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Abstract In this paper, we study the concepts of Wijsman
lacunary Z-invariant convergence (Z);), Wijsman lacu-
nary Z*-invariant convergence (Z; ), Wijsman p-strongly
lacunary invariant convergence ([WNae] ,,) of sequences of

sets and investigate the relationships among Wijsman
lacunary invariant convergence, [WNag]p, I(% and I;g/

Also, we introduce the concepts of Z)%-Cauchy sequence
and Z, Z;OW-Cauchy sequence of sets.
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1 Introduction and Background

The concept of convergence of a sequence of real numbers
R has been extended to statistical convergence indepen-
dently by Fast [1], Schoenberg [2] and studied by many
authors. Nuray and Ruckle [3] introduced it with another
name: generalized statistical convergence. The idea of Z-
convergence was introduced by Kostyrko et al. [4] as a
generalization of statistical convergence which is based on
the structure of the ideal Z of subset of positive integers N.
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Nuray and Rhoades [5] extended convergence of set
sequences to statistical convergence and gave some basic
theorems. Ulusu and Nuray [6] defined the Wijsman
lacunary statistical convergence of set sequences and
considered its relation with Wiijsman statistical conver-
gence defined by Nuray and Rhoades. Kisi and Nuray [7]
introduced a new convergence notion for sequence of sets
called Wijsman Z-convergence. The concept of conver-
gence of sequence of numbers has been extended by sev-
eral authors to convergence of set sequences [8—17].

Several authors including Raimi [18], Schaefer [19],
Mursaleen [20], Pancaroglu and Nuray [21] have studied
invariant convergent sequences. Nuray et al. [22] defined
the concepts of g-uniform density of any subsets A of N,
T s~convergence and investigated relationships between Z ;-
convergence and invariant convergence also Z,-conver-
gence and [Va]p—convergence. The concept of strongly o-
convergence was defined by Mursaleen [23]. Savas and
Nuray [24] introduced the concepts of o-statistical con-
vergence and lacunary o-statistical convergence and gave
some inclusion relations. The concept of strong o-conver-
gence was generalized by Savag [25]. Recently, Nuray and
Ulusu [26] investigated lacunary Z-invariant convergence
and lacunary Z-invariant Cauchy sequence of real num-
bers. Pancaroglu Akin et al. [27] studied Wijsman Z-in-
variant convergence of sequences of sets.

2 Definitions and Notations
Now, we recall the ideal convergence, invariant conver-

gence, sequence of sets and basic definitions and concepts
(see [4, 5, 13, 14, 18, 19, 21, 22, 26-30]).
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A family of sets Z C 2N is called an ideal if and only
if(i) () € Z, (ii) For each A, B € T we have AUB € I, (iii)
For each A € 7 and each B C A we have B € T.

An ideal is called nontrivial if N ¢ Z and nontrivial
ideal is called admissible if {n} € Z for each n € N.

A family of sets 7 C 2N is called a filter if and only if(i)
0 & F, (ii) For each A, B € F we have AN B € F, (iii) For
each A € F and each B D A we have B € F.

If 7 is a nontrivial ideal in X, X # (), then the class

FI)={McX:(EAcT)(M=X\A)}

is a filter on X, called the filter associated with Z.

Let o be a mapping of the set of positive integers into
itself. A continuous linear functional ¢ on £, the space of
real bounded sequences, is said to be an invariant mean or a
g-mean if and only if

1. ¢(x) >0, when the sequence x = (x,) has x,, > 0 for all

2. ¢(e) =1, where e = (1,1,1,...), and
3. ¢(xom) = P(xy) for all x € L.

The mappings ¢ are one-to-one and such that ¢™(n) # n
for all positive integers n and m, where ¢"(n) denotes the m
th iterate of the mapping ¢ at n. Thus ¢ extends the limit
functional on c, the space of convergent sequences, in the
sense that ¢(x) =limx for all x € c. In the case g is
translation mappings o(n) =n + 1, the o-mean is often
called a Banach limit and V,;, the set of bounded sequences
all of whose invariant means are equal, is the set of almost
convergent sequences [31].

It has been shown [32] that

1 m
V, = {x = (xy) € ly : lim —Zxak(,,) = L}.

uniformly in n.
A bounded sequence x = (x;) is said to be strongly o-
convergent to L if

1 n—1
lim *Z‘.xo-k(m) — L‘ =0,
n—oon =y

uniformly in m and in this case, it is denoted by
xx — L[V,]. By [V;], we denote the set of all strongly o-
convergent sequences.

In the case a(n) =n+ 1, the space [V,] is the set of
strongly almost convergent sequences [¢].

Nuray et al. [22] introduced the concepts of g-uniform
density and Z,-convergence.

)|

Let A C N and sn—mln{Aﬁ{a a*(m),..
and S, —max|Aﬁ{ a*(m),. )}]

If the "limits Z(A) = hm,l_,Oo i V(A) = lim, o 3
exists then, they are called a lower and an upper g-uniform

@ Springer

density of the set A, respectively. If V(A) = V(A), then
V(A) = V(A) = V(A) is called the o-uniform density of A.

Denote by Z, the class of all A C N with V(A) = 0.

Throughout the paper, let (X, p) be a metric space, Z C
2N be an admissible ideal and A,A; be any non-empty
closed subsets of X.

For any point x € X and any non-empty subset A of X,
we define the distance from x to A by
d(x,A) = inf p(x,a).

acA

A sequence {A;} is bounded if supd(x,A;)<oo, for
each x € X. Ly, denotes the set of bofinded sequences of
sets.

A sequence {A;} is said to be Wijsman invariant sta-
tistical convergent to A, if for every ¢ > 0 and for each
xeX

lim —|{o <k<n:|d(x,Amxm)

n—oon

—d(x,A)|>¢}| =0,

uniformly in m. In this case, we write Ay — A(WS,) and
the set of all Wijsman invariant statistical convergent
sequences of sets is denoted by WS;.

A sequence {A;} is said to be Wijsman Z-invariant
convergent to A or 7 y-convergent to A if for every ¢ > 0

Ale,x) = {k : |d(x,Ay) — d(x,A)| > ¢} € T,

that is, V(A(e,x)) = 0. In this case, we write Ay — A(Z))
and the set of all Wijsman Z-invariant convergent
sequences of sets is denoted by IZV.

Let (X, p) be a separable metric space. The sequence
{Ax} is Wijsman T*-invariant convergent or Z*"-conver-
gent to A if there existsaset M = {my < -+ <my < ---} €
F(Z,) such that for each x € X,

klim d(x,A,,) = d(x,A).

A sequence {A;} is said to be Wijsman Z-invariant
Cauchy sequence or I:;V—Cauchy sequence if for every
¢> 0 and for each x € X, there exists a number N =
N(e,x) € N such that

A(e,x) = {k : |d(x,Ay)
that is, V(A(e,x)) = 0.
A sequence {A;} is said to be Wijsman Z*-invariant

Cauchy sequence or 7 :;W-Cauchy sequence if there exists a
set M ={m <...<my<...} € F(Z,) such that

k;})iinoo’d(x7Amk) - d(x7Amn)| = 0’

—d(x,Ay)| > e} € T,

for each x € X.
A sequence {A;} is said to be Wijsman p-strongly
invariant convergent to A, if for each x € X,
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li d(x,A —d(x,A)["=0,

nl»rrolc n Z| X5 Agk(m) ()C ) |

uniformly in m, where 0 <p <oo. In this case, we write
Ay — A[WV,], and the set of all Wijsman p-strongly
invariant convergent sequences of sets is denoted by
[WVg]p.

By a lacunary sequence we mean an increasing integer
sequence 6 = {k,} such that ky = 0 and h, = k,
0o as r — oo. The intervals determined by 0 are denoted by
I, = (krflakr]-

The concept of lacunary strong o-convergence was
introduced by Savag [32] as:

—L| = 0},
uniformly in m.

Ly = {x_ Xi) 11m Z‘xgk
hy kel,

Pancaroglu and Nuray [21] defined the concept of
lacunary invariant summability and the space [V g as
follows:

A sequence x = (x;) is said to be lacunary invariant
summable to L if

hm E Xgn(ny = L,

" mel,

*kr—l -

uniformly inn =1,2,....
A sequence x = (xi) is said to be strongly lacunary g-
invariant convergent (0 <g<oo) to L if

hmh Z’xa’” w — L=

" mel,

uniformly in n = 1,2, ... and we write x; — L( [V g}qg.

Let 6={k.} be a lacunary sequence, A C N
and s, = min{|A N {c"(n) : m € I,}|} and S, = max{|Aﬂ
{o™(n) : m'e 1}|}.

If the limits Vy(A) = lim, . 3= and Vy(A) = limei—:
exist then, they are called a lower lacunary o¢-uniform
(lower g0-uniform) density and an upper lacunary o-uni-
form (upper gf-uniform) density of the set A, respectively.
If Vy(A) = Vy(A), then Vy(A) = V,(A) = Vy(A) is called
the lacunary o-uniform density or of-uniform density of A.

Denoted by Z 44 the class of all A C N with Vp(A) = 0.

A sequence (x;) is said to be lacunary Z,-convergent to
L or I p-convergent to L if for every ¢ > 0, the set A, =
{k: |xx — L| > &} belongs to Z, i.e., Vy(A;) = 0. In this
case, we write Z ;9 — limx; = L.

The set of all Z,9-convergent sequences is denoted by
So0-

A sequence x = (x;) is said to be Z,-convergent to the
number L if there exists a set M = {m<my<---} €
F(Zsp) such that limy_sox,, = L. In this case, we write
I, — limy, = L.

A sequence (x;) is said to be lacunary Z,-Cauchy
sequence or Z ;9-Cauchy sequence if for every ¢ > 0, there
exists a number N = N(g) € N such that the set A(e) =
{k : |xx — xy| > ¢} belongs to Z 49, i.e., Vy(A(e)) = 0.

A sequence x = (xi) is said to be Z,-Cauchy sequences
if there exists a set M ={mj<mp<--- <my<---} €
F(Z9) such that limy .o |Xm, — Xm,| = 0.

A sequence {A;} is said to be Wijsman lacunary
invariant convergent to A, for each x € X

hm Zd X Agk(m>) =d(x,A),

hy kel,

uniformly in m.

An admissible ideal Z C 2V is said to satisfy the con-
dition (AP) if for every countable family of mutually dis-
joint sets {Ej,E,,...} belonging to Z there exists a
countable family of sets {F;,F>,...} such that E;AF; is a
finite set forj e N and F = |J F; € Z.

Several authors studied od-ideal convergence and lacu-
nary sequence (see [33—43]).

3 Main Results

In this section, we study the concepts of Wijsman Lacunary
Z-invariant convergence @ (%), Wijsman Lacunary Z*-in-
variant convergence (7)) >0 )» Wijsman p-strongly Lacunary
invariant convergence | [WNg] p) and investigate the
relationships among Wijsman Lacunary invariant conver-
gence, [WNq),, I, and Iy

Definition 3.1 Asequence {A} is said to be Wijsman
lacunary T-invariant convergent or T (%-convergent to A if
for every ¢ > 0 and for each x € X, the set

Ae,x) = {k : |d(x,Ar) — d(x,A)| > ¢}

belongs to I s, that is, Vy(A(e,x)) = 0. In this case, we
write Ay — A(I ) and the set of all Wijsman lacunary I-
invariant convergent sequences of sets is denoted by I o0

Theorem 3.1 Let {A;} is bounded sequence. If {Ay} is
% -convergent to A, then {A;} is Wijsman lacunary
invariant convergent to A.

Proof Let 0 be a lacunary sequence, m € N be arbitrary
and ¢ > 0. For each x € X, we calculate

(5 Ani) + (5 Agi) + -+ (5 i)
h

r

t(m,r,x) := ;d —d(x,A)|.

Then, for each x € X we have
t(m7 r7 'x) S tl(m7 r7x) Jr tz(m7 r7 x)?

where

@ Springer
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’d(x, A(,j(m)) — d()C7 A) |

1
1 —
t (m,r,x) = g

r .

SRS

|d(x,Agigm)) — d(x,A)| > &

and

1
2‘2(m7 rx) = W |d(x,A(,_y(m)) — d(x,A)‘.

' Jjel
|d(x, Agim)) — d(x,A)| <&

Therefore, we have #*(m,r,x)<e for each x € X and for
every m = 1,2,.... The boundedness of {A;} implies that
there exist 7 > 0 such that for each x € X

|d(x,Apim) —d(x,A)| <T, (€ L;m=1,2...)
and this implies that
t'(m,r,x) < h—];’{j el : |d(x,Aa,(m)) — d(x,A)‘ 28}}

max|{j € 1,« : ’d(x7Aa'j(l7z)) _d(X,A)’ ZS}’
> hr

=T,
hy

Hence, {A} is Wijsman lacunary invariant convergent to
A.

Definition 3.2 Ler (X, p) be a separable metric space. A
sequence {Ay} is Wijsman lacunary I -invariant conver-
gent or Ijgv-convergent to A if there exists a set M =
{my< - <mp<---} € F(Zy9) such that for each x € X,

klim d(x,A,,) = d(x,A).

Theorem 3.2  If a sequence {A;} is T} -convergent to A,
then {A} is I)-convergent to A.

Proof By assumption, there exists a set H € Z ;¢ such that
for M = N\H = {m; < --- <my < ---} we have

lim d(x, Ay, ) = d(x,A), (3.1)
k—00

for each x € X. Let ¢ > 0. By Eq. 3.1, there exists ko € N
such that for each x € X

|d(x, A, ) — d(x,A)| <e,
for each k > ky. Then, obviously

(ke N : |d(x,Ay) — d(x,A)| > &}

CHU{m1<m2<-~~<mk0}. (32)

Since Z,y is admissible, the set on the right-hand side of
Eq. (3.2) belongs to Z 9. So {Ay} is Z)-convergent to A.

Theorem 3.3 Let Z,9 C 2N be an admissible ideal with
the property (AP). If {Ai} is I%- convergent to A, then
{Ac} is T3} -convergent to A.

@ Springer

Proof Suppose that Z 5 satisfies condition (AP) and {A;}
isZ %-convergent to A. Then, for every ¢ > 0 and for each
xeX

{k : |d(x,Ag) — d(x,A)| > &} € T 0.

Put E; = {k:|d(x,Ar) —d(x,A)|>1} and E,={k:1
<l|d(x,Ar) —d(x,A)|< A5}, for n>2 and for each
x € X. Obviously E;NE; =, for i#j. By condition

(AP) there exists a sequence of {F,},. such that E;AF;
o0

are finite sets for j€ N and F = ( Fj) €T4. It is
=1

sufficient to prove that for M = N\F and for each x € X,
we have

klim d(x,Ay) =d(x,A), (k € M). (3.3)
Let 4 > 0. Choose n € N such that # < A. Then, for each
xeX

n+1
{k: |d(x,A) — d(x,4)| > 2} < | J E;.

j=1

Since EjAF;, j=1,2,...,n+ 1 are finite sets, there exists
ko € N such that

n+1 n+1
(U5 B) sk = koy = (U7 B) 0 ik k> ko).
(3.4)
n+1
If k> ko and k ¢ F, then k¢ |J F; and by Eq. (3.4)

k € |J E;. But then J=1
=1
1
Ag) — A — <
e A —d(x. A) < <,

So Eq. (3.3) holds and {A} is Z7}/ -convergent to A.

Now, we define the concepts of Wijsman lacunary Z-
invariant Cauchy sequence and Wijsman lacunary Z*-in-
variant Cauchy sequence of sets.

Definition 3.3 Asequence {A;} is said to be Wijsman
lacunary ZT-invariant Cauchy sequence or I(%-Cauchy
sequence if for every ¢ > 0 and for each x € X, there exists
a number N = N(g,x) € N such that

Ale,x) =k : |d(x,Ax) — d(x,AN)| > &} € s,
that is, Vy(A(e,x)) = 0.

Definition 3.4 Asequence {A} is said to be Wijsman
lacunary I*-invariant Cauchy sequence or I’;‘g’-Cauchy
sequence if there exists a set M = {m) <...<m<...} €
F(Z0) such that

i 405 Am) = 2| <0

for each x € X.
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We give following theorems which show relationships
among Z ) -convergence, Z)%-Cauchy sequence and Z7) -
Cauchy sequence. The proof of them are similar to the
proof of Theorems in [44, 45], so we omit them.

Theorem 3.4 If a sequence {A;} is T",-convergent, then
{Ay} is T))-Cauchy sequence.

Theorem 3.5 If a sequence {A;} is Ty -Cauchy
sequence, then {Ay} is IT-Cauchy sequence.

Theorem 3.6 Let T,y has property (AP). Then the con-
cepts T (%-Cauchy sequence and T ;}))V-Cauchy sequence
coincides.

Definition 3.5 The sequence {Ay} is said to be Wijsman
p-strongly lacunary invariant convergent to A, if for each
xeX,

.1
r]ggoh—z‘d(x,Aak(m)) - d(x;A)’ =0,

T kel,

uniformly in m, where O <p <oo. In this case, we write
Ay —>A[WN(,9]p and the set of all Wijsman p-strongly
lacunary invariant convergent sequences of sets is denoted
by [Wng]p.

Theorem 3.7 Let T,y C 2N be an admissible ideal and
O<p<oo.

Q) If Ax — A( [WNag}p), then Ay — A(ZY).

() If {A€Lls ’ and  Ar— A(T)).
A — A( WNO—(;]p).

(iii) If {Ax} € Lo, then {Ay} is IV -convergent to A if
and only if Ay — A([WNao]p).

then

Proof (i): If Ay — A([WN,I()}[,>, then for ¢ > 0 and for

each x € X we write

Z‘d(x,Ag_r(m)) - d(x,A)|p > Z

Jel: jEI

|d(X7AU/(Hl)) - d(X7A)| >e

|d(x,Agigmy) — d(x,A)|

>e|{j el |d(x,Apiim) — d(x,A)| > e}

> max|{j el : }d(x.,Aa,(m)) —d(x,A)| 2&}‘

and so
1
[ZW(’C’AG’W)) — d(x,A)|p
" jel

max|{j € L+ [d(x. Agi) — d(x,4)| > ¢}
> .

S,

r

:gp

for every m=1,2,....

This implies lim% =0 and
therefore, {A} is (Z)),)-convergent to A.

r—

(ii): Suppose that {As} € L, and Ay — A(ZY). Let
& > 0. By assumption we have Vy(A(g,x)) = 0. Since {A;}
is bounded, there exist T > 0O such that for each x € X
for all j and m. Then, we have

1
e (5 Agn) —d(xA)

jel,
1
= > |, Agim)) — d(x, A)["
" jel
|d(x,Agigm)) —d(x,A)| >¢
1
+h_ Z |d(xaAo-7(m)) _d(x7A)|p
r jEIr
‘d(vaotf(m)) - d(xaA)| <&
max|{j el : |d(x,A,,f(m)) —d(x,A)’ ZSH
<T-* +¢
h,
§T&+6pa
r

for each x € X. Hence, for each x € X we obtain

1
fim S s ) - AP =,

Jel,

uniformly in m.
(iii): This is immediate consequence of (i) and (ii).
Now, we state a theorem that gives a relationship
between WS,y and I%.

Theorem 3.8 Asequence {Ai} is WSg9-convergent to A if
and only if it is T %-convergent to A.
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