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Abstract: Supervisory Control and Data Acquisition (SCADA) systems play a crucial role in over-
seeing and controlling renewable energy sources like solar, wind, hydro, and geothermal resources.
Nevertheless, with the expansion of conventional SCADA network infrastructures, there arise sig-
nificant challenges in managing and scaling due to increased size, complexity, and device diversity.
Using Software Defined Networking (SDN) technology in traditional SCADA network infrastruc-
ture offers management, scaling and flexibility benefits. However, as the integration of SDN-based
SCADA systems with modern technologies such as the Internet of Things, cloud computing, and
big data analytics increases, cybersecurity becomes a major concern for these systems. Therefore,
cyber-physical energy systems (CPES) should be considered together with all energy systems. One
of the most dangerous types of cyber-attacks against SDN-based SCADA systems is Distributed
Denial of Service (DDoS) attacks. DDoS attacks disrupt the management of energy resources, causing
service interruptions and increasing operational costs. Therefore, the first step to protect against
DDoS attacks in SDN-based SCADA systems is to develop an effective intrusion detection system.
This paper proposes a Decision Tree-based Ensemble Learning technique to detect DDoS attacks in
SDN-based SCADA systems by accurately distinguishing between normal and DDoS attack traffic.
For training and testing the ensemble learning models, normal and DDoS attack traffic data are
obtained over a specific simulated experimental network topology. Techniques based on feature
selection and hyperparameter tuning are used to optimize the performance of the decision tree
ensemble models. Experimental results show that feature selection, combination of different decision
tree ensemble models, and hyperparameter tuning can lead to a more accurate machine learning
model with better performance detecting DDoS attacks against SDN-based SCADA systems.

Keywords: CPES; renewable energy; SCADA; SDN; smart grids; DDoS attack

1. Introduction

Nowadays, the sustainability of renewable energy sources has become increasingly
significant. Furthermore, renewable energy sources are quickly gaining popularity as a
substitute for fossil fuels. These sources initiate a transition towards a greener energy
sector, and the cyber-physical energy system (CPES) is a crucial component for achieving a
sustainable energy future. Supervisory Control and Data Acquisition (SCADA) systems are
a prominent technology for effectively managing this transformation. Integrating renewable
energy and SCADA technologies is crucial in achieving sustainability and future goals in the
energy sector. SCADA systems play a critical role in monitoring and managing renewable
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energy facilities, enhancing efficiency, and ensuring energy security [1]. SCADA systems
continuously monitor energy production, the operational status of facilities, efficiency, and
performance, rapidly identify potential issues, and provide opportunities for intervention
through instant data analysis. Additionally, they ensure that energy production is managed
according to demands and environmental conditions [2].

However, traditional SCADA systems suffer from scalability, flexibility, and manage-
ment issues. Traditional SCADA systems often have a static network structure and have
difficulty adapting to rapid changes. This lack of flexibility can become a significant prob-
lem when needs and technology constantly change. It can be difficult to quickly integrate
different device types and communication protocols and adapt to new requirements [3].
In addition, as the SCADA network infrastructure grows, management and coordination
become more complex. Management tasks such as backups, updates, security, and perfor-
mance optimization can be challenging in large-scale SCADA systems. More advanced
technologies and strategies are required to overcome these challenges and manage SCADA
systems in a secure, efficient and sustainable manner. Integrating modern technology such
as Software Defined Network (SDN) into traditional SCADA systems helps to overcome
existing problems. SDN technology allows network resources to be managed with central-
ized software control differently to traditional network management approaches. Moving
to an SDN architecture in traditional SCADA systems provides benefits such as ease of
management, scalability, and flexibility [4].

Integrating SCADA systems with modern technologies, such as the Internet of Things
(IoT), cloud computing, and big data analytics, offers significant advantages in industrial
automation and process control. In addition to applying SDN architecture to traditional
SCADA systems, Internet connectivity enables comprehensive monitoring and control over
the Internet. This significantly improves traditional SCADA systems, which previously
operated in isolated networks. Furthermore, in recent years, cloud computing has been
utilized increasingly for data collection, analysis, and management in SCADA systems.
Cloud computing is known for storing, processing, and analyzing vast amounts of data.
Thus, transferring data from industrial control systems to cloud-based infrastructure and
analyzing them can significantly enhance operational efficiency and decision-making
processes. Cloud-based SCADA systems move data from industrial plants to the cloud
where they are stored, processed, and analyzed using data analytics algorithms. Data
analytics aids in decision-making processes by transforming SCADA data into meaningful
insights. With data analytics, plant performance can be evaluated, operating processes can
be optimized, and potential issues can be identified and resolved in advance [5].

Although integrating advancements in information and communication technologies
like the Internet of Things, cloud computing, and big data analytics into SDN-based
SCADA systems offers numerous benefits, it also raises concerns regarding cybersecurity [6].
The modernization of the traditional SCADA system, together with standardization of
communication protocols, increased interconnectivity of networks, and remote accessibility
of systems, has resulted in a surge in cyber-attacks directed at modern SDN-based SCADA
systems [7]. Among the methods employed, Distributed Denial of Service (DDoS) attacks
are the most perilous. DDoS attacks are on the rise as they require less effort than installing
malware in an organization’s IT system. Attackers with little technical expertise can easily
execute DDoS attacks with high success rates. Attackers often use infected computers or
devices known as botnets to launch attacks. Their aim is to disrupt the normal operations
of SCADA systems by overwhelming the network with heavy traffic, thus consuming
resources and either disabling or preventing them from functioning as intended. In SDN-
based SCADA systems, the central SDN controller is usually the target of such attacks
because targeting it proves to be the most effective strategy for attackers. The SDN controller
facilitates focusing on a single target to take down the SDN-based SCADA system [8]. The
controller manages network resources and communicates with all devices on the network,
hence impacting all devices and services on the network when attacked. This enhances
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the effectiveness of the attack [9]. Overloading the controller can lead to difficulties in
managing the system or even cause it to stop functioning [10].

DDoS attacks can disrupt SCADA systems, leading to complete service outages or
interruptions. The attack may result in data loss or data corruption, causing the facility to
lose historical data, which cannot be analyzed. Additionally, problems in interconnected
critical infrastructures that affect each other can trigger larger issues [11]. A DDoS attack on
a SCADA system without DDoS attack detection capability can have severe consequences.
The SCADA system utilized in renewable energy facilities is vulnerable to DDoS attacks,
which can result in the loss of its capacity to control and monitor power generation. Con-
sequently, this can lead to a production outage of renewable energy facilities, ultimately
reducing electricity supply. System recovery after an attack can be time-consuming and
delay the plant’s return to normal generation capacity. Outages or interruptions to the
SCADA system lead to significant economic losses and reputational damage for the busi-
ness. Therefore, continuously monitoring network traffic and detecting abnormal situations
in SDN-based SCADA systems provide early warning against potential attacks [12].

This paper proposes an optimized machine learning technique to detect DDoS attacks
in SDN-based SCADA systems by accurately distinguishing between normal and DDoS
attack traffic. Specifically, the proposed method utilizes Decision Tree-based Ensemble
Learning, which is an ensemble method combining multiple decision trees. This collective
approach effectively identifies and distinguishes normal network traffic from DDoS attack
traffic. Moreover, the performance of the decision tree ensemble is optimized through
feature selection and hyperparameter tuning. This improves the model’s detection of DDoS
attacks by effectively processing complex and high-dimensional data. Experimental results
demonstrate that the machine learning-based method proposed in this study exhibits high
accuracy in detecting DDoS attacks.

The study’s contribution to the literature can be summarized as follows:

Modern SCADA systems have progressed from closed, standalone systems to intricate,
advanced, and diverse open systems connected to the Internet. Conventional approaches
create complexity when it comes to debugging, optimizing, and configuring new technolo-
gies integrated into a complex and diverse system. A new SDN-based SCADA architecture
was developed in this study to address the persistent issues plaguing traditional SCADA
systems by leveraging the advantages of SDN technology. This approach differs from prior
literature in the field.
This study focuses on the security of critical infrastructure systems, specifically DDoS
attacks against SCADA systems.
The Decision Tree-based Ensemble Learning algorithm was trained and tested with an
original dataset. Feature selection and hyperparameter tuning techniques were used to
optimize the algorithm’s performance.
The presented research showcases extensive testing of the proposed methodology, with
results revealing high accuracy, sensitivity, and specificity levels. These findings support
the practical applicability of the method in real-world scenarios.
The study adds to the existing body of literature on industrial control system cybersecurity
by addressing a crucial issue within the field of CPES.

The article provides a detailed analysis of safeguarding SCADA systems against DDoS
attacks. The subsequent sections are structured as follows. “Section 2” presents a complete
definition of SDN-based SCADA systems, comprehensively elucidating their architectural
design, functions, and benefits in managing the challenges posed by contemporary indus-
trial control systems. Next, “Section 3” presents the proposed methodology for effectively
detecting and mitigating DDoS attacks in SDN-based SCADA environments. This ap-
proach is centered on Decision Tree-based Ensemble Learning. The paper moves on to the
Experimental Results section, which presents empirical evidence validating the approach’s
effectiveness through high accuracy, sensitivity, and specificity values. Subsequently, the
Discussion section presents an objective assessment of the experimental results, leading
to definitive conclusions in the Conclusions section. Additionally, the paper concludes
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with insights into potential future trends, emphasizing avenues for further advancement in
safeguarding critical infrastructure systems against ever-evolving cyber threats.

2. Related Works

Classical machine learning methods are commonly used to detect DDoS attacks in
traditional SCADA systems, as the literature outlines. Diverse classifier techniques, in-
cluding Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN),
Linear Discriminant Analysis (LDA), and Decision Tree (DT), have been employed in prior
investigations. Furthermore, a limited number of investigations have utilized deep learning
techniques to categorize attacks and employed feature selection and reduction to identify
efficient features.

Teixeira, M. A., et al. proposed five traditional machine learning algorithms, namely
Random Forest (RF), DT, Logistic Regression (LR), NB, and KNN, to detect attacks on
SCADA systems. The study compares the performance obtained during training and testing
of machine learning models with the performance obtained during online deployment of
these models in the network. The results show that machine learning models are more
efficient at detecting attacks in real time [13].

Perez, R. L., et al. assert that current SCADA system security measures are inadequate
against attacks. They propose a normalization-based model for predicting missing data in
SCADA systems that cannot detect attacks not found in the database. The study employs
SVM and RF classifiers for intrusion detection, resulting in a high detection rate for the RF
classifier according to experimental results [14].

Manikant Panthi, OneR, NB, SVM, KNN, RF and AdaBoost machine learning algo-
rithms are used to determine whether the power outage in SCADA systems is due to
natural causes or a DDoS attack. These algorithms are used to determine whether the
network traffic to the system belongs to DDoS attack or normal network traffic. As a result
of the results obtained in the study, it is emphasized that it will increase the efficiency of
power system design and facilitate the work of operators [15].

Tolgahan Öztürk et al. used a binary classification approach and a classification model
with five different attack classes to detect attacks on IoT devices used in SCADA systems.
The classifiers used were KNN, SVM and DT. Among these three classifiers, both accuracy
and success rate in intrusion detection were obtained when a DT classifier was used [16].

Rajesh, L. and Satyanarayana, P. conducted a study aimed at preventing intrusions in
SCADA systems. They achieved feature reduction in the dataset containing normal and
attack data by implementing Chi-Square, ANOVA, and LASSO feature-selection methods.
The intrusion detection performance was then evaluated using RF, SVM, KNN, and NB
machine learning algorithms. In the experimental study of the dataset acquired through
feature selection methods, the SVM classifier yielded the highest performance [17].

Islam, U. et al. used multiple classification models to detect DDoS attacks against
financial institutions using a banking dataset. SVM, KNN and RF classifiers were used
for attack detection. The highest success rate was achieved with the SVM classifier. The
study highlighted that classical machine learning algorithms are more successful in attack
detection than deep learning approaches [18].

Ahmad, Z. et al. emphasized in their study that existing intrusion detection systems
are insufficient to prevent cyber-attacks on SCADA systems. The results of the experimental
studies conducted in the study showed that network intrusion detection mechanisms based
on ML and DL methods were capable of responding to the problems experienced. In
addition, the study compared the performance of deep learning approaches and classical
machine learning algorithms in intrusion detection [19].

Saghezchi, F. B. et al. emphasized that industrial systems have become the target of
attackers with the integration of new generation information and communication technolo-
gies. In particular, Internet of Things (IoT) nodes in industrial systems are vulnerable to
attacks. For intrusion detection, 11 different supervised, unsupervised and semi-supervised
algorithms were investigated and their performance was compared. The results of the
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experimental study showed that supervised algorithms outperform both unsupervised and
semi-supervised algorithms in intrusion detection [20].

Wang, W. et al. proposed a stacked deep learning method to detect attackers who
infiltrate the SCADA system by bypassing IDS-like security systems. They emphasized
that the success rate of the proposed method was more successful than machine learning
algorithms such as KNN, RF, NB, AdaBoost, SVM, and OneR [21].

A deep learning-based method for detecting early-stage cyber-attacks on electrical
networks has been proposed by Presekal et al. Their approach aimed to identify and
localize active attack points in Operational Technology networks in real time. The method
integrates a hybrid Graph-Convolutional-Long-Term Memory (GC-LSTM) deep learning
model and a deep convolutional network specifically tailored for time-series classification-
based anomaly detection [22].

Diaba and Elmusrati introduced a hybrid algorithm using a Convolutional Neu-
ral Network (CNN) and a Gated Recurrent Unit (GRU) to detect DDoS attacks on mi-
crogrids operating with electric vehicles in vehicle-to-grid mode alongside renewable
energy sources [23].

Söğüt et al. prepared a scaled-down version of a real water plant using SCADA
system as an experimental environment and applied different DDoS attack scenarios to
this environment. CNN, LSTM, proposed CNN-LSTM hybrid models, and traditional
machine learning models were applied to the data obtained as a result of non-attack and
attack scenarios [24].

Mustafa Altaha and Sugwon Hong proposed an unsupervised deep learning-based
Function Code Autoencoder IDS (FC-AE-IDS) intrusion detection system for Distributed
Network Protocol 3 (DNP3) systems, one of the most widely used protocols in SCADA
systems. The main objective is to prevent servers compromised by attackers from evading
rule-based packet inspection [25].

Other efficient deep learning and machine learning techniques for detecting DDoS
and adversarial attacks on intelligent systems exist. For example, Yang et al. [26] used
autoencoder-based systems to detect DDoS attacks. Hussain et al. [27] used autoencoders
to detect adversarial attacks on autonomous driving systems. Stocco et al. [28] presented a
continuous anomaly detection technique using autoencoders.

In conclusion, the literature on the detection and prevention of cyber-attacks in SCADA
systems reveals a prevailing reliance on classical machine learning methodologies, primarily
leveraging various classifiers such as SVM, NB, KNN, RF, and DT. While these methods
have demonstrated substantial effectiveness in intrusion detection, a limited number of
studies have explored the potential of deep learning techniques, highlighting a promising
avenue for enhancing detection capabilities. Moreover, recent endeavors have shown the
practical application of hybrid models and feature selection methods, underscoring the
significance of optimizing models for real-time intrusion detection. Further research in this
domain is crucial to explore the synergies between classical machine learning and deep
learning methods, enabling robust and efficient protection against evolving cyber threats
targeting SCADA systems in critical infrastructure.

2.1. Software Defined Network Design

SDN is an innovative network architecture that separates network control from trans-
mission and allows for direct programming. Traditional networking involves switches
that use closed systems, with their own control and data planes, supporting manufacturer-
specific control interfaces. In contrast, SDN separates the control and data planes, enabling
control logic to be transferred to an external device. Switches transform into basic trans-
mission devices. Separating the control and data planes enables the network control and
routing functions to be isolated, permits direct programmability of network control, and
isolates transmission devices in the data plane from the application and network services.
The programmability of the network makes it simpler to add innovations to network
management and application development [29].
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SDN enables the resolution of various limitations present in current network architec-
tures (i.e., operating and hardware costs, network misconfigurations, and related errors)
by separating the control and data planes. This transformation shifts static networks to-
wards highly programmable and adaptable ones and offers numerous benefits including
robustness, flexibility, performance, usability, scalability, manageability, and security. SDN
architecture comprises three primary structures: the application plane, control plane, and
data plane (Figure 1).
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Data plane: Packet-forwarding components and interfaces, switches, routers, etc. It
consists of network components such as routing devices that are connected via wireless
radio channels or wired cables. These transmission devices have two main functions. First,
they are responsible for collecting network status information (network topology, traffic
statistics, etc.), temporarily storing it on local devices, and periodically sending it to the
controller. Second, they are responsible for transmitting packets according to the rules set
by the controller.

Control plane: The controller, which is the brain of the network, is located in this
plane. The controller is responsible for configuring the network and monitoring the devices
in the data plane. The controller configures and monitors transmitting devices in the
data plane via the southbound interface. This interface facilitates the development and
implementation of network services, adding innovation to the network. The OpenFlow
protocol is commonly used on the southbound interface. The controller communicates with
transmission devices in the data plane through the OpenFlow protocol.

Application plane: Contains SDN applications (routing, firewalls, load balancers,
monitoring, etc.) designed to meet user requirements. Due to the programmable platform
provided by the control layer, SDN applications can access and control transmission devices
located in the data plane. The controller communicates with SDN applications in the
application plane through the northbound interface.

2.2. SCADA System Definition and Planning

SCADA systems are used to control and monitor critical infrastructure. These infras-
tructures include those related to the production and distribution of resources such as
water, oil, and gas. SCADA systems have a wide range of applications and serve different
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sectors. SCADA systems consist of three units: the main terminal unit (MTU), the remote
terminal unit (RTU) and the communication network (Figure 2).
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The MTU serves as the central monitoring station and is responsible for controlling and
commanding the RTU machine via communication links. It also responds to messages from
the RTU, processing and storing them for later communication. It is also responsible for
collecting data from remote terminals, transmitting these to the Human Machine Interface
(HMI), and sending control signals. It also provides the high-level control logic for the
system. Communication in this case is carried out using communication protocols specific
to SCADA systems, such as Modbus. The RTU exchanges data and commands with the
MTU and sends control signals to field devices.

The RTU is responsible for collecting real-time data and information from sensors
connected to the physical environment via LAN/WAN connections. RTUs transmit the
collected data to the MTU and are also responsible for transmitting the current status data
of the physical devices connected to the system. The communication network provides com-
munication services between the various components of the SCADA network framework.
The medium used may be wireless or wired. The HMI provides a communication interface
between SCADA hardware and software components. It is responsible for controlling
operational information in the SCADA system [2].

2.3. Distributed Denial of Service

DoS attacks are typically initiated from a solitary computer or resource in an attempt
to limit or entirely halt access by overburdening the targeted system or resource. The extent
of damage wrought by a DoS attack is dependent upon attacker’s resource strength. A
DDoS attack is a type of cyber-attack that seeks to overwhelm the target system by flooding
it with traffic from multiple computers or devices. DDoS attacks are typically executed
using zombie computers or botnets. The attackers conduct a DDoS attack by directing
coordinated traffic through zombie computers to target systems. These attacks can render
targeted systems inaccessible by overwhelming resources on a large scale (Figure 3).
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During a DDoS attack, the target service and associated services can become inoperable
when excessive resources, such as processor, memory, and bandwidth, are consumed. The
attacker can easily disguise themselves due to the comprehensive nature of the attack and
often employ fake IP addresses, making it difficult to detect the source of the attack.

3. Proposed Methodology

This paper describes an optimized tree-based ensemble learning method for detecting
DDoS attacks in SCADA systems that use SDN. DDoS attacks are known for their intensity
and coordination and can cause significant damage to critical infrastructure. To address
this issue, we developed a hybrid model that uses machine learning classifier methods
to detect DDoS attacks in SDN-based SCADA systems. This proposed model comprises
four phases: dataset creation, feature editing, normalization, and classification. Figure 4
provides a visual representation of the proposed system, illustrating all stages.
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These stages of the proposed model given in Figure 4 are explained in the sub-sections.
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3.1. Dataset Generation

The experimental topology created to collect DDoS attack data and normal network
traffic data for the SDN-based SCADA network is shown in Figure 5. The topology consists
of a minimum number of nodes to implement the DDoS attack on the SDN-based SCADA
network and to evaluate the effects of the attack. The experimental studies were conducted
in a Ubuntu 20.04 LTS operating system on a computer with 32 Gb RAM and an Intel
i7-1165g7 processor. In the experimental topology, there are three users named Host 1,
Host 2, Host 3, created using Mininet VM/Ubuntu version 2.3.0. In addition, a virtual
machine named Host 4 has been created. The Host 4 virtual machine hosts Open vSwitch
(OVS) switch and Phyton-based open source OpenFlow/SDN (POX) controller. In addition,
sFlow-RT, InfluxDB, and Telegraf applications were installed on Host 4. sFlow was used
to collect network data through the OVS switch during and after an attack. The collected
network data were stored in the InfluxDB database with a timestamp. With Telegraf
application, operating system telemetric values such as CPU, memory, and register values
transmitted over Modbus-TCP protocol were collected by sFlow-RT installed on Host4 and
the data was stored in InfluxDB database.
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Figure 5. An experimental SDN-based SCADA system was created to collect data.

Protocol (User Datagram Protocol (UDP), Transmission Control Protocol (TCP) and
Internet Control Message Protocol (ICMP) flood) DDoS attacks were generated using the
hping3 packet generator tool to collect traffic flow data of the DDoS attack.

The hping3 tool was installed on Host 2 with IP address 10.0.0.0.2 and identified as
the attacker, while Host 4 with IP address 10.0.0.10 was selected as the victim. The Modbus
protocol uses the master/slave technique to allow communication between users. In the
network we have created, the Host 3 computer with the IP address 10.0.0.0.3 is set as the
Modbus master, and the Host 4 user is set as the Modbus slave.

The dataset was obtained as a result of a four-step scenario. Each scenario was run
within 60 min for each of the TCP, UDP, and ICMP packets sent. During the experimental
simulation, these TCP, UDP, and ICMP packets were sent first as normal packets and then
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as malicious packets. The size of each packet was 512 bytes. The rate of packets sent using
hping3 during the attack was over 2000 packets per second. To obtain attack and normal
network traffic data from the experimental SDN-based SCADA network, communication
was first established between Host 3, the Modbus master node, and Host 4, the Modbus
slave. Set register values were received from the slave node to the master node. Then,
four-step scenarios were implemented.

• Scenario 1: While Modbus communication is in progress between Host 3, the Modbus
master node, and Host 4, the Modbus slave node, a TCP flood attack is performed
from user Host 2 to user Host 4.

• Scenario 2: While Modbus communication is in progress between Host 3, the Modbus
master node, and Host 4, the Modbus slave node, a UDP flood attack is performed
from User Host 2 to User Host 4.

• Scenario 3: While Modbus communication is in progress between Host 3, the Modbus
master node, and Host 4, the Modbus slave node, an ICMP flood attack is performed
from user Host 2 to user Host 4.

• Scenario 4: While Modbus communication is in progress between Host 3, the Modbus
master node, and Host 4, the Modbus slave node, ping packets are sent from the Host
1 user to the Host 4 user to generate normal network traffic.

The features in the obtained dataset contain data specific to the SDN-based SCADA
network. As shown in Table 1, the dataset consists of 89 features, 420 normal and 3780
attack data samples [30].

Table 1. Attributes in the dataset.

Available_Byteswin_mem Bytes_Received_persecwin_net Bytes_Sent_persecwin_net
Cache_Faults_persecwin_mem Context_Switches_persecwin_system Current_Disk_Queue_Lengthwin_disk
currentmodbus Demand_Zero_Faults_persecwin_mem energymodbus
frequencymodbus packets_received_persecwin packets_sent_persecwin
page_faults_persecwin pages_persecwin_mem percent_Disk_Read_Timewin_diskreversevm
percent_disk_timewin_disk percent_disk_write_timewin_di percent_idle_timewin_cpu
percent_idle_timewin_disk percent_interrupt_timewin_cpu percent_privileged_timewin_cpu
percent_processor_timewin_cpu percent_user_timewin_cpu pool_nonpaged_byteswin_mem
pool_paged_byteswin_mem power_factormodbus powermod
powerfactor processor_queue_lengthwin_system analyzer_agent_count
analyzer_cpu_available_cores analyzer_cpu_load_process analyzer_cpu_load_system
analyzer_cpu_time_ms analyzer_discarded_datagrams analyzer_gc_count
analyzer_gc_time_ms analyzer_heap_max_bytes analyzer_heap_used_bytes
analyzer_http_connections_current analyzer_http_connections_total analyzer_http_received_bytes
analyzer_http_received_messages analyzer_http_sent_bytes analyzer_http_sent_messages
analyzer_mem_free_bytes analyzer_mem_total_bytes analyzer_parse_errors
analyzer_received_bytes analyzer_received_datagrams analyzer_unsupported_version_datagrams
analyzer_uptime_ms app_conn_max app_conn_open
app_fd_max app_fd_open app_mem_max
app_mem_used app_systemtime app_usertime
eth_alignmenterrors eth_fcserrors ifindiscards
ifinerrors ifinmulticastpkts ifinoctets
ifinpkts ifinucastpkts ifinutilization
ifoutdiscards ifouterrors ifoutoctets
ifoutpkts ifoutucastpkts ifoututilization
ifspeed ovs_dp_flows ovs_dp_hitrate
ovs_dp_hits ovs_dp_lost ovs_dp_maskhitsperpacket
ovs_dp_masks ovs_dp_misses ovs_dp_missrate

ovs_mask_hits System_Calls_persecwin_system Transition_Faults_persecwin_memreversevm-
Memory

voltagemodbus usage_idle_cpu_total

Class: Traffic class. The data in the dataset used in this study are labeled data. These four classes; are “Normal”,
“ICMP Flood”, “TCP Flood” and “UDP Flood”.
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3.2. Pre-Processing

This study concentrated on efficiently detecting DDoS attacks in SDN-based SCADA
systems. The preparation of the dataset proved crucial to accomplishing this aim. Initially,
we gathered network traffic data as a direct outcome of the scenarios implemented in the
experimental topology. Pre-processing was subsequently utilized to convert these data into
a practical dataset. At this stage, we ensured that the data were formatted consistently and
any unnecessary duplicates were removed. Addressing missing data was also paramount,
as it can have adverse effects on the analysis and modeling processes. Therefore, a careful
approach was taken when handling missing data. In most cases, the missing values of
relevant features were successfully filled by averaging these features. This ensured data
integrity and contributed to more reliable results. This data pre-processing aimed to prepare
the dataset for both model training and testing. It was a crucial step towards developing an
effective DDoS attack detection model. Through this preparation, we were able to perform
a reliable analysis and increase the overall result accuracy.

3.3. Feature Selection

Minimum Redundancy Maximum Relevance (MrMR) is a feature selection approach
and is mainly used in machine learning and data mining [31]. MrMR is a feature selection
method that aims to balance the features in a dataset. This method aims to ensure that the
selected features have minimum redundancies with each other and at the same time have
maximum relevance to the target variable (label) [32].

Assume that there are “n” features and “m” instances in the dataset. Let the features
be X1, X2 . . . ., Xn and the target variable Y.

• Minimum Redundancy: MrMR aims to minimize the similarity between selected fea-
tures. This can be carried out by measuring the correlation between two features [33].
Correlation can be measured using Pearson’s correlation coefficient [34]: Pearson
Correlation Coefficient

(r) =
(
∑

(
(Xi − µX)

(
Xj − µY

))
)/(σX ∗ σY) (1)

Here, i and j represent the features, µX and µY represent the means of the features, and
σX and σY) represent the standard deviations. This coefficient measures the strength
of the relationship between two features. The MrMR method attempts to minimize
this correlation.

• Maximum Relevance: MrMR aims to ensure that the selected features have maximum
relevance to the target variable. This can be achieved by measuring the relationship
between the features and the target variable objectively. For instance, statistical tests
like t-test or ANOVA may be employed. To measure the significance of the relationship
between two features using a t-test, the following equation can be utilized [31]:

t = (µ1 − µ2)/sqrt
((
σ1

2/n1
)
+

(
σ2

2/n2
))

(2)

Here, µ1 and µ2 represent the means of the two features concerning the target variable,
and σ1 and σ2 represent their standard deviations. n1 and n2 show the sample numbers for
both groups. MrMR tries to maximize this t value [34].

The MrMR method combines the principles of minimizing repetition and maximizing
relevance in a balanced manner. The ideal selected features should have minimum simi-
larity to each other while being highly relevant to the target variable. Therefore, MrMR
feature selection aims to reduce feature similarity in the dataset while maximizing their
relevance to the target variable. This leads to a more efficient subset with fewer features,
resulting in improved outcomes for predictors or classifiers [35].

3.4. Ensemble Learning

The model proposed in this paper uses ensemble methods that combine decision
trees to achieve better prediction performance than using a single decision tree. The basic
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principle of this ensemble model is that a collection of weak learners can form a strong
learner. This method builds a large number of decision trees using different subsets of the
data or different features [36]. Ensemble models combine the predictions of each decision
tree to create a stronger and more stable predictor. This allows the model to make more
general and reliable predictions. In addition, ensemble methods can help compensate
for errors made by a single tree [37]. In the current study, Boosting, Bagging (Bootstrap
Aggregating) and Random Under-Sampling Boosting (RUSBoost) techniques are used.
Each of them uses different strategies to combine decision trees and thus improve the
learning process. In conclusion, ensemble methods are a powerful tool to maximize the
potential of weak learners such as decision trees and improve prediction performance.

These methods are briefly detailed in the items:

• Decision Tree-based Ensemble Boosting Method: Boosting is an ensemble learning
approach that builds a strong classifier using basic learners called weak learners. First,
it starts with an initial weak learner (usually a decision tree) and identifies mispredicted
instances of the dataset. Focusing on these instances, the next weak learner is trained
and the process is repeated. Each weak learner is heavily weighted to correct the errors
of the previous learners. As a result, these combined weak learners form a strong
learner that can make stronger and more accurate predictions in situations where it
might have failed on its own. Boosted Trees classification is known for its ability to
provide high performance and accuracy in classification problems and is often used
successfully in real-world applications [38].

• Decision Tree-based Ensemble Bagging Method: The basic idea of bagging is to train
different models on random subsets of data so that each model learns from a different
perspective, and then aggregates them to make a stronger prediction. Bagging is
particularly effective at reducing variance and avoiding overfitting. The key to the
method is how each sample of the dataset is prepared to train the ensemble base
models. Bagging uses a random sampling method called bootstrap sampling. Random
samples are taken from the dataset, and these samples are used to create different sub-
datasets. This process involves repeatedly creating datasets with randomly selected
samples from the original dataset. The number of subsamples generated is equal to the
number of samples in the original dataset. For this reason, some samples may not be
included in the samples generated as a result of the bootstrap, while others may appear
two or more times. After the training dataset is created, any samples not included
in the training dataset are transferred to the test dataset. For each sub-dataset, base
models are created using the same or a different machine learning model. Each base
model is trained with its own bootstrap data subset. Each base model can use the same
algorithm or different algorithms. The models run in parallel and are independent of
each other. The final predictions are determined by combining the predictions of all
the models. The base models make their predictions, which are usually combined by
voting in classification problems or averaging in regression problems.

• The Decision Tree-based Ensemble RUSBoost Method: RUSBoost is an ensemble learn-
ing method designed explicitly for unbalanced class problems. It combines traditional
boosting methods with a sampling strategy called RUSBoost. With RUSBoost, the
majority of class instances are undersampled to reduce imbalance and create a more
balanced dataset. Boosting is then applied to the balanced dataset using a weighted
combination of weak learners to produce a robust classifier. RUSBoost Trees is a
variant of this method that uses decision trees as weak learners. They build a decision
tree-based ensemble using different subsets of the training set, and each tree is built on
a random undersampled subset of the training data. By combining multiple decision
trees, the ensemble model improves the quality of predictions and creates a more
reliable classifier. RUSBoost Trees effectively addresses the problem of class imbalance
and could be a promising approach in many applications where the minority class is
of interest.
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This study aims to efficiently detect DDoS attacks utilizing a Decision Tree-based
Ensemble Learning approach for optimal performance.

4. Experimental Results

The training and testing of the ensemble learning models in this study were performed
on the MATLAB platform. The 10-fold cross-validation method was used to test the models
trained on the dataset. The following metrics were used to evaluate the performance results
of the models:

Accuracy =
True Positives

Total data
(3)

Precision =
True Positives

True Positives + False Positives
(4)

Recall =
True Positives

True Positives + False Negatives
(5)

F1 − Score =
2 × Precision × Recall

Precision + Recall
(6)

These metrics are commonly used to evaluate the performance of a classification
model. While accuracy measures overall model performance, sensitivity and specificity
provide more specific information, and the F1 score balances these two metrics.

In this study, experimental studies were conducted for four different models.
The first model was built with a decision tree using pre-processed data. In the training

of this first decision tree model, the classifier type, the maximum number of splits, and the
split criterion parameters were set to Coarse Tree, 4, and Gini’s diversity index, respectively.
The confusion matrix obtained according to the test results of the decision tree model is
shown in Figure 6.
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Figure 6. The confusion matrix with the Decision Tree classifier.

The Decision Tree classifier achieved an accuracy of 91.33%, precision of 91.94%, recall
of 90.71%, and an F1 score value of 91.32%.

The second model is built using Decision Tree-based Ensemble Boosting method. In
the training of this model, learner type, maximum number of splits, number of learners,
and learning rate were set to AdaBoost, Decision Tree, 20, 30 and 0.1, respectively.

The third model is built using Decision Tree-based Ensemble Bagging method. In the
training of this model, learner type, maximum number of splits, and number of learners
were set to Bag, Decision Tree, 4219, and 30, respectively.

The fourth model is built using the Decision Tree-based Ensemble RUSBoost method.
In the training of this model, learner type, maximum number of splits, number of learners,
and learning rate were set to RUSBoost, Decision Tree, 20, 30 and 0.1, respectively.



Sensors 2024, 24, 155 14 of 20

The performance results obtained based on decision tree and ensemble models are
given in Table 2.

Table 2. Performance results of the experimental study.

Accuracy Precision Recall F1-Score

Decision Tree 91.33 91.94 90.71 91.32
Ensemble Boosted Trees 92.9 93.22 91.96 92.58
Ensemble Bagged Trees 92.7 90.66 92.01 91.32

Ensemble RUSBoost Trees 92.6 92.99 91.71 92.35

As shown in Table 2, the highest accuracy performance was 92.9% for the model
created with the Ensemble Boosted Trees method. However, all the methods based on the
ensemble approach produced accuracy values close to each other and provided accuracy
values above 92.5%. In addition, it was observed that the models built using the ensemble
approach achieved a performance improvement of 1% compared to the Decision Tree
classifier model.

To further improve the performance of ensemble learning models, the next experi-
mental study aimed to optimize the parameters of decision tree-based ensemble classifier
models. To achieve this goal, we used Bayesian optimization, which is an effective method
when the hyperparameters are complex or have a large range. The basic principle of
Bayesian optimization is to optimize the objective function by evaluating different combi-
nations in the hyperparameter space. This method is faster and uses less computational
resources than trial and error. Bayesian optimization has helped to achieve efficient and
successful results in hyperparameter optimization. The parameters to be optimized in
Bayesian optimization are shown in Table 3.

Table 3. Optimized parameters.

Ensemble Method AdaBoost, RUSBoost, Bag

Maximum number of splits 1–4219
Number of learners 0.001–1

Learning rate 10–500

The experimental study utilizing the Bayesian optimization method resulted in achiev-
ing an accuracy of 94.48% with the following parameter values: AdaBoost, 21 for maximum
number of splits, 11 for number of learners, and 0.0012041 for learning rate. Based on
these findings, Figure 7 presents the confusion matrix that illustrates the AdaBoost-based
model’s classification performance.
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As shown in Figure 7, the model achieved 100% accuracy in classifying classes 2 and 4,
while classes 1 and 3 were classified with 87.73% and 88.16% accuracy, respectively. Fur-
thermore, the hyperparameter optimization-based AdaBoost ensemble approach improved
the model’s performance by 3% compared to the Decision Tree classifier model.

In the experiment based on hyperparameter optimization, we utilized the MrMR
feature selection algorithm to select the dataset’s most significant and efficient features. We
computed the score values of each feature and ranked them in accordance with these scores.
For each ranked feature set, we utilized the Bayesian optimization algorithm based on the
parameter ranges outlined in Table 3 to establish the classifier parameters. As a result of
this experiment, Figure 8 displays the graph of the minimum classification error for the
ensemble learning approach proposed based on Bayesian optimization.
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Figure 8. Minimum classification error plot of Bayesian optimization-based proposed ensemble
learning classifier.

The Bayesian optimization process, using the ensemble learning classifier, was con-
ducted over 30 iterations as shown in Figure 8. At the end of the 14th iteration, the best
hyperparameter was obtained. Consequently, a peak performance of 95.17% was achieved
with 45 features by utilizing AdaBoost, 12 Maximum number of splits, 18 Number of
learners and 0.30254 Learning rate parameter values. The classification performance’s
confusion matrix based on this result is displayed in Figure 9.

Based on the confusion matrix performance results presented in Figure 9, feature
selection improved model performance by approximately 1% compared to the raw data,
allowing for higher accuracy with fewer features. Narrowing the dataset to meaningful
and influential features through feature selection resulted in more precise and efficient
predictions. The results emphasize the significance of the feature selection process and its
potential to enhance performance in applications of machine learning.



Sensors 2024, 24, 155 16 of 20

Sensors 2024, 24, x FOR PEER REVIEW 16 of 21 
 

 

scores. For each ranked feature set, we utilized the Bayesian optimization algorithm based 
on the parameter ranges outlined in Table 3 to establish the classifier parameters. As a 
result of this experiment, Figure 8 displays the graph of the minimum classification error 
for the ensemble learning approach proposed based on Bayesian optimization. 

 
Figure 8. Minimum classification error plot of Bayesian optimization-based proposed ensemble 
learning classifier. 

The Bayesian optimization process, using the ensemble learning classifier, was con-
ducted over 30 iterations as shown in Figure 8. At the end of the 14th iteration, the best 
hyperparameter was obtained. Consequently, a peak performance of 95.17% was achieved 
with 45 features by utilizing AdaBoost, 12 Maximum number of splits, 18 Number of 
learners and 0.30254 Learning rate parameter values. The classification performance’s con-
fusion matrix based on this result is displayed in Figure 9. 

 
Figure 9. The confusion matrix of the optimized ensemble classifier is based on selected features. Figure 9. The confusion matrix of the optimized ensemble classifier is based on selected features.

5. Discussion

The energy sector is undergoing a significant transformation in environmental sus-
tainability and energy efficiency. Renewable energy sources are an essential part of the
energy generation portfolio in this transformation. SCADA systems are critical in effectively
monitoring and managing renewable energy sources. However, when SCADA systems are
built on traditional network architectures, they need more flexibility in network scaling and
traffic management. SDN-based SCADA systems are being developed to overcome these
limitations instead of traditional SCADA systems. Unlike traditional network manage-
ment, SDN technology can increase operational efficiency even in complex infrastructures
with its programmable dynamic structure. SCADA systems can become more efficient
and adaptable in terms of management and scalability by moving to SDN architecture.
However, the increasing integration of SDN-based SCADA systems with modern technolo-
gies such as the Internet of Things, cloud computing, and big data analytics raises some
cybersecurity concerns. A grave cybersecurity threat, DDoS attacks can disrupt the man-
agement of energy resources, resulting in service interruptions and increased operational
costs. Therefore, it is vital to be prepared for DDoS attacks. The first step in preparing
for DDoS attacks is to detect them effectively. Research is currently focused on machine
learning-based methods to detect DDoS attacks. These machine learning-based methods
can detect attacks by distinguishing between normal and abnormal traffic. In this paper, we
propose a method to identify DDoS attacks by applying an optimized decision tree-based
ensemble learning approach. This approach is based on an ensemble method combining
multiple decision trees. In the present study, decision tree-based ensemble methods such as
Boosting, Bagging and RUSBoost are used. These methods use different tactics to merge
decision trees and thus improve the learning process. Furthermore, techniques based on
feature selection and hyperparameter tuning are used to optimize the performance of the
decision tree ensemble. This enhances the machine learning model’s ability to detect DDoS
attacks by efficiently processing high-dimensional and complex data.

The results of this study will make a valuable contribution to the development of
reliable and secure SCADA infrastructures in the energy sector by further promoting the
integration of SDN technology into SCADA systems and security solutions in the future.
There are some published works in the literature to address this problem. However, these
studies usually use anonymized datasets obtained from traditional SCADA systems or
anonymous datasets for machine learning-based DDoS attack detection. However, in this
study, a unique dataset obtained from a simulation of an SDN-based SCADA system is
used. Table 4 compares the method proposed in this paper with some existing works in the
literature in terms of datasets used, machine learning methods, and model accuracy.
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Table 4. Comparison of previous studies in the literature.

Ref. Datasets ML Algorithms Accuracy (%)

[13] Their own dataset
RF 99.89

KNN 72.29

[14] [7]
SVM Average 92

RF 99.4

[15] Industrial Control System (ICS) Cyber Attack
datasets RF + AdaBoost Average 90

[16] [39]

KNN Average 91

SVM Average 79

DT 98.8

[17] Their own dataset

RF

Average 99
SVM

KNN

NB

[18] Banking Fraud Detection

KNN 97.5

SVM 99.5

RF 98.7

[22] Their own dataset GC-LSTM 96

[24] Their own dataset CNN-LSTM 94.73

[25] Their own dataset Autoencoder 95

[40] Their own dataset
KNN Average 99.63

SVM Average 93.81

[41] Their own dataset from traditional network
architecture Fuzzy Logic-Based Classifier 94.2

[42] SDN-specific dataset
CICDDoS2019 dataset Stacking Ensemble Architecture 99.6

~100

[43] Their own dataset from traditional network
architecture Cost-Sensitive Gradient Boosting DT 98.0

[44] NSL-KDD dataset Hierarchical Bayesian Network 98.4

[45] Their own dataset from traditional network
architecture CNN 91.0

[46] Their own dataset from SDN architecture Stacked Autoencoder (SAE) 95.65

[47] Their own dataset from SDN architecture NB, DT, SVM Average 97.2

Our Study Our dataset Decision Tree-based Ensemble Learning 95.2

As can be seen from the results presented in Table 4, DDoS attack detection based
on traditional SCADA systems has generally achieved accuracy rates of 95% and above.
In these studies, high performances were generally achieved based on machine learning
classifier methods. However, in this study, a unique dataset was created using a real-time
SDN-based SCADA system and this dataset has a more challenging structure than other
SCADA datasets. For this reason, it is more difficult to achieve performance levels of 99%
and above over SCADA. As a result, it would not be a correct approach to fairly compare
the proposed model with other studies since different datasets are used. This study differs
from most studies in the existing literature by using a unique dataset and a real-time
SCADA system in a more challenging test environment. Therefore, the performance results
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obtained should be considered as a general reference, considering the specific dataset and
system conditions.

6. Conclusions and Future Trends

This study emphasizes that SCADA systems are gaining importance with the increase
in renewable energy sources. However, the size, complexity and management difficulties
of SCADA systems require the use of SDN technology. It is stated that SDN-based SCADA
systems have cybersecurity concerns and that DDoS attacks pose a threat in particular.
Therefore, the study aims to develop an effective detection system against DDoS attacks in
SDN-based SCADA systems.

The proposed Ensemble Learning approach was used to distinguish between nor-
mal network traffic and DDoS attack traffic. This method is trained and tested on an
experimental network topology-based dataset. Techniques such as feature selection and
hyperparameter tuning have been applied to optimize the performance of the decision
tree ensemble. The reliability of the study was assessed using 10-fold cross-validation
and confirmed that the generalization ability of the method was robust. The experimental
results obtained show that the proposed model is achieved with high accuracy, with an
accuracy rate of 95.2%, a sensitivity rate of 97.3%, and a specificity rate of 94.8%. These
results show that this method can provide a more performant and sensitive machine learn-
ing model for the detection of DDoS attacks in SDN-based SCADA systems. This could
be an important step towards improving security in the energy sector. In conclusion, this
study demonstrates the usability of an optimized Decision Tree-based Ensemble Learning
approach to increase the security of SCADA systems and provide more effective protection
against DDoS attacks.

Future work may focus on further improving this method and extending it against
different threats. Additionally, further research can be carried out testing it in real-world
applications and applicability on an industrial scale. This study has the potential to present
a new paradigm in the field of cybersecurity and can serve as a basis for future research.
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