Engineering Science and Technology, an International Journal 33 (2022) 101083

HOSTED BY

journal homepage: www.elsevier.com/locate/jestch e

Contents lists available at ScienceDirect

Engineering Science and Technology,

an International Journal

Al

Treating adverse effects of blockbuster bias on beyond-accuracy quality R
of personalized recommendations e

Emre Yalcin®*, Alper Bilge”

2 Computer Engineering Department, Sivas Cumhuriyet University, 58140 Sivas, Turkey
b Computer Engineering Department, Akdeniz University, 07058 Antalya, Turkey

ARTICLE INFO

Article history:

Received 19 July 2021

Revised 29 October 2021

Accepted 28 November 2021
Available online 23 December 2021

Keywords:
Recommender systems
Collaborative filtering
Popularity bias
Blockbuster items
Beyond-accuracy metrics

ABSTRACT

Collaborative filtering recommendation algorithms are vulnerable against the popularity bias, including
the most popular items repeatedly into the produced ranked lists. However, the research on popularity
bias focuses solely on the number of times items are rated rather than the magnitude of the provided rat-
ings when scrutinizing the adverse effects of such bias. This paper introduces a metric describing the
blockbuster items that are popular and highly rated simultaneously and investigates the potential biases
of collaborative recommendation algorithms towards such items comprehensively. Then, we develop an
algorithmic post-processing debiasing approach for potential blockbuster bias in recommendations.
Specifically, this method aims to penalize blockbuster items in produced ranked lists by re-sorting items
based on the artificial ranking scores, estimated by considering both the blockbuster degree of the items
and the generated predictions for them simultaneously. The experiments conducted on three benchmark
real-world datasets demonstrate that four prominent collaborative filtering algorithms lead to an unde-
sirable bias in their recommendations towards blockbuster items. The empirical outcomes also indicate
that our mitigation method helps treat the adverse effects of the blockbuster bias in terms of beyond-
accuracy evaluations such as catalog coverage, diversity, and novelty, with negligible losses in ranking
accuracy.

© 2021 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Recommender systems are artificial intelligence solutions help-
ing the decision-making process of individuals by recommending
untasted but engaging content while filtering out irrelevant ones
[1]. With increasing Internet usage in recent years, these systems
have become more and more attractive for many digital platforms
in different application domains, such as music (e.g., Spotify, Last.
FM), movie (e.g., Netflix, Amazon Prime), e-commerce (e.g., eBay,
Amazon), accommodation (e.g., Booking.com, Trivago), and news
(e.g., Google News), due to their significant contributions to the
attraction and usability of the platforms [2].

Recommender systems usually aim to assist users by producing
a ranked list of desirable items (i.e., services or products) or pre-
dicting a rating score for items not yet experienced by them. These
recommendation tasks are generally performed utilizing collabora-
tive filtering (CF) algorithms, content- or knowledge-based filter-

* Corresponding author.
E-mail addresses: eyalcin@cumhuriyet.edu.tr (E. Yalcin), abilge@akdeniz.edu.tr
(A. Bilge).
Peer review under responsibility of Karabuk University.

https://doi.org/10.1016/j.jestch.2021.101083
2215-0986/© 2021 Karabuk University. Publishing services by Elsevier B.V.

ing methods, or hybrid approaches [3]. CF algorithms are
regarded as the most prevalent among them due to their high per-
formance and efficiency. By following the assumption that individ-
uals having similar tastes in the past are also incline to agree in the
future, these algorithms mainly try to predict future choices of
users about items by operating a user-item matrix reflecting their
past preferences [4].

In the literature, the success of CF algorithms is generally eval-
uated with the accuracy level of the recommendation lists they
have produced for individuals. However, in recent years, the
beyond-accuracy aspects of recommended items, such as how
much they cover the catalog and how much they are novel or
diverse, have taken a step forward in evaluating recommendation
quality [5-7]. Nevertheless, research on recommender systems
has acknowledged that CF algorithms are commonly biased
towards certain items due to their mechanisms to generate recom-
mendations or the characteristics of rating data on which they are
trained [8]. This phenomenon, unfortunately, ends up with having
recommendation lists that are unqualified in terms of such
beyond-accuracy perspectives.

The most well-known kind of such biases is called the popular-
ity bias, which refers to the intrinsic leaning of CF algorithms to

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2021.101083&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jestch.2021.101083
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:eyalcin@cumhuriyet.edu.tr
mailto:abilge@akdeniz.edu.tr
https://doi.org/10.1016/j.jestch.2021.101083
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch

E. Yalcin and A. Bilge

feature a few popular items over the unpopular ones (i.e., niche) in
their recommended lists [9,10]. Indeed, this phenomenon is usu-
ally caused by nonuniformly distributed individual preferences,
i.e., a small fraction of items are evaluated by the majority of users
while the remaining niche ones receive only a few ratings. This fact
leads to having ranked lists where popular items gain more visibil-
ity in recommendation lists while niche ones cannot get the
deserved attention, even if they would be of interest. Besides, the
awareness of such a bias of the recommendation algorithms makes
the system vulnerable to fake reviews or social bots in order to
increase the number of ratings given to particular products to get
more visibility in produced recommendations. Therefore, exploring
the popularity bias issues in recommendations and developing effi-
cient popularity-debiasing methods to treat its adverse impacts on
recommendation quality has been getting more and more atten-
tion in recent years [11,12,9].

However, the research on popularity bias commonly focuses on
the most frequently rated items by disregarding the magnitude of
the given ratings (i.e., liking-degree of the items). Nevertheless, the
popularity of a product does not always mean that individuals
strongly desire it, or vice versa. For example, Mortal Kombat is
one of the most discussed movies of 2021 based on the number
of provided ratings in the Metacritic!, which is a well-known web-
site aggregating user reviews for contents in several different types.
However, the average of the ratings provided for Mortal Kombat is
6.3 out of 10, which demonstrates that users are not so much into
this movie despite being a huge hit. Such a trade-off between popu-
larity and liking-degree can also be seen for many products in differ-
ent application domains such as books, games, and music [13].

Therefore, we consider the blockbuster items defined as both
popular and highly rated by individuals and investigate whether
collaborative recommendation algorithms lead to an undesirable
bias in favor of such items in their generated ranked lists. More-
over, we develop a post-processing debiasing approach to counter-
act the potential blockbuster bias and improve recommendation
quality. The following summarizes the main contributions of this
study.

1. We present a practical formulation defining the blockbuster
level of the items by properly combining their popularity and
liking-degree. We also show the undesired imbalances towards
blockbuster items in three prominent datasets in the movie and
social media domains by using the presented formulation.

2. We introduce an efficient evaluation metric that helps to mea-
sure the level of potential biases to blockbuster items in
ranking-based recommendations. The conducted experiments
based on this metric conclude that four prominent CF algo-
rithms in two different families are strongly biased towards
blockbuster items in their produced recommendations.

3. We propose a post-processing blockbuster-debiasing method
that combines the items’ blockbuster level and the predicted
ratings by a proper recommendation algorithm to re-rank the
recommendation lists by penalizing blockbuster items. The pro-
posed method helps to treat the adverse effects of the observed
blockbuster bias and thus improve the beyond-accuracy quality
of the recommendations in terms of catalog coverage, diversity,
and novelty, with negligible losses in ranking accuracy.

The rest of the study is organized as follows. The following sec-
tion summarizes the literature on popularity bias and 3 presents
the proposed novel formulation to describe blockbuster items. 4
gives detailed information about the developed metric measuring
the level of potential blockbuster bias in recommendations.

T https://www.metacritic.com/movie/mortal-kombat-2021

Engineering Science and Technology, an International Journal 33 (2022) 101083

5 presents the developed blockbuster-debiasing method, and the
following section includes the performed experimental studies. 7
discusses the present study and gives some limitations about the
blockbuster bias in recommendations. Finally, 8 concludes the
study and gives detailed information about future research
directions.

2. Related Work

In general, the main goal of recommender systems is to enhance
users’ satisfaction by filtering out and recommending appropriate
items/products. Although the worth of such suggested content is
usually evaluated with how they are accurate, the literature has
recently introduced different evaluation concepts that measure
users’ interaction experience with the system from different per-
spectives and thus assessed the quality of the produced recom-
mendations more deeply [7]. The most well-known types of such
beyond-accuracy perspectives the literature has recently been con-
cerned with and studied extensively are coverage, novelty, and
diversity. More specifically, coverage is defined as the ratio of
items recommended to users to the whole item catalog [7]. Novelty
is another critical aspect that refers to the system’s ability to rec-
ommend novel items that are never consumed or known by indi-
viduals in the past [6]. Finally, diversity indicates the variety of
the items in the produced recommendation lists [5].

However, the literature has recently discovered many bias types
of the recommendation algorithms, such as conformity [14], expo-
sure [15], selection [16], position [17], and popularity [10,18,12],
deteriorating the recommendation quality in terms of such
beyond-accuracy aspects and challenging to achieve qualified rec-
ommendations. Among such bias types, popularity bias is the most
prominent due to its highly adverse effects on beyond-accuracy
recommendation quality. Therefore, many studies focused on dis-
covering the level of bias caused by CF algorithms and scrutinizing
how this bias affects the quality of produced recommendations for
different application areas such as music [19], movies [20], online
education [10], and tourism activities [21].

Also, various studies have attempted to develop practical treat-
ment methods for dealing with popularity bias problems in recom-
mendations. Such proposed popularity-debiasing approaches are
also commonly divided into three main categories, pre-, in-, and
post-processing, based on how they have participated in the recom-
mendation process [9]. Since one of the main reasons for popular-
ity bias is the imbalances in rating distribution, pre-processing
approaches usually aim to reduce such inequalities by altering data
on which CF algorithms are trained. For example, [22] introduces a
method that initially split the item set into two different classes as
head and tail; the head class consists of popular items having a sig-
nificantly larger amount of ratings than those in the tail class. Then,
recommendations for tail items are produced using ratings in the
tail class only, while those for head items are estimated using all
data. Also, [23] presents a practical popularity debiasing technique
that first creates synthetic user-item tuples where the observed
items are mostly unpopular and then utilizes them to train algo-
rithms. Finally, [24] treats popularity bias by utilizing a probability
distribution function based on item popularity.

On the other hand, in-processing approaches aim to modify the
internal mechanisms of recommendation algorithms to consider
both popularity and relevance simultaneously. This task is usually
accomplished using specific constraints or conducting a joint opti-
mization. For example, [25] proposes an optimized variant of the
well-known RankALS algorithm, which contributes to producing
recommendation lists where predictive accuracy and intra-list
item diversity are balanced. Also, [11] presents a framework that
first constructs the neighborhoods between the items based on

E. Yalcin and A. Bilge

their popularity instead of the magnitude of their ratings; then, it
eliminates some most popular ones to have a more balanced
common-neighbor similarity index. Lastly, [9] introduces a tech-
nique that minimizes the correlation between item popularity
and user-item relevance for treating items in the long tail fairly.

Lastly, post-processing techniques usually aim to re-rank a rec-
ommendation list that has already been generated or create a
new one following a specific constraint. These are the most utilized
approaches for mitigating popularity bias since they can be easily
applied to the output of any recommendation algorithm, which
is also why we focus on developing a post-processing method to
counteract potential blockbuster bias in this study. For example,
[26] introduces an approach that first calculates weight scores
for items based on their popularity and then utilizes them to pun-
ish popular items during re-ranking recommended item lists. Like-
wise, [12] follows a similar strategy and presents two robust
popularity debiasing methods for recommending to groups of
users rather than individuals. Also, [27] presents the xQuad algo-
rithm that is an enhanced re-ranking approach and helps balance
the trade-off between long-tail item coverage and ranking accu-
racy more robustly. .

As seen from the presented literature, many recent studies con-
sider biases towards popular items in the recommendations and
try to treat this issue for achieving more qualified recommenda-
tions. However, as emphasized in the previous section, the popu-
larity of an item does not always mean that individuals strongly
desire it. Therefore, more comprehensive analyses are required to
investigate potential bias towards blockbuster items and develop
novel practical methods to mitigate its adverse effects on
recommendations.

3. The Blockbuster Level Estimation Procedure (BLEP)

In the domain of recommender systems, the blockbuster term
usually stands for the most favored items [28,29]; however, we uti-
lize this term in this study to denote items having a high average
rating and rated by a significant number of users. Here, one chal-
lenge is determining if an item is blockbuster or not by considering
the properties of the ratings it has received. To accomplish this
task, we first develop a practical method, namely Blockbuster Level
Estimation Procedure (BLEP), that measures the blockbuster degrees
of the items by properly incorporating their popularity and liking
degree.

Suppose that r,; denotes the value of the rating provided by
user u for the item i, the developed BLEP first calculates the popu-
larity of the item i, i.e., p;, by simply counting the number of users
who rated the item. Then, it estimates the average rating of the

Zusui Tui

itemi, as y; = TR where U; indicates the set of users who have
provided a rating for the item.

Here, the maximum possible value for p;corresponds to the
highest rating in the utilized rating scale, which can occur when
all of the provided ratings for the item i are equal to the highest
rating. On the other hand, the maximum possible value of p; is
the number of all available users, which can be observed when
all users provide a rating. Accordingly, the calculated p; values
vary a broader range than g; ones, which calls for a normalization
process for both p; and p; for making them comparable before
performing a combination procedure. For this purpose, the BLEP
first transforms both the computed p; and y; values into [0,1]
range utilizing min-max normalization, and then combines by
simply averaging them to achieve B; scores that describe the
blockbuster levels of the items, utilizing the formula given in
Eq. 1.

Bi = (& +Py)/2 (1)

Engineering Science and Technology, an International Journal 33 (2022) 101083

where [i; and p; denote the normalized average rating and popular-
ity values for the item i, respectively. Here, we consider the popular-
ity and the average rating of the items both necessary conditions
that are equally important for an item to be considered as block-
buster. Therefore, we try to balance these two properties when esti-
mating blockbuster levels by following the arithmetic mean
strategy. This is because we attempt to penalize either unpopular
or not-liked items when calculating blockbuster scores.

4. The Blockbuster Recommendation Frequency (BRF) evaluation
metric

To investigate the potential biases towards blockbuster items
properly in ranking-based recommendations, we present an effi-
cient evaluation metric, named the Blockbuster Recommendation
Frequency (BRF) [30], which measures the degree of blockbuster
bias induced by a recommendation algorithm.

Before introducing details of this metric, we first attempt to cat-
egorize the items based on their blockbuster scores (B) calculated
using the BLEP. To this end, we first sort items in the whole catalog
in descending order by their computed B scores. Then, we define
two distinct item classes, namely head and tail, by following the
well-known Pareto principle [31], i.e., the items having 20% of all
provided ratings are classified as head, and the remaining items
in the catalog are labeled as tail ones. Thus, head items refer to
the most blockbuster items, while tail ones indicate the relatively
underappreciated items.

After that, the proposed BRF evaluation metric estimates the
blockbuster bias performance of an algorithm by computing how
often the items in the head, i.e., the set of items having the highest
blockbuster scores, are recommended to users as in the following.
It first counts how many times all head items appeared in the pro-
duced recommendation lists and then computes its proportion to
all recommended items. Thus, the higher BRF values mean more
substantial bias in favor of the blockbuster items and, therefore,
having recommendations that are more unqualified in terms of
diversification.

Suppose that N represents the multiset of the recommenda-
tions constructed by stacking the top-N recommendation lists pro-
duced for each user through the utilized recommendation
algorithm. The BRF value of the algorithm is calculated using the
formula given in Eq. 2.

> i€ H)

ieN
BRF N (2)
where H is the set of head items in the whole catalog. For example,
suppose that {iy, iy, - - -, i10} is the whole item set in the catalog, and
i3 and is are the head items among them. Also, assume that there
are three available users in the system and the top-3 recommenda-
tion lists produced with any algorithm for them are {is, i, is}, {is, i1,
i}, and {is, i3, ig}. In such a scenario, the multiset of the recommen-
dations constructed by stacking the individual recommendation
lists, i.e., N, ends up with {is, i, is, is, iy, ig, is, i3, ig}. Accordingly,
the BRF performance of the utilized algorithm is calculated as the
ratio of how many times the head items (i.e., i3 and is) appear in
the N to the size of N, which is equal to 5/9 = 0.55. This ratio con-
cludes that almost more than half of all recommended items are the
head items and shows a solid and undesirable blockbuster bias in
such a scenario.

5. The proposed Blockbuster-Debiasing Procedure (BDP)

As emphasized in the Related Work section, one of the most
common practices to mitigate popularity bias in recommendations

E. Yalcin and A. Bilge

is to utilize post-processing approaches, as they can be easily
applied to the results of any recommendation algorithm. Therefore,
this section introduces an effective treatment technique inspired
by this practice, named the Blockbuster-Debiasing Procedure (BDP),
which aims at re-ranking the recommended items to counteract
potential bias issues towards blockbuster items.

The main goal of the proposed BDP is to feature underappreci-
ated items by penalizing blockbuster ones based on their block-
buster level while performing the recommendation process. To
this end, it follows a weighting strategy that assigns higher weights
to tail items while gives relatively lesser weights to head ones to
counterbalance the potential bias caused by their blockbuster
level. More formally, the BDP estimates such a weight for each item
w; using the formula given in Eq. 3.

1

Wj=-——
! 1+Bi

3)
where B; denotes the blockbuster level of the item i, which can be
calculated as in Eq. 1.

After the weight value for each item are computed, the BDP pre-
dicts a rating p,; for user u on item i via any conventional CF algo-
rithm such as UserKNN, ItemKNN, or SVD. Then, it calculates an
artificial ranking score R, ; for each user-item pair by incorporating
the predicted rating and estimated weight value for the corre-
sponding item, as in Eq. 4. Here, p,; is the normalized predicted
ratings in [0,1] range determined using min-max normalization
so that they become comparable to the estimated w values. These
computed R,; scores are then utilized to re-sort items for each user
to achieve a final recommendation list for them.

Ru.i = (l - O‘)p;,i + aw; (4)

where o denotes the controlling coefficient that adjusts the signifi-
cance degree of each component in Eq. 4. Accordingly, lesser o val-
ues indicate more weight for the originally predicted ratings,
maintaining ranking accuracy; on the other hand, higher o values
penalize the head items more, shifting the balance in the recom-
mendation lists to the tail ones.

5.1. An illustrative example for the proposed BDP

This section provides a toy example to clarify how the proposed
BDP computes the ultimate ranking scores (R) for items to be used
for producing recommendation lists. To this end, we first present a
sample rating matrix in 1 containing the preferences of four users
on six items in {1,5} rating scale. In this example, we also give the
predicted ratings for each user-item pair in parenthesis, which are
estimated using a random predictor method. Note that L repre-
sents the unrated items by the individuals in the 1.

Based on the original ratings of individuals given in 1, we pre-
sent each step of the BDP with their explanations in 2. Besides,
according to the estimated weight values w presented in the bot-
tom row of 2 and the predicted ratings given in parenthesis in 1,
the computed final artificial ranking scores (R) via the BDP (see
Eq. 4) for each user-item pair are shown in 3. Note also that we
set the value of « as 0.25 when estimating such ranking scores in
this toy example.

As can be followed by the presented example, our BDP can pro-
duce recommendation lists where the sorting of the items would
highly differ when compared to the ranked lists constructed based
on only predicted ratings. For example, the most recommendable
item for user u; is the is based on the original predictions given
in parenthesis in 1; however, it is the item having the highest B
score among others, as can be followed by 2. On the other hand,
our proposed BDP recommends item i, at the top of its produced
ranked list for the corresponding user by penalizing the most

Engineering Science and Technology, an International Journal 33 (2022) 101083

blockbuster item is and considering ranking accuracy, which in
turn helps to mitigate potential bias towards blockbuster items
in the generated recommendations.

6. Experimental studies

This section includes a broad set of experiments on two real-
world datasets to potential blockbuster bias in recommendations
and to evaluate the performance of the proposed BDP.

6.1. Datasets and experimentation methodology

In the experiments, we utilize three real-world benchmark
datasets in different application domains; MovieLens-1 M (ML)
[32], Personality2018 (Per) [33], and Ciao [12]. More specifically,
the ML and Per consist of user preferences on movies, while the
Ciao is crawled from a real-world social platform and includes user
ratings on various products. Also, the provided ratings are on a
five-star rating scale in ML and Ciao datasets, while on a [0.5, 5]
scale in Per dataset. Additionally, since the original Ciao and Per
are highly sparse and too large datasets, we employ subsets of
the original collections, called Ciao20 and Per20, where each user
and item has at least 20 ratings. Detailed information about these
datasets is presented in 4.

To produce ranking-based recommendations for users, we fol-
low the leave-one-out cross-validation experimentation methodol-
ogy [34]. Accordingly, we select one active user as the test set and
employ the rest of the users as the train set; then, we produce pre-
dictions for the actual ratings of the active user applying a CF algo-
rithm on the train set. This procedure is repeatedly conducted for
each user in the dataset. At the final step, we sort the items based
on the generated predictions for each user in descending order and
select Top-N items as a recommendation list, where N is set as 10.

6.2. The recommendation algorithms

This study employs four prevalent CF algorithms and examines
their produced recommendations in terms of the potential block-
buster bias issues. Two of them are famous neighborhood-based
methods, namely UserKNN and ItemKNN, which employ the most
similar users or items and consider the computed baseline prefer-
ences to produce predictions [35]. Also, when applying these algo-
rithms, we use the cosine metric to determine similarities between
users or items and set the neighborhood size as 40, as such a con-
figuration is one of the best settings of these algorithms in achiev-
ing accurate predictions [36].

The other two algorithms are the matrix factorization-based
SVD [37] and SVD++ [35], which are highly effective on accuracy
and scalability performance and therefore widely adopted as a
basis of many modern recommendation frameworks. In principle,
these algorithms characterize both items and users with factor
vectors extracted from the patterns of the provided ratings and
produce recommendations based on the high correspondence of
such constructed factors. More specifically, the utilized SVD algo-
rithm is an enhanced version of the conventional matrix
factorization-based CF approach, which also considers variations
in rating values associated with either user or items (i.e., biases),
also known as the Biased Matrix Factorization CF algorithm. On
the other hand, the SVD++ is an extension of SVD taking into
account not only explicit ratings but also implicit ones. Note that
all of the used CF algorithms are applied via Surprise?, introduced
as a Python framework for recommender systems.

2 https://surpriselib.com/

E. Yalcin and A. Bilge

Engineering Science and Technology, an International Journal 33 (2022) 101083

Table 1
A user-item matrix to exemplify the BDP.
5] iz 13 14 i5 16
u 3(245) 2(3.01) 1 (2.97) 1 (2.05) 1 (3.03) 1(1.70)
Uy 4 (3.45) 1(2.23) 1 (3.65) 2(1.28) 5 (4.80) 3(2.12)
us 1(3.35) 4(3.67) 1 (3.25) 4 (3.36) 1 (1.78) 5 (4.88)
Uy 1(1.45) 1 (2.23) 3(3.55) 1 (4.55) 3(3.32) 2(2.22)
Table 2
Each step of BDP with their explanations.
Step i iy i3 iy is is Explanations
p 3.00 2.00 1.00 3.00 2.00 4.00 Item popularity
u 2.67 3.00 3.00 2.33 4.00 2.75 The average rating
P 0.67 0.33 0.00 0.67 0.33 1.00 Normalized item popularity
I 0.20 0.40 0.40 0.00 1.00 0.25 Normalized average rating
B 0.43 0.36 0.20 0.33 0.66 0.62 Blockbuster level, using Eq. 1
w; 0.69 0.73 0.83 0.74 0.60 0.61 Weight score, using Eq. 3
Table 3
The calculated final R ranking scores with the BDP.
i] iz i3 173 i5 1g
u 2.01 244 243 1.72 2.42 1.42
[2.76 1.85 2.94 1.14 3.75 1.74
us 2.68 2.93 2.64 2.70 1.48 3.81
Uy 1.26 1.85 2.87 3.59 2.64 1.81
Table 4
Detailed information about the utilized datasets.
Dataset #Users #Items #Ratings Density(%) Rating Scale
ML 6,040 3,952 1,000,209 4.25 {1,2,--,5}
Ciao20 3,278 1,351 52,717 1.19 {1,2,--,5}
Per20 1,780 7,228 911,369 7.08 {05,1,15, -+, 5}
6.3. Evaluation metrics N,NT
app= Ly~ DTl (6)
Ul % [N

To evaluate the performance of the proposed BDP, we utilize
three different metrics measuring the beyond-accuracy quality of
the recommendations: Long-Tail Coverage (LC) [5], Average Per-
centage of Long-tail items (APL) [20], and Novelty [38].

Concretely, the LC is a prevalent metric in popularity bias
research and mainly measures the proportion of tail items
observed in the produced recommendation lists of all users. There-
fore, this metric can be considered a variant of the well-known ag-
gregate diversity metric [20], applying only to the items in the long-
tail partition of the whole catalog.

Suppose that N, is the ranked list of items recommended to user
u and T is the set of tail items, the LC performance of the utilized
recommendation algorithm is computed using the formula given
in Eq. 5.

JWNunT)|

ucl
LC] (5)
where U denotes the set of all available users and | indicates the
union set operator.

The APL is another helpful metric in evaluating the recommen-
dation lists’ beyond-accuracy quality and computes what percent-
age of the items recommended to each user belongs to the tail
partition of the catalog. Accordingly, the overall APL performance
of the used recommendation algorithm is calculated using the for-
mula given in Eq. 6.

The last utilized metric is the Novelty which estimates the rec-
ommendation algorithm’s ability to suggest unknown, i.e., novel,
items in the tail set, and is calculated as in Eq. 7. Note also that
higher LC, APL, and Novelty values conclude having more qualified
ranked lists in terms of beyond-accuracy aspects.

(i (T— L))
|U|Z N, @

uel

Novelty =

where I, denotes the list of rated items in the profile of user u.

To evaluate how the proposed BDP influences the accuracy of
the produced recommendation lists, we also employ the F1-score
and normalized Discounted Cumulative Gain (nDCG) metrics. More
specifically, F1-score is calculated as the harmonic mean of Preci-
sion and Recall [39]. Precision refers to the ratio of the number
of recommended appropriate items to the total number of recom-
mended items, while Recall demonstrates the ratio of the number
recommended appropriate items to all rated items in the user pro-
file. Here, we assign 3.5 as the threshold value in estimating if a
recommended item is appropriate for users, as positive votes intu-
itively correspond to 4 and 5 for a five-star rating scale [40].

Suppose that top-N = {iy, i, - - -, iy} indicates the ranked list pro-
duced for user u using a CF algorithm, the F1-score performance of
the algorithm is computed using the formula given in Eq. 8.

2 x P@N x RaN

QN = — —
FlaN P@N + RaQN ®

E. Yalcin and A. Bilge

where P@N and R@N denote the estimated Precision and Recall val-
ues of the produced top-N recommendation list, respectively. The
nDCG metric, on the other hand, mainly measures the level of qual-
ity of the recommended items by considering their actual votes as
well as their positions in the produced recommendation list. Con-
cretely, the Discounted Cumulative Gain (DCG) and nDCG of a esti-
mated top-N list for user u are calculated using the formula
presented in Egs. 9 and 10, respectively.

N
r .
DCGY, = 1, + e 9
N 0 ; lng(Tl) ()
DCG}
DCGy = N 10
"5 = by (10)

where r,; denotes the actual vote of user u on item i and the IDCGy,
indicates the maximum amount of possible gain for user u, which
can be computed with re-ranking of N items so that it will be the
ideal order for u. Note that the higher F1-scores and nDCG values,
the more successful the produced top-N lists are.

6.4. Benchmark methods

In the literature, there is no existing research concerned with
blockbuster bias in recommendations, and therefore any
blockbuster-debiasing method for comparison has not been intro-
duced yet. Nevertheless, we select three efficient popularity-
debiasing strategies as the benchmark methods to evaluate the
performance of our proposed BDP method more comprehensively.

The first benchmark popularity-debiasing approach is called
Value-Aware Re-ranking (VaR) [26], which is a post-processing
method re-ranking items by following a weighting strategy. More
specifically, the VaR method gives higher weights for unpopular
items while assigns lesser weights to popular ones for treating bias
imposed by item popularity. Then, it re-sorts items based on the
artificial ranking scores, which are calculated by combining such
weights and prediction scores through a convex combination
strategy.

The other selected benchmark methods are two different vari-
ants of Enhanced-Re-ranking Procedures (ERP) [12], ERPy, and
ERP4,e, which are improved post-processing methods following
two different combination strategies. These methods follow a more
robust item weighting strategy overcoming some limitations of the
VaR method. Also, to re-rank items, ERPy;,; combines the estimated
item weights and prediction scores with a multiplicative strategy,
while ERP,,, produces ultimate ranking scores by following an
augmentative strategy.

6.5. Experimental results

This section presents the empirical outcomes of the conducted
experiments to explore blockbuster bias in recommendations and
evaluate the performance of the developed blockbuster-debiasing
method.

6.5.1. Imbalances in the distribution of the blockbuster items

As explained in the Introduction section, the observed biases in
recommendations usually originate from the imbalances in the
users’ feedback on items; therefore, we first attempt to explore if
the most used datasets are imbalanced towards blockbuster items
before going further. To this end, we first calculate the blockbuster
score (B) for each item in all utilized datasets using the developed
BLEP; and then observe the B score distributions for the ML,
Ciao20, and Per20 datasets as depicted in 1a, 1b, and Igc,
respectively.

Engineering Science and Technology, an International Journal 33 (2022) 101083

0.6 4

Blockbuster Score

0.2 4

L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000
Items

(a) ML dataset

1 T T T T T T

0.8 4

0.6 4

0.4 q

Blockbuster Score

0.2} 4

0 L L L L L L
0 200 400 600 800 1000 1200 1400

Items

(b) Ciao20 dataset

1 T T T T T T T

Blockbuster Score

. . . \ . . .
0 1000 2000 3000 4000 5000 6000 7000 8000
Items

(¢) Per20 dataset

Fig. 1. The distribution of items’ blockbuster scores B for (a) ML, (b) Ciao20, and (c)
Per20 datasets. In the x-axis, items are sorted by descending order based on their
calculated B scores..

As shown in 1, a small fraction of the items have significantly
higher B scores than the remaining massive part of the item set
for all utilized datasets. This trend is also quite similar to the
imbalance towards popular items in data, which, as is known, lead
to recommendation algorithms include a few popular items
repeatedly in produced lists and create competitional distortions
for the items in the long tail. Therefore, our following analysis
investigates potential biases towards blockbuster items in recom-
mendations, which such imbalances in blockbuster score distribu-
tion may cause.

6.5.2. Analyzing how blockbuster bias dissociate from famous
popularity bias

Before going further in the experiments, in this section, we
attempt to concretely understand how the observed biases
towards blockbuster items and popular items in rating data differ-

E. Yalcin and A. Bilge

entiate. In other words, we try to show why blockbuster bias in
datasets is not the same problem as the famous popularity bias
phenomenon in practice.

To this end, we first determine two different head item sets,
referred as to heady and headp for each dataset, by following the
Pareto principle explained in 4. The former is constructed by con-
sidering items’ blockbuster scores estimated with the BLEP, while
the latter is formed by considering the frequency of provided rat-
ings for them (i.e., item popularity). Then, we calculate an overlap
ratio reflecting what percentage of items in the headp set also
belongs to the head; set. Thus, the value of overlap ratio calculated
for a dataset provides a clear picture of the difference between
blockbuster and popularity bias in the original rating data. Accord-
ingly, the lesser overlap ratios mean the items classified as block-
buster are highly different from items labeled as popular, which
also concludes that blockbuster bias and popularity bias are two
different phenomena in the data. Under these settings, we present
the size of constructed heady and headp item sets and their overlap
ratios for three utilized datasets in 5.

As can be seen from 5, the calculated overlap ratios can vary for
each dataset. This finding is caused by the number of available
items in the datasets since the determined headg and head, sets
quite likely become more similar with a more extensive item cat-
alog. In other words, as the number of available items proliferates,
the decision-making process of individuals becomes more compli-
cated, and therefore they get more inclined to consume block-
buster or popular items, which in turn leads to similar headz and
headp item sets.

Also, the obtained overlap ratios conclude that headg sets usu-
ally contain many items not involved in headp. This observation
is more apparent for Ciao20 and ML datasets, as almost one-half
of Ciao20’s heady and one-quarter of ML's heads are unpopular
items. Therefore, it can be concluded that the problem of block-
buster bias in rating data does not originate from item popularity
and is a particularly different issue from the popularity bias
problem.

6.5.3. Exploring potential blockbuster bias in recommendations

To measure the potential blockbuster bias of the CF algorithms,
we utilize the proposed BRF metric, which is explained in detail in
4, The BRF outcomes of the four used CF algorithms, i.e., UserKNN,
ItemKNN, SVD, and SVD++, based on their produced top-10 recom-
mendation lists for ML, Ciao20, and Per20 datasets are depicted in
2.

Based on the obtained BRF results, it can be concluded that the
utilized CF algorithms produce ranked lists where the head items
are recommended too frequently for all datasets, meaning that
an undesirable and strong bias towards blockbuster items in rec-
ommendations is observed. For example, the BRF values for the
ML dataset vary around 0.55 for each algorithm, which means that
about 55% of all recommended items are the head items. Also, the
highest BRF outcomes for the SVD and SVD++ algorithms are
observed when the MLM dataset is employed. On the other hand,
the lowest BRF results for them are achieved with the Per20 data-
set. This fact may be caused by the number of available users in the
datasets since more users provide a more extensive multiset of the
recommendation lists (N) when calculating BRF performances of
the algorithms (see Eq. 2). Thus, it leads to having recommendation
lists where head items appear more and increases BRF outcomes of
the algorithms. However, UserKNN and ItemKNN algorithms do not
follow such a trend, as shown in 2. Therefore, it can be concluded
that the blockbuster bias of the matrix factorization-based CF algo-
rithms depends on the number of available users in the utilized
dataset, while those of neighborhood-based ones are not influ-
enced by such a property of the dataset.

Engineering Science and Technology, an International Journal 33 (2022) 101083

Table 5
The calculated overlap ratios for the utilized datasets.

Dataset |headp| |headp| Overlap Ratio
ML 118 113 0.77
Ciao20 53 39 0.52
Per20 223 219 0.88
1 T
[ML
[]Cia020
0.8+ [Per20 |4
[}
5 0.6+ o 1
O
N
o
~04r 1
m
0.2+ 1
0 I I I I
UserKNN ItemKNN SVD SVD++

Fig. 2. The BRF results of the utilized CF algorithms for ML, Ciao20, and Per20
datasets.

The obtained BRF results also demonstrate that the
neighborhood-based methods (i.e., UserKNN and ItemKNN) are
slightly more robust than others against blockbuster bias for the
ML dataset, while the matrix factorization-based methods (i.e.,
SVD and SVD++) are usually the most successful ones for both
Ciao20 and Per20 datasets. In conclusion, these observations
demonstrate that the blockbuster bias of the recommendation
algorithms can significantly vary based on the characteristics of
the dataset where they have trained.

6.5.4. Evaluation of the beyond-accuracy performance of the proposed
BDP

To scrutinize the performance of the proposed BDP, we also per-
form a broad set of additional experiments where we observed
how the BDP improves recommendation quality in terms of the
beyond-accuracy perspectives. When applying the BDP in these
experiments, we also consider varying o values from O to 0.5 to
see how it affects the recommendation quality. Here, lesser o val-
ues mean more weight for originally produced predictions while
higher o values penalize the blockbuster items more, as can be fol-
lowed by Eq. 4. Under these settings, we present the LC, APL, and
Novelty results of the BDP for four utilized CF algorithms, i.e.,
UserKNN, ItemKNN, SVD, and SVD++, on the ML, Ciao20, and Per20
datasets in 3, 4, and 5, respectively.

As can be seen from 3, 4, and 5, the proposed BDP helps to
enhance LC, APL, and Novelty performances of the utilized CF algo-
rithms by alleviating their biases towards blockbuster items in
their generated recommendation lists. We also perform statistical
significance tests to explore whether the obtained improvements
are significant or not. Accordingly, all achieved LC, APL, and
Novelty enhancements on three datasets are statistically signifi-
cant for all utilized algorithms at 95% confidence level, except that
in the LC observed when o is set to 0.5 on the ML dataset for
UserKNN algorithm.

The empirical results also conclude that the improvements of
our BDP, especially for APL and Novelty, are more apparent for
the ML when compared to Ciao20 and Per20 datasets. This obser-
vation may be because the original versions of the utilized CF algo-
rithms, i.e., without empowering with the proposed BDP, which is

E. Yalcin and A. Bilge Engineering Science and Technology, an International Journal 33 (2022) 101083

0.4

@)
—
=
Ay
<
04 ;: I I I I I I I
0 0.0 01 015 02 025 03 035 04 045 0.5
>
=
[}
% —&— UserKNN
Z. —6— ItemKNN
——SVD
0 4 ¥ I I I I I I I ——SVD++
0 0.05 01 015 02 025 03 035 04 045 0.5
«
Fig. 3. The beyond-accuracy performance, (i.e., LC, APL, and Novelty) of the proposed BDP for the ML.
0.6 - |
(@) ‘ . N —%
o a———
=04 i
042 = L L 1 1 1 | L L =)
0 0.0 01 015 02 025 03 035 04 045 0.5
1 T T
—
0.8 - _
. W
Ay 0.6 _
<
0.4 M
02 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
>
ﬁ . -
% —e—UserKNN
Z 04 o TtemKNN
——SVD
1 1 1 1 1 1 1 SVD++

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(07

Fig. 4. The beyond-accuracy performance, (i.e., LC, APL, and Novelty) of the proposed BDP for the Ciao20.

E. Yalcin and A. Bilge

0.8

Engineering Science and Technology, an International Journal 33 (2022) 101083

Q L
= 0.4

0.2

0 0.05 0.1 0.15 0.2 0.25

APL

0_1 1 1 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1=
. 0.8 4
=
IS4
z 0.6 _||—=—UserKNN
e TtemKNN
——SVD
04 4 Y I | | | | I I L] SVD++

Fig. 5. The beyond-accuracy performance, (i.e., LC, APL, and Novelty) of the proposed BDP for the Per20.

also the case when the value of « is set to 0, usually perform rela-
tively better on both Ciao20 and Per20 than the ML. This fact, in
turn, intuitively limits the contributions of the BDP approach on
recommendation quality for the Ciao20 and Per20, especially in
terms of APL and Novelty perspectives.

The obtained results also demonstrate that the enhancements
of the BDP on the LC performances are relatively lower than those
on the APL and Novelty, especially for Per20 and ML datasets. Also,
it can be concluded that o value has not a significant effect on the
LC performances of the algorithms, as the obtained enhancements
have interestingly become stable for all datasets in the case of o
values larger than 0.05. On the other hand, as the value of o
increases, the APL and Novelty quality of the produced recommen-
dations significantly improves. This observation meets our expec-
tations since higher « values penalize blockbuster items more in
the generated ranked lists and help achieve more diverse and novel
recommendations.

Moreover, especially in terms of APL and Novelty performances,
the modified neighborhood-based CF algorithms, i.e., UserKNN and
ItemKNN, with our BDP are the best-performing methods for the
ML dataset. On the other hand, matrix factorization-based ones,
i.e.,, SVD and SVD++, are usually more prominent for Per20 and
Ciao20 datasets. This observation is unsurprisingly parallel with
the outcomes of the experiments in the previous section - based
on the BRF results presented in 2, the less blockbuster-biased algo-
rithms are the neighborhood-based ones for the ML dataset, while
the matrix factorization-based ones for both Per20 and Ciao20
datasets. Such trends of the original version of the algorithms are
inevitably quite similar with their modified variants with our
BDP, as lesser blockbuster-biased ranked lists mean having more
qualified recommendation lists in terms of beyond-accuracy
perspectives.

6.5.5. Evaluation of accuracy performance of the proposed BDP

While our proposed BDP is found to be highly effective in
improving the beyond-accuracy quality of the recommendations,
it quite likely leads to unignorable deteriorations in ranking accu-
racy, as such two quality aspects of the recommendations are gen-
erally conflicting goals. We, therefore, also perform additional
experiments where we observed how the BDP negatively affects
the accuracy performances of the utilized CF algorithms. To this
end, we measure F1-scores and nDCG values of the modified CF
algorithms with our BDP for all datasets and different o values
varying O to 0.5, as presented in 6 and 7, respectively. Here, we
again perform statistical significance tests to determine whether
the observed deteriorations in the ranking accuracy are significant
or not, as presented in the footnote of the table.

The obtained Fl1-scores and nDCG values demonstrate that
almost all CF algorithms and their modified versions with our
BDP produce more accurate recommendation lists on the ML and
Per20 when compared to the Ciao20. The main reason for this con-
sequence is that the average number of ratings per user on ML
(around 165) and Per20 (around 512) datasets is significantly
higher than those on the Ciao20 dataset (around 39). This fact
allows improving precision and recall values of the produced rec-
ommendations in calculating F1-scores since the chance of getting
a hit to appropriate items for users increases with more extensive
user profiles. This fact also increases nDCG values since the numer-
ator of this metric (i.e., DCG) positively correlated with the number
of actual ratings per user.

Moreover, the best performing CF algorithms in terms of
beyond-accuracy metrics for a dataset usually lead to the worst
accuracy results for the corresponding dataset. This observation
is as we expected because of the trade-off between the accuracy
and beyond-accuracy aspects of the recommendations. For

E. Yalcin and A. Bilge

Engineering Science and Technology, an International Journal 33 (2022) 101083

Table 6
F1-scores of the BDP for different o values on ML, Cia020, and Per20 datasets.
Dataset ML Ciao20 Per20
o value UserKNN ItemKNN SVD SVD++ UserKNN ItemKNN SVD SVD++ UserKNN ItemKNN SVD SVD++
0 0.089 0.047 0.078 0.071 0.015 0.017 0.021 0.019 0.073 0.060 0.047 0.037
0.05 0.083 0.043 0.074 0.066 0.013 0.016 0.017 0.015x 0.067 0.057 0.042 0.032
0.10 0.078 0.039 0.071 0.063 0.013 0.016 0.017 0.014 0.061 0.056 0.039 0.029
0.15 0.073 0.036 0.068 0.060 0.014 0.016 0.016 0.014 0.054 0.054 0.036 0.026x
0.20 0.067x 0.033x 0.065 0.056x 0.014 0.016 0.016x 0.013x 0.047x 0.052 0.032 0.023x
0.25 0.060x 0.030x 0.060+ 0.052x 0.014 0.014x 0.016x 0.013% 0.039% 0.050+ 0.029« 0.020%
0.30 0.053x 0.025x 0.056x 0.047x 0.015 0.014x 0.015% 0.013% 0.030% 0.047x 0.026x 0.017x
0.35 0.045x 0.022x 0.051x 0.042x 0.015 0.014x 0.015x 0.012x 0.021x 0.044x 0.023x 0.015x
0.40 0.038x 0.020+ 0.046x 0.036% 0.016 0.014x 0.015% 0.012x 0.015% 0.040+% 0.020 0.013%
045 0.032x 0.017x 0.040+ 0.028x 0.017 0.013x 0.015% 0.012x 0.011% 0.035x 0.018x 0.011x%
0.50 0.007x 0.008x 0.019% 0.011x 0.018 0.013x% 0.016x 0.011x 0.010% 0.030% 0.016x 0.010%
« For significance at.%95; w.r.t. pure CF algorithm (i.e., o = 0).
Table 7
nDCG values of the BDP for different o values on ML, Ciao20, and Per20 datasets.
Dataset ML Ciao20 Per20
o value UserKNN ItemKNN SVD SVD++ UserKNN ItemKNN SVD SVD++ UserKNN ItemKNN SVD SVD++
0 0.406 0.236 0.349 0.316 0.023 0.028 0.033 0.033 0.416 0.554 0.342 0.281
0.05 0.366 0.213 0.316 0.280 0.021 0.027 0.026 0.024x 0.375 0.548 0.318 0.263
0.10 0.343 0.199 0.307 0.268 0.022 0.026 0.026 0.024x 0.356x 0.538 0.294 0.251
0.15 0.317x 0.185x 0.295x 0.255% 0.021 0.026 0.025 0.024x 0.298x 0.526 0.291x 0.232x
0.20 0.286x 0.172x 0.282 0.240+% 0.021 0.025 0.025 0.023x 0.256x% 0.503 0.281x 0.223%
0.25 0.252x 0.158x 0.267x 0.223x 0.021 0.024x 0.025 0.024x 0.208x 0.483x 0.271% 0.205x%
0.30 0.217x 0.143x 0.250% 0.204x 0.021x 0.024x 0.024x 0.024x 0.167x 0.460x 0.258x 0.193x
035 0.180x 0.131% 0.233% 0.183x 0.022 0.024x 0.024x 0.023x 0.129% 0.435% 0.212x 0.130%
0.40 0.146x 0.120+ 0.212x 0.160x 0.023 0.023x 0.023x 0.023x 0.108x 0.395x 0.193x 0.115%
0.45 0.118x 0.105% 0.190x 0.133x 0.024 0.023x 0.023x 0.023x 0.096x 0.349x 0.176x 0.102x
0.50 0.030% 0.065x 0.119% 0.070% 0.026 0.023x% 0.023x 0.023x 0.094x 0.295x 0.158x 0.093x
+ For significance at.%95; w.r.t. pure CF algorithm (i.e., « = 0).
Table 8
The comparison of the BDP with the benchmark methods in terms of both accuracy and beyond-accuracy metrics.
Dataset Method LC (1) APL (1) Novelty (1) F1-score (1)) nDCG (1)
ML BDP 0.297 0.608 0.503 0.065 0.282
Var 0.239x% 0.489x 0.403x 0.074 0.315
ERPyyy, 0.235% 0.849 0.754 0.008 0.044
ERPpyq 0.275% 0.895 0.612 0.015 0.081
Ciao20 BDP 0.526 0.749 0.734 0.016 0.025
Var 0.194x 0.710% 0.704x 0.014 0.022
ERPpy 0.177% 0.841 0.931 0.008 0.013
ERPpyg 0.184x 0.878 0.868 0.009 0.014
Per20 BDP 0.158 0.813 0.708 0.032 0.281
Var 0.124% 0.719% 0.630x 0.041 0.307
ERPypy 0.114x 0.878 0.831 0.006 0.066
ERPpyg 0.130x 0.845 0.814 0.007 0.083

1, desired trend for the indicator.
+ For significance at.%95; beyond-accuracy improvements.

example, according to the APL and Novelty scores obtained in the
previous experiments, the ItemKNN usually performs relatively
better than others for the ML dataset; however, the achieved F1-
scores and nDCG values conclude that it is the worst CF algorithm
in terms of accuracy performance among others for ML dataset, as
can be seen in 6 and 7.

As can be followed by 6 and 7, as the value of « increases, the
achieved F1-scores and nDCG values dramatically decrease in
almost all schemes except for the UserKNN algorithm on the Ciao20
dataset, as we expected. However, the performed t-tests demon-
strate that such deteriorations in ranking-accuracy performance
of the algorithms are statistically insignificant with o« values smal-
ler than 0.2 in general, meaning that the obtained losses in ranking
accuracy are negligible for such configurations. Considering that

10

almost all o values help improve the beyond-accuracy quality of
the produced recommendations significantly, we conclude that
the BDP variant with oo = 0.2 is the most successful setting in main-
taining reasonable ranking accuracy.

6.5.6. Comparison of our BDP method with benchmark methods

We also conduct several additional experiments to compare the
beyond-accuracy and accuracy performances of the proposed BDP
method (with o = 0.2) against three benchmark approaches (i.e.,
VaR, ERPyyi, and ERPayg) for ML, Ciao20, and Per20 datasets, as pre-
sented in 8. We also performed one-tailed t-tests to examine
whether the improvements in beyond-accuracy metrics are statis-
tically significant at the 95% confidence level. In doing so, we com-
pare our BDP method against each benchmark method.

E. Yalcin and A. Bilge

According to the obtained results, it can be concluded that our
BDP significantly outperforms the VaR method in terms of all
beyond-accuracy metrics (i.e., LC, APL, and Novelty) and achieves
comparable accuracy performances (i.e., F1-score and nDCG) for
all datasets. Likewise, the LC performance of our BDP method is sig-
nificantly higher than both ERPy, and ERP,,.. On the other hand,
ERP variants seem to be the best-performing methods in terms of
APL and Novelty perspectives. However, their accuracy perfor-
mances are dramatically lower than both our BDP and VaR meth-
ods, and these deteriorations in ranking accuracy reach
unignorable levels, especially for ML and Per20 datasets.

To sum up, we can conclude that our BDP method is a more suc-
cessful debiasing strategy than all utilized benchmarks when con-
sidering both beyond-accuracy and accuracy recommendation
quality simultaneously.

7. Limitations and Discussion

Recommendation algorithms typically produce ranked lists by
considering the explicit feedbacks (i.e., ratings) derived from users’
past interactions on items. Considering their internal mechanismes,
most of them utilize the mean of the ratings provided for an item
as an additive factor when calculating the final prediction score.
For example, the ItemKNN, a neighborhood-based CF algorithm,
typically produces a prediction for a specific item by summing
up its average rating value with the weighted average of the rat-
ings of most similar items. Likewise, SVD, a matrix factorization-
based CF algorithm, utilizes the variations in rating values associ-
ated with items, named as biases, as an aggregation factor in esti-
mating predictions. Thus, it can be concluded that the values of the
provided ratings are critical for the calculated predictions and rec-
ommendation algorithms undesirably calculate higher predictions
for the items that have higher averages when compared to ones
having relatively lower averages. This also inevitably ends up hav-
ing recommendation lists where the highly-liked items appear
more frequently than others. In other words, the liking-degree of
the items quite likely leads to a different and undesirable bias in
recommendations from the famous popularity bias. Although the
proposed blockbuster bias issue differentiates from popularity
bias, it has limitations on detectability in some recommendation
scenarios since it relies on determining the liking-degree of an item
based on its existing explicit numerical rating values. Such limita-
tion might be observed in market-basket analysis, which collects
implicit ratings of users based on their click history or time spent
on particular products. In such a scenario, items will receive ratings
indicating if they attract attention or not on the user side. There-
fore, calculated blockbuster scores would principally converge to
popularity scores, obstructing the detection of such bias. In addi-
tion, some recommendation environments (such as YouTube
videos) only collect ratings indicating if an item is liked or disliked
by a user. In such a scenario, the liking-degree of a particular item
cannot be estimated as the average rating score but as a ratio of
likes over dislikes. Although such a scheme would allow comput-
ing a distinct blockbuster score for an item apart from its popular-
ity, the discriminative property of such a score would be weak for
understanding how blockbuster bias originates from data and
propagates through recommendation algorithms.

8. Conclusion and future work

Recommender systems are highly effective machine learning
tools that support the decision-making process of individuals by
recommending items related to their interests and provide various
benefits of the digital platform where they are used. However, the
literature has recently acknowledged that recommendation

11

Engineering Science and Technology, an International Journal 33 (2022) 101083

algorithms are unwittingly biased for some particular items
because of their specific characteristics, leading to unqualified rec-
ommendations. In this study, we evaluate such a problem from a
new and different perspective - blockbuster items that are popular
among individuals and highly liked by them, and focus on develop-
ing a practical solution to eliminate potential biases towards such
items.

For this purpose, in this study, we first introduce a practical
method estimating the blockbuster level of the items by appropri-
ately incorporating their liking-degree and popularity. We also
present a novel evaluation metric relying on this method, named
Blockbuster Recommendation Frequency (BRF), measuring the degree
of potential bias towards blockbuster items in the produced rec-
ommendation lists. The performed experiments demonstrate that
two benchmark datasets in three different application domains
are highly imbalanced towards blockbuster items. Additionally,
the most prominent four collaborative algorithms recommend
such items too frequently in their produced ranked lists, indicating
a solid and undesirable blockbuster bias has occurred in the
recommendations.

To treat the adverse effects of such a blockbuster bias in recom-
mendations, we also propose the Blockbuster-Debiasing Procedure
(BDP) that focuses on re-ranking recommended lists by penalizing
items based on their blockbuster levels. The empirical outcomes
conclude that the proposed BDP highly effectively alleviates block-
buster bias in recommendations and helps to improve the recom-
mendation quality in terms of beyond-accuracy aspects, such as
coverage, diversity, and novelty, with maintaining reasonable
ranking accuracy. Therefore, many digital platforms utilizing rec-
ommender systems can efficiently adopt the proposed BDP to
achieve recommendation lists where such a blockbuster bias prob-
lem is treated; thus, they can generate more diverse recommenda-
tions by providing more visibility of the underappreciated items
and increase the sales of such items.

Although our analysis shows the existence of the blockbuster
bias in recommendations, such a bias might affect individuals dif-
ferently based on their past interests in blockbuster items. There-
fore, our future directions might include investigating how
different users with different interest levels towards blockbuster
items are affected by recommendation algorithms. Also, the pro-
posed BDP can be improved by adjusting from such an user-
centered perspective to achieve more fair recommendations.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work is supported by the Scientific Research Project Fund
of Sivas Cumhuriyet University under the project number M-
2021-811.

References

[1] F.Ricci, L. Rokach, B. Shapira, Introduction to recommender systems handbook,
in: Recommender systems handbook, Springer, 2011, pp. 1-35..

[2] S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning based recommender system: A
survey and new perspectives, ACM Computing Surveys 52 (1). doi: 10.1145/
3285029..

[3] R. Chen, Q. Hua, Y.S. Chang, B. Wang, L. Zhang, X. Kong, A survey of
collaborative filtering-based recommender systems: From traditional
methods to hybrid methods based on social networks, IEEE Access 6 (2018)
64301-64320, https://doi.org/10.1109/ACCESS.2018.2877208.

https://doi.org/10.1109/ACCESS.2018.2877208

E. Yalcin and A. Bilge

[4] M. Karimi, D. Jannach, M. Jugovac, News recommender systems - survey and
roads ahead, Information Processing & Management 54 (6) (2018) 1203-1227,
https://doi.org/10.1016/j.ipm.2018.04.008.

[5] M. Kunaver, T. PoZrl, Diversity in recommender systems - a survey,
Knowledge-Based Systems 123 (2017) 154-162, https://doi.org/10.1016/
j-knosys.2017.02.009.

[6] M. Mendoza, N. Torres, Evaluating content novelty in recommender systems,
Journal of Intelligent Information Systems 54 (2) (2020) 297-316, https://doi.
org/10.1007/s10844-019-00548-x.

[7] T. Silveira, M. Zhang, X. Lin, Y. Liu, S. Ma, How good your recommender system
is? a survey on evaluations in recommendation, International Journal of
Machine Learning and Cybernetics 10 (5) (2019) 813-831, https://doi.org/
10.1007/s13042-017-0762-9.

[8] J. Chen, H. Dong, X. Wang, F. Feng, M. Wang, X. He, Bias and debias in

recommender system: A survey and future directions (2020).

arXiv:2010.03240..

L. Boratto, G. Fenu, M. Marras, Connecting user and item perspectives in

popularity debiasing for collaborative recommendation, Information

Processing & Management 58 (1) (2021), https://doi.org/10.1016/j.

ipm.2020.102387 102387.

L. Boratto, G. Fenu, M. Marras, The effect of algorithmic bias on recommender

systems for massive open online courses, European Conference on Information

Retrieval, Springer (2019) 457-472, https://doi.org/10.1007/978-3-030-

15712-8_30.

L. Hou, X. Pan, K. Liu, Balancing the popularity bias of object similarities for

personalised recommendation, The European Physical Journal B 91 (3) (2018)

1-7, https://doi.org/10.1140/epjb/e2018-80374-8.

E. Yalcin, A. Bilge, Investigating and counteracting popularity bias in group

recommendations, Information Processing & Management 58 (5) (2021). URL:

https://www.sciencedirect.com/science/article/pii/S0306457321001047

102608.

P. Cremonesi, F. Garzotto, S. Negro, A.V. Papadopoulos, R. Turrin, Looking for

"good” recommendations: A comparative evaluation of recommender

systems, in: IFIP Conference on Human-Computer Interaction, Springer,

2011, pp. 152-168. doi: 10.1007/978-3-642-23765-2_11..

Y. Liu, X. Cao, Y. Yu, Are you influenced by others when rating? improve rating

prediction by conformity modeling, in: Proceedings of the 10th ACM

Conference on Recommender Systems, 2016, pp. 269-272, https://doi.org/

10.1145/2959100.2959141.

D. Liu, P. Cheng, Z. Dong, X. He, W. Pan, Z. Ming, A general knowledge

distillation framework for counterfactual recommendation via uniform data,

in: Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2020, pp. 831-840, https://doi.org/
10.1145/3397271.3401083.

[16] J.M. Herndndez-Lobato, N. Houlsby, Z. Ghahramani, Probabilistic matrix
factorization with non-random missing data, in: International Conference on
Machine Learning, PMLR, 2014, pp. 1512-1520..

[17] T. Joachims, L. Granka, B. Pan, H. Hembrooke, G. Gay, Accurately interpreting
clickthrough data as implicit feedback, in: ACM SIGIR Forum, vol. 51, Acm New
York, NY, USA, 2017, pp. 4-11. doi: 10.1145/3130332.3130334..

[18] O. Hingz, J. Eckert, B. Skiera, Drivers of the long tail phenomenon: an empirical
analysis, Journal of management information systems 27 (4) (2011) 43-70,
https://doi.org/10.2753/MIS0742-1222270402.

[19] D. Kowald, M. Schedl, E. Lex, The unfairness of popularity bias in music
recommendation: A reproducibility study, in: European Conference on
Information Retrieval, Springer, 2020, pp. 35-42, https://doi.org/10.1007/
978-3-030-45442-5_5.

[20] H. Abdollahpouri, Popularity bias in recommendation: A multi-stakeholder
perspective (2020). arXiv:2008.08551..

[21] P. Sanchez, Exploiting contextual information for recommender systems
oriented to tourism, in: Proceedings of the 13th ACM Conference on

lo

[10]

[11]

[12]

[13]

[14]

[15]

12

Engineering Science and Technology, an International Journal 33 (2022) 101083

Recommender Systems,

3298689.3347062.

YJ. Park, A. Tuzhilin, The long tail of recommender systems and how to

leverage it, in: Proceedings of the 2008 ACM conference on Recommender

systems, 2008, pp. 11-18, https://doi.org/10.1145/1454008.1454012.

D. Jannach, L. Lerche, I. Kamehkhosh, M. Jugovac, What recommenders

recommend: an analysis of recommendation biases and possible

countermeasures, User Modeling and User-Adapted Interaction 25 (5) (2015)

427-491, https://doi.org/10.1007/s11257-015-9165-3.

C. Chen, M. Zhang, Y. Liu, S. Ma, Missing data modeling with user activity and

item popularity in recommendation, in: Asia Information Retrieval

Symposium, Springer, 2018, pp. 113-125, https://doi.org/10.1007/978-3-

030-03520-4_11.

H. Abdollahpouri, R. Burke, B. Mobasher, Controlling popularity bias in

learning-to-rank recommendation, in: Proceedings of the Eleventh ACM

Conference on Recommender Systems, 2017, pp. 42-46, https://doi.org/

10.1145/3109859.3109912.

[26] H. Abdollahpouri, R. Burke, B. Mobasher, Popularity-aware item weighting for
long-tail recommendation (2018). arXiv:1802.05382..

[27] H. Abdollahpouri, R. Burke, B. Mobasher, Managing popularity bias in
recommender systems with personalized re-ranking, arXiv preprint
arXiv:1901.07555..

[28] D. Jannach, L. Lerche, M. Zanker, Recommending based on implicit feedback,
in: Social Information Access, Springer, 2018, pp. 510-569. doi: 10.1007/978-
3-319-90092-6_14..

[29] H. Abdollahpouri, M. Mansoury, R. Burke, B. Mobasher, The unfairness of
popularity bias in recommendation (2019). arXiv:1907.13286..

[30] E. Yalcin, Blockbuster: A new perspective on popularity-bias in recommender
systems, in: 2021 6th International Conference on Computer Science and
Engineering (UBMK), 2021, pp. 107-112, https://doi.org/10.1109/
UBMK52708.2021.9558877.

[31] R. Sanders, The pareto principle: its use and abuse, Journal of Services
Marketing..

[32] E. Yalcin, A. Bilge, Novel automatic group identification approaches for group
recommendation, Expert Systems with Applications 174 (2021), https://doi.
org/10.1016/j.eswa.2021.114709 114709.

[33] T.T. Nguyen, F. Maxwell Harper, L. Terveen,].A. Konstan, User personality and
user satisfaction with recommender systems, Information Systems Frontiers
20 (6) (2018) 1173-1189, https://doi.org/10.1007/s10796-017-9782-y.

[34] A. Vehtari, A. Gelman, J. Gabry, Practical bayesian model evaluation using
leave-one-out cross-validation and waic, Statistics and computing 27 (5)
(2017) 1413-1432, https://doi.org/10.1007/511222-016-9696-4,

[35] Y. Koren, Factor in the neighbors: Scalable and accurate collaborative filtering,
ACM Transactions on Knowledge Discovery from Data (TKDD) 4 (1) (2010) 1-
24, https://doi.org/10.1145/1644873.1644874.

[36] E. Yalgin, Isbirlikgi filtreleme algoritmalarinin Cok-begenilen Uriinlere yonelik
yanliligi, Bilecik Seyh Edebali Universitesi Fen Bilimleri Dergisi 8 (2021) 279-
291, https://doi.org/10.35193/bseufbd.884634.

[37] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender
systems, Computer 42 (8) (2009) 30-37, https://doi.org/10.1109/
MC.2009.263.

[38] S. Wang, M. Gong, H. Li,]. Yang, Multi-objective optimization for long tail
recommendation, Knowledge-Based Systems 104 (2016) 145-155, https://doi.
org/10.1016/j.knosys.2016.04.018.

[39] E. Yalcin, A. Bilge, Binary multicriteria collaborative filtering, Turkish Journal of
Electrical Engineering & Computer Sciences 28 (6) (2020) 3419-3437, https://
doi.org/10.3906/elk-2004-184.

[40] J. Bobadilla, F. Serradilla,]. Bernal, A new collaborative filtering metric that
improves the behavior of recommender systems, Knowledge-Based Systems
23 (6) (2010) 520-528, https://doi.org/10.1016/j.knosys.2010.03.009.

2019, 601-605,

pp. https://doi.org/10.1145/

[22]

[23]

[24]

[25]

https://doi.org/10.1016/j.ipm.2018.04.008
https://doi.org/10.1016/j.knosys.2017.02.009
https://doi.org/10.1016/j.knosys.2017.02.009
https://doi.org/10.1007/s10844-019-00548-x
https://doi.org/10.1007/s10844-019-00548-x
https://doi.org/10.1007/s13042-017-0762-9
https://doi.org/10.1007/s13042-017-0762-9
https://doi.org/10.1016/j.ipm.2020.102387
https://doi.org/10.1016/j.ipm.2020.102387
https://doi.org/10.1007/978-3-030-15712-8_30
https://doi.org/10.1007/978-3-030-15712-8_30
https://doi.org/10.1140/epjb/e2018-80374-8
http://refhub.elsevier.com/S2215-0986(21)00215-9/h0060
http://refhub.elsevier.com/S2215-0986(21)00215-9/h0060
http://refhub.elsevier.com/S2215-0986(21)00215-9/h0060
http://refhub.elsevier.com/S2215-0986(21)00215-9/h0060
https://doi.org/10.1145/2959100.2959141
https://doi.org/10.1145/2959100.2959141
https://doi.org/10.1145/3397271.3401083
https://doi.org/10.1145/3397271.3401083
https://doi.org/10.2753/MIS0742-1222270402
https://doi.org/10.1007/978-3-030-45442-5_5
https://doi.org/10.1007/978-3-030-45442-5_5
https://doi.org/10.1145/3298689.3347062
https://doi.org/10.1145/3298689.3347062
https://doi.org/10.1145/1454008.1454012
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/978-3-030-03520-4_11
https://doi.org/10.1007/978-3-030-03520-4_11
https://doi.org/10.1145/3109859.3109912
https://doi.org/10.1145/3109859.3109912
https://doi.org/10.1109/UBMK52708.2021.9558877
https://doi.org/10.1109/UBMK52708.2021.9558877
https://doi.org/10.1016/j.eswa.2021.114709
https://doi.org/10.1016/j.eswa.2021.114709
https://doi.org/10.1007/s10796-017-9782-y
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1145/1644873.1644874
https://doi.org/10.35193/bseufbd.884634
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1016/j.knosys.2016.04.018
https://doi.org/10.1016/j.knosys.2016.04.018
https://doi.org/10.3906/elk-2004-184
https://doi.org/10.3906/elk-2004-184
https://doi.org/10.1016/j.knosys.2010.03.009

	Treating adverse effects of blockbuster bias on beyond-accuracy quality of personalized recommendations
	1 Introduction
	2 Related Work
	3 The Blockbuster Level Estimation Procedure (BLEP)
	4 The Blockbuster Recommendation Frequency (BRF) evaluation metric
	5 The proposed Blockbuster-Debiasing Procedure (BDP)
	5.1 An illustrative example for the proposed BDP

	6 Experimental studies
	6.1 Datasets and experimentation methodology
	6.2 The recommendation algorithms
	6.3 Evaluation metrics
	6.4 Benchmark methods
	6.5 Experimental results
	6.5.1 Imbalances in the distribution of the blockbuster items
	6.5.2 Analyzing how blockbuster bias dissociate from famous popularity bias
	6.5.3 Exploring potential blockbuster bias in recommendations
	6.5.4 Evaluation of the beyond-accuracy performance of the proposed BDP
	6.5.5 Evaluation of accuracy performance of the proposed BDP
	6.5.6 Comparison of our BDP method with benchmark methods

	7 Limitations and Discussion
	8 Conclusion and future work
	Declaration of Competing Interest
	Acknowledgment
	References

