) Ph(ZU),

(Fwenuh) (€2) = T, eyt (6.2)
~h (Vwm(g,y)uél Z) -h (5, Vi, (g,Y)uZ) (45)
= —h(-¢*W1 (£, V) U Z)

= -2 (U)¢*h (Y, 2),

(Fuh) (W1 (£, Y)&,2) = (Fuh) @[n (V) E+Y],2)
= 2(Fuh) (N (V) & Z) + 2 (Fuh) (Y, Z) (46)

=2n(V)¢*h (U, 2) +2(Vuh) (Y, 2),

(ﬁuh) (EI Wl (5/ Y) Z) = vﬁh (é/ Wl (5/ Y) Z)

—h (VUEI Wl (5/ Y) Z) —h (5/ Vuwl (é/ Y) Z)

= -h(-PU g (M D E- 2D Y “7)
+755(%,2)€))

=-2n(2)$*h (U, Y)
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(Vennuh) (€,2) = Vi, 1 (€, 2)

—h (V(gAsy)ué, Z) —h (5, v(<§/\5Y)UZ) (48)
=-S(Y, U h(VE, Z) + S(E,U) h (VyE, Z)

= —(n-1) (W) P*h (Y, 2),

(Vuh) (EAs V) E,2) = (Vuh) (S () E-S(E,8) Y, 2)

=(Vul)(n-1)n(é+n-1)Y,Z)

= (- D{vEh (& 2) = h(Vun (V) &, Z) (49)

~h(n(Y)&,vuZ) + (Yuh) (Y, Z)}
=(n—-1)(Yuh) (Y, 2)

+(mn-1n)*h (U, Z),

(Vuh) (&, (ENsY)Z) = (Vuh) (§,S(Y,2)E-S(&,2)Y)

= () (&S (L2 E) — (n— 1) (Ful) (5,7(2) Y) 0
=1(2)P*h(UY).

If we substitute (44), (45), (46),(47),(48),(49), (50) in (43), we obtain

R (&,Y) cpzh (Z, U)+2nU) ¢2h Y, 2)
=21 (Y) ¢*h (U, Z) + 21 (Z) *h (U, Y)
=2 (uh) (Y, 2) = —ky {= (1 = D) (W) $?h (¥, 2) (51)
+(n—=1)n(Y)*h (U, Z) +n(Z) p*h (U, Y)
+(n = 1) (Fuh) (Y, 2)}.
If we choose Z = & in (51) and use (15) and
(Tuh) (Y, &) = 9*h (U, Y),
we get
[A-(n-2)kJh(UY)=0.
This completes the proof. [J

Proposition 3.15. Let M be an invariant pseudoparallel submanifold of the n—dimensional Lorentzian para—
Kenmotsu manifold M (qb, &, g). Then M is Wy 2—Ricci generalized semiparallel if and only if M is totally
geodesic.
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Let us now give an example that satisfies the theorems we have given above. In [4], M. Atceken took
a 5—dimensional Lorentzian para-Kenmotsu manifold and obtained its 3—dimensional submanifold. And
then he showed that the 3—dimensional manifold he obtained satisfies the conditions for being pseudopar-
allel, 2—pseudoparallel, Ricci generalized pseudoparallel, and 2—Ricci generalized pseudoparallel in [4].
Let us show that the same manifold satisfies the conditions of the theorems we proved above.

Example 3.16. Let us consider the 5—dimensional manifold
M = {(x1,%2,X3,%4,2)| 2 > 0},
where (x1, X2, X3, X4, z) denote the standard coordinates of R>. Then let 1, 5, €3, €s, €5 be vector fields on NP given by

ooz p,d 9 9 9
Lo T o Y T o’ T oY 9z

which are linearly independent at each point of M® and we define a Lorentzian metric tensor g on M® as
gle,e)=11<i<4
gee)=01<i#j<5
gles,es) = —1.

Let 1 be the 1—form defined by n(X) = g(X,es) forall X € T (TM) Now, we define the tensor field (1,1) —type ¢
such that

per = —ey, pe3 = —ey, pes = 0.

Then for X = xje;, Y = yje; €T (TM) ,1 <14,j <5, we can easily see that
PX=X+10)EE=e5,n(X) = g(X,€)

and
9(@X,@Y) =g (X, Y) +n(X)n(Y).

By direct calculations, only non-vanishing components are
[ei, es] = —e;, 1 <i <4

From Kozsul’s formula, we can compute
Vees = —e;, 1 <i<4.

Thus for X = xje;, Y = yje; €T (TM)? we have
Vx&=-X-1n(X)¢,

and
(Vx@) Y = =g (X, Y) £ =1 (V) pX,

that is, M° (p,&,n,9) is a Lorentzian para-Kenmotsu manifold.
Now, we consider the 3—dimensional submanifold M® of M° (¢, &,1, g) given by Y—immersion

P M — M (9,&,1,9)
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1
2
Y (x1,x2,2) = (le,zxz,le,zxz, 77 )

Then the tangent space of submanifold M is spanned by the vector fields

d d d d d
ll—Za—x1 +Z—BX3=€1+€3lV_ZB_XQ +Za—x4—€2+€4,5—25.

Thus we can see that

pU=q(e1+e3) =—er —eg = V.

This verifies M is a 3—dimensional invariant submanifold of a Lorentzian para-Kenmotsu manifold M® (¢, &, 1, g) .
On the other hand, we can easily that

VuV =Vyl =0,Vyé = -UVyé =-V.

Also this tell us that M is W1—pseudoparallel, Wy — 2 pseudoparallel, Wy— Ricci generalized pseudoparallel and

Wy

— 2 Ricci generalized pseudoparallel.
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