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Abstract: A PMSM drive with an incremental encoder or using sensorless control requires alignment
to a predetermined rotor position (initial position) or initial rotor position detection at start-up. It is
desired to lock the rotor to a known state (usually zero angle) at start-up if the initial rotor position
detection is not available or difficult to obtain. In this work, a simple and proper zero angle initial
rotor position alignment of four-switch three-phase (FSTP) inverter-based PMSM drive is proposed.
Low-frequency voltage signal is applied to the d-axis voltage reference of the open-loop FSTPI based
PMSM drive scheme without requiring complex trigonometric calculations, PI current regulators
and current sensing. Therefore, fluctuated capacitor voltages at the DC-link are obtained allowing
current flown through phase a locking the rotor with zero angle, properly. The proposed method
has been implemented using a low-cost FSTP voltage source inverter (VSI) for PMSM drive with
a floating-point TMS320F28335 DSP. The effectiveness and the feasibility of the proposed zero angle
initial rotor position alignment method for PMSM driven by FSTP inverter have been demonstrated
through experimental results.

Keywords: permanent magnet synchronous motor (PMSM); four-switch three-phase (FSTP) inverter;
reduced switch inverter; initial position alignment; signal injection

1. Introduction

In many applications such as in light electric vehicles and consumer products, low power
is desired. The utilization of a cost-effective three-phase inverter is crucial to decrease the cost
of the drive system. This can be achieved by eliminating two semi-conductors in the inverter topology
making it four-switch three-phase inverter, as shown in Figure 1a [1–4]. For sensorless operations
where the initial rotor position detection is not available or starting from an unknown rotor position is
not possible, aligning or locking the rotor to a predetermined position is inevitable for proper starting
of PMSM [5]. Additionally, for sensored operation of PMSM drives where incremental optical encoder
is used as the position sensor, the initial rotor position is not known, therefore the alignment procedure
is mandatory [6]. The precise rotor position must be identified before starting the motor and after the
DC-link is at full capacity.

The PMSM has to be energized by a selected voltage vector or sequence of voltage vectors to align
the rotor to the predefined position. In studies using sensorless control and incremental encoders in
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sensor based AC drives, methods for determination of initial rotor position and alignment to zero angle
have not been investigated for the FSTP inverter. Locking the rotor to a known position (especially
zero angle), as shown in Figure 1b at start-up is easily performed in classical six-switch three-phase
(SSTP) inverters using conventional techniques, however zero angle alignment with classical methods
do not work in case of an FSTP inverter due to the fact that the DC-link voltage is at full capacity and
one phase (phase a which is set to align with zero position and d-axis rotor flux linkage vector) of the
PMSM is mounted to the midpoint of the split capacitors in the DC-link, as shown Figure 1a such that
all the four non-zero voltage vectors aligned with the αβ–axes. Therefore, simplified space vector pulse
width modulation (SVPWM) generation in FSTP based inverter is achieved [7–9].

In the classical rotor alignment procedure of the PMSM drive with vector control scheme,
enough d-axis constant current is injected to overcome the load, inertia and friction in the vector
controlled scheme whilst q-axis current reference is set to zero with zero position input applied to
the co-ordinate transformations such as Park and inverse Park prior to startup, therefore the rotor
flux is aligned with the stator flux which is set to zero degree position [10]. The main disadvantages
of such conventional techniques are that they are mainly dependent on PI regulators and can be
easily applicable to six-switch inverter based PMSM drives without causing severe degradation at the
startup procedure. Moreover, with the classical rotor position alignment method, dynamic performance
strongly relies on the bandwidth of the current control loop and the parameters of the d- and q-axes
current regulators. High and low frequency pulse signal injection methods are investigated for the
sensorless control of PM machines in classical six-switch three-phase inverters [11–13]. However,
these studies are intended to estimation of initial rotor position. In the FSTP inverter fed PMSM drive,
classical alignment procedure with d-axis current regulator with zero position applied to the co-ordinate
transformations that is used for three-phase six-switch (SSTP) inverter generates improper voltage
vectors that does not perform alignment to zero angle when phase a (d-axis zero angle position) is
attached to the mid-point of the split capacitors.

In [14], a simple sector determination scheme for a normalized SVPWM is proposed for the FSTP
inverter without voltage or position sensors such that the complex calculations are eliminated in
the controller. Although, the sector determination algorithm is developed for SVPWM, no discussion
has been given on obtaining a zero angle initial rotor position alignment. Current and torque ripple
minimization incorporating SVPWM are also reported in [8] for FSTP inverters where the compensation
techniques are employed for PMSM drives to reduce the unbalancing and current and torque distortion
in FSTP inverters. However, the main focus in this work is to reduce the oscillation observed in current
and torque waveforms due to the nature of FSTP inverters. Therefore, in this study, no details have
been given on the encoder type or about the initial rotor position detection methodology. A study in
the literature given in [15] discusses the initial rotor position alignment issue of the FSTP inverters.
The solution to this problem explained in [8], which is locking the rotor with line-to-line voltage is
possible but does not acquire zero angle alignment.

In this paper, the proper rotor position alignment methodology to a predetermined zero angle
position is developed for the FSTP driven PMSM drive. It is shown that the rotor position can be
aligned to zero electrical degree position properly using low-frequency d-axis synchronous reference
frame voltage in which the desired constant virtual zero position is applied to the co-ordinate
transformation (inverse Park transformation) without using classical closed loop dq–axes current
regulators. Thus, correct zero position alignment is achieved in a short amount of time for the FSTP
inverter based PMSM drive at start-up. The proposed initial zero angle rotor position alignment
method is simple and therefore is eligible for real-time implementation of cost effective four-switch
PMSM drives.
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Figure 1. PMSM drive using four-switch three-phase (FSTP) VSI with stator and rotor flux linkage
vectors: (a) Phase–a is wired to the middle of the two DC-link capacitors; (b) rotor alignment process.

2. Definition of Problem and the Proposed Signal Injection-Based Initial Zero Angle Rotor
Position Alignment Method for FSTP Inverter

The simplest approach to align/lock the rotor to a known initial position in the FSTP inverter
fed PMSM drive before starting is performed by applying a constant voltage vector to the stator
phases to produce a stationary magnetic field and the rotor aligns itself naturally onto this stator field.
However, one phase (phase a) is mounted to the mid-point of the capacitors for the FSTP topology,
therefore under constant voltage input no current will flow through phase a which does not allow
aligning the rotor position to the desired zero angle.

Fluctuations in the two capacitor voltages VC1 and VC2 exist that produce a deviation of the
non-zero voltage vectors from their previous position, as shown in Figure 2. This can easily be
overcome in the SSTP inverter where all phases can be controlled by the corresponding switches on
each of the inverter legs. In the proposed alignment scheme at the startup process for FSTP inverter
based PMSM drives, the pulse width modulated low-frequency d-axis voltage reference signal is
injected to phase a through phase b and c allowing current to be flown in phase a and therefore proper
rotor position alignment to zero angle is achieved.

Figure 1. PMSM drive using four-switch three-phase (FSTP) VSI with stator and rotor flux linkage
vectors: (a) Phase–a is wired to the middle of the two DC-link capacitors; (b) rotor alignment process.

2. Definition of Problem and the Proposed Signal Injection-Based Initial Zero Angle Rotor
Position Alignment Method for FSTP Inverter

The simplest approach to align/lock the rotor to a known initial position in the FSTP inverter
fed PMSM drive before starting is performed by applying a constant voltage vector to the stator
phases to produce a stationary magnetic field and the rotor aligns itself naturally onto this stator field.
However, one phase (phase a) is mounted to the mid-point of the capacitors for the FSTP topology,
therefore under constant voltage input no current will flow through phase a which does not allow
aligning the rotor position to the desired zero angle.

Fluctuations in the two capacitor voltages VC1 and VC2 exist that produce a deviation of the
non-zero voltage vectors from their previous position, as shown in Figure 2. This can easily be
overcome in the SSTP inverter where all phases can be controlled by the corresponding switches on
each of the inverter legs. In the proposed alignment scheme at the startup process for FSTP inverter
based PMSM drives, the pulse width modulated low-frequency d-axis voltage reference signal is
injected to phase a through phase b and c allowing current to be flown in phase a and therefore proper
rotor position alignment to zero angle is achieved.
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Figure 2. Non-zero voltage vectors of the FSTP VSI under low-frequency signal injection (LFSI) applied
to the d-axis synchronous reference frame.

3. Mathematical Analysis of the Proposed Zero Angle Initial Rotor Position Alignment Scheme

For proper zero angle rotor position alignment in FSTP inverter based PMSM drive, open-loop
voltage control with d-axis low-frequency ( fLF = 50 Hz) reference signal V∗d = VLFsin(ωLFt) is injected
along with V∗q = 0 to the drive scheme, as shown in Figure 3. By injecting the fluctuated voltage signal
to the d-axis, constant VDC/2 voltage with fluctuated AC components are generated on the upper and
lower capacitor voltages given by

VC1 = VDC/2− kVLFsin(ωLFt)

VC2 = VDC/2 + kVLFsin(ωLFt)
(1)

where k is the resultant AC voltage amplitude constant k = 1
2C|ZEQ |ωLF

in the DC-link capacitors

due to the motor parameters, capacitor values, and the injected signal frequency. | ZEQ | is the
equivalent impedance when phase a is energized and phase b and c are shorted under voltage
signal injection. As a result, current flows in phase a and therefore alignment to zero position
is achieved. The magnitude of VLF and injected signal frequency fLF determine the time elapse
to lock the rotor to the desired zero angle position. Using Equation (1), the four active voltage vectors
under low-frequency d-axis signal injection case are tabulated in Tables 1 and 2.
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Figure 3. Block diagram of the proposed LFS injection based zero angle initial rotor position alignment
for FSTP inverter-fed PMSM drives.

Table 1. Non-zero voltage vectors of FSTP inverter with DC-link fluctuations under LF signal injection.

Voltage Vector V (S1 S3) Voltage Space Vector (
−→
Vs )

V1(0 0) VDC/3 + (2/3)kVLFsin(ωLFt)
V2(1 0) (2/3)kVLFsin(ωLFt) + j(VDC/

√
3)

V3(1 1) (2/3)kVLFsin(ωLFt)− j(VDC/
√

3)
V4(0 1) −VDC/3 + (2/3)kVLFsin(ωLFt)

Table 2. Non-zero voltage vectors of FSTP inverter with DC-link fluctuations under LF signal injection
at 0◦, 90◦, 180◦, and 270◦.

V(S1 S3) |−→Vs (@ θLF = 0◦, 180◦)| |−→Vs (@ θLF = 90◦, 270◦|
V1(0 0) VDC/3 (VDC ± 2kVLF)/3

V2(1 0) VDC/
√

3 (
√

3VDC
2 + 4k2VLF

2)/3

V3(1 1) VDC/
√

3 (
√

3VDC
2 + 4k2VLF

2)/3
V4(0 1) VDC/3 (VDC ± 2kVLF)/3

Analysis of Inverter Capacitor Effect

Since the circuit given in Figure 4 has stator resistances, damping occurs in the system. Resonance
will naturally be determined by the damping of the circuit irrespective of the applied low-frequency
AC signal. If the circuit is underdamped, the system resonates otherwise the circuit operates as
overdamped without resonance. The circuit in Figure 4 has a damping factor calculated as

ζ =
3Rs

2

√
C

3Ls
(2)

Since the damping factor ζ = 2.4042 is greater than 1, the system behaves as overdamped
without oscillation. The critically damped condition of the circuit occurs at

C =
12Ls

9Rs
2 (3)

where Rs is stator resistance, Ls is stator inductance and C = C1 = C2 = 380 µF considering the electrical
machine parameters are constant. The Semikron SEMITEACHTM inverter that has been used in this
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system has two 2200 µF capacitors. Since the calculated damping factor in Equation (2) is greater than 1
with the already built-in capacitors in the inverter, the system acts as overdamped without oscillation.

n
R L

R L
R L

+−
a

b

c

Figure 4. Electrical circuit of the zero angle LFS injection for FSTP inverter based PMSM drive.

4. Determination of k Constant

Applying inverse Park transformation in Figure 3 of the open-loop voltage control of FSTP
inverter based PMSM drive, reference αβ–axes voltages are obtained as

V∗α = V∗d cos0◦ −V∗q sin0◦ = V∗d
V∗β = V∗q cos0◦ + V∗d sin0◦ = 0

(4)

Assuming 0◦ electrical position occurs at the border of Sector I and IV, duty ratios Tb and Tc in the
SVPWM calculations can be derived as

Tb = 1− X− (1− X−Y)/2 (5)

Tc = Tb −Y = 1− X + (Y + X− 1)/2−Y = (1− X)/2 (6)

where X =
√

3/2V∗α and Y = V∗β /2 = 0. Actual leveled duty cycles are expressed as

Tb = Tc = 2(Tb − 1/2) =

2((1− X)/2− 1/2) = −X =

−
√

3/2V∗α

(7)

Therefore, b– and c–axes LFS injection based voltages applied to the motor terminals are given as

Vb = Vc = −VLFsin(ωLFt) (8)

An equivalent circuit of the zero angle alignment of PMSM drives with LFS injection based on an
FSTP inverter can be drawn in terms of inverter and motor parameters, as shown in Figure 4 where L
and R are the motor inductance and resistance. C is the capacitor of the FSTP inverter. DC voltage
ripples on capacitors can be obtained by solving the circuit illustrated in Figure 4. The amplitude of
the equivalent impedance of Figure 4 can be derived as

|ZEQ| =

√(
3R
2

)2
+

(
3ωLFLC− 1

2ωLFC

)2
(9)
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Solving VC(t) in Figure 4 yields

VC(t) =
(

1
2C | ZEQ | ωLF

)
VLFcos(ωLFt) (10)

5. Implementation and Experimental Results

To validate the feasibility of the proposed scheme, an experimental platform of the FSTP inverter
for PMSM drive is set up which is shown in Figure 5. Comparative experimental studies of the
proposed smooth initial rotor position alignment method and the classical method have been conducted
on a 1 kW FSTP inverter fed PMSM drive. The stator resistance and inductance of the PMSM are
3.4 Ω and 3.3 mH, respectively. The rotor magnetic flux linkage is 0.095 Wb. The DC-link voltage
measurements are performed by Tektronix TPP0200 model passive voltage probes with 300 V max.
range and up to 200 MHz bandwidth. The voltage probes are used with the voltage amplifiers.
The current probe used in the system is Fluke 80i-110s with ±(3% + 50 mA) accuracy at 10 A and
±100 A range. Rotor position and speed are obtained by HEDSS ICU4809 incremental encoder with
2500 ppr with up to 120 kHz response frequency. Figures 6–9 illustrate the experimental results of
the mechanical rotor positions and DC-link capacitor voltages using conventional and the proposed
methods under fan type load, respectively.

Figures 10 and 11 represent phase a current and mechanical rotor speed using the proposed
method under VDC = 400 V with C1 and C2 are 2200 µF, respectively. In Figure 6, classical rotor
alignment with the proper constant d-axis voltage value using virtual zero angle is applied as a reference
with q-axis voltage is set to zero. The rotor is deviated too much from the desired zero angle from the
initial position of 20 mechanical degrees. Its final position is around−90 mechanical degrees, as shown
in Figure 6.

Tektronix Oscilloscope
&

Magtrol DSP6001
Dynamometer

Controller
eZdspTM &

Interface Card

Center
Tap

SEMIKRON
Inverter

Signal Cond.
Card

Hysteresis
Brake

Torque/Speed
Transducer

PMSM

Integrated
Incremental 

Encoder

Figure 5. A 1 kW experimental test-bed.
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Figure 6. Mechanical rotor position of the PMSM drive under classical alignment procedure at start-up.
Operating at: 0.25 pu d-axis voltage and zero q-axis voltage with 10 kHz switching frequency under
fan type loading condition.
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Figure 7. Mechanical rotor position of the proposed zero angle LFS injection based PMSM drive with
FSTP inverter. Operating at: 0.25 pu d-axis voltage and zero q-axis voltage with 10 kHz switching
frequency under fan type loading condition.
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Figure 8. DC-link capacitor voltages of the PMSM drive under classical alignment procedure at start-up.
Operating at: 0.25 pu d-axis voltage and zero q-axis voltage with 10 kHz switching frequency under
fan type loading condition.
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Figure 9. Steady-state DC-link capacitor voltages of the proposed zero angle LFS injection based PMSM
drive with FSTP inverter. Operating at: 0.25 pu d-axis voltage and zero q-axis voltage with 10 kHz
switching frequency under fan type loading condition.
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Figure 10. Phase a current at steady-state of the proposed zero angle LFS injection based PMSM drive
with FSTP inverter. Operating at: 0.25 pu d-axis voltage and zero q-axis voltage with 10 kHz switching
frequency under fan type loading condition.
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Figure 11. Mechanical rotor speed of the proposed zero angle LFS injection based PMSM drive with
FSTP inverter. Operating at: 0.25 pu d-axis voltage and zero q-axis voltage with 10 kHz switching
frequency under fan type loading condition.

It is seen in Figure 7 that under fLF = 50 Hz LFS injection with 0.25 pu d-axis voltage
amplitude reference, proper zero angle alignment is successfully achieved. Initial rotor position
is set to 20 mechanical degrees. After 1.2 s, the rotor locks to the zero mechanical degree position with
the proposed method as opposed to the classical one in which the alignment procedure to zero angle
is not successful, as shown in Figure 6. The rotor is aligned to a negative position using the classical
alignment method. Since only DC capacitor voltages exist in the classical zero angle alignment method,
no current flows through the phase which is mounted to the center point of the capacitors. Therefore,
the alignment procedure is unsuccessful.
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With the proposed scheme, LF signal allows fluctuation on the DC-link offset voltage, as shown in
Figure 9 enabling current flowing through the center tap connected to phase a which results in proper
zero rotor angle alignment. The amplitude of the fluctuated DC-link voltages matches with the k value
that is theoretically calculated in Equation (10). The frequency of oscillated DC-link voltages equals to
the injected LF signal frequency.

Steady-state phase a current waveform is given in Figure 10. It is seen that no low frequency
fluctuations are reported on the phase current. This will not cause mechanical oscillation in the motor
when the rotor is locked with the zero angle. When the rotor is aligned to the proper zero position,
the speed of the rotor is dropped to zero as well at the same time with the position, as shown
in Figure 11.

The sensitivity analysis based on the input applied voltage amplitude VLF and the injected
signal frequency fLF versus the time duration of the alignment are depicted in the Table 3. It is
observed in the sensitivity analysis that when the V/ f ratios is around 0.005, the faster alignment
is achieved. The motor current increases when the input voltage amplitude is selected higher than
0.25 pu which is selected to be the optimum voltage amplitude. If the inertia and/or load of the system
are higher than expected, a proper offset can be added as a bias to the injected signal to achieve zero
angle alignment. Since the application of this method is only used for the initial alignment procedure,
it will only run for a few seconds.

Table 3. The sensitivity analysis results based on the input applied voltage amplitude VLF, the injected
signal frequency fLF versus the time duration of the alignment.

VLF (pu) fLF (Hz) Alignment Time (s)

0.1 pu 50 Hz 11 s
0.1 pu 40 Hz 9 s
0.1 pu 30 Hz 2.8 s
0.1 pu 20 Hz 2.2 s
0.2 pu 50 Hz 2.2 s
0.2 pu 40 Hz 1.5 s
0.2 pu 30 Hz 1.9 s
0.2 pu 20 Hz 2 s

0.25 pu 50 Hz 1.2 s
0.25 pu 40 Hz 1.3 s
0.25 pu 30 Hz 1.4 s
0.25 pu 20 Hz 1.5 s

As can be seen in Table 3 that higher VLF values with proper injected frequency (close to the motor
nominal operating frequency) considering the V/ f ratio generate more VC(t) at the DC-link and the
alignment time is reduced. The optimum VLF amplitude is selected to be 25% of the nominal voltage
at 50 Hz (nominal operating frequency of the motor).

The proposed zero angle rotor position alignment method at start-up could be used in applications
such as centrifugal pump, fan and blower where initially light load or no-load occur including
permanent magnet synchronous generators that are mounted on small scale wind turbines. Since the
basis of the proposed method is an open-loop, alignment time depends on the system inertia,
applied voltage, and the frequency of the injected signal. After the alignment procedure is completed,
switching to the closed-loop control algorithm is enabled which drives the four-switch PMSM system.
If the desired zero rotor position has not been achieved while the speed is not close to zero for a certain
amount of time, the applied frequency is lowered properly to speed up the alignment procedure.
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6. Conclusions

A simple and smooth zero angle initial rotor position alignment scheme using low-frequency signal
injection (LFSI) that is applied to the d-axis voltage reference is proposed for FSTP inverter-fed open-loop
PMSM drives at start-up. Therefore, by having the AC signal injected to the d-axis synchronous voltage
reference frame, fluctuated capacitor voltages VC1 and VC2 are obtained allowing current flow through
phase a locking the rotor at a zero angle. The proposed method does not require complex trigonometric
calculations and PI current regulators, and it is desirable for real-time implementation of reduced cost
four-switch three-phase PMSM drives. Experimental results validate the effectiveness and the feasibility
of the proposed alignment method for PMSM driven by an FSTP inverter.
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