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Abstract
In this paper, we consider the inverse spectral problem for

the impulsive Sturm–Liouville differential pencils on [0, π]

with the Robin boundary conditions and the jump conditions

at the point
𝜋

2
. We prove that two potentials functions on

the whole interval and the parameters in the boundary and

jump conditions can be determined from a set of eigenval-

ues for two cases: (i) the potentials given on
(

0,
𝜋

2

)
. and

(ii) the potentials given on
(
𝜋

2
, 𝜋

)
, where 0 < α< 1, respec-

tively. Inverse spectral problems, Sturm–Liouville operator,

spectrum, uniqueness.
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1 INTRODUCTION

We consider the quadratic pencils of Sturm–Liouville operator L𝜆(p, q, 𝛼) of the form

L𝜆y ≔ −y′′ + [2𝜆p(x) + q(x)]y = 𝜆2y, x ∈
[
0,
𝜋

2

)
∪
(
𝜋

2
, 𝜋

]
, (1.1)

with the boundary conditions

U(y) ≔ y′(0) = 0, V(y) ≔ y′(𝜋) = 0 (1.2)

and with the discontinuous conditions

y
(
𝜋

2
+ 0

)
= 𝛼y

(
𝜋

2
− 0

)
,

y′
(
𝜋

2
+ 0

)
= 𝛼−1y′

(
𝜋

2
− 0

)
, (1.3)

where 𝜆 is the spectral parameter, p(x) ∈ W1
2 [0, 𝜋], q(x) ∈ L2[0, 𝜋] are real-valued functions, 𝛼 is a

real number, and 𝛼 > 0, 𝛼 ≠ 1. Here we denote by Wm
2 [0, 𝜋] the space of functions f (x), x∈ [0,𝜋], such

Numer Methods Partial Differential Eq. 2020;1–10. wileyonlinelibrary.com/journal/num © 2020 Wiley Periodicals LLC 1

https://orcid.org/0000-0002-2795-8097
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnum.22559&domain=pdf&date_stamp=2020-10-07


2 AMIROV ET AL.

that the derivatives f (m)(x) (m = 0, n − 1) are absolutely continuous and f (n)(x)∈L2[0,𝜋]. Differential

equations with potentials depending nonlinearly on the spectral parameter appear frequently in various

models of quantum and classical mechanics (see Refs. [1–8] and references there in). For instance,

the evolution equations that are used to model interactions between colliding relativistic spineless

particles can be reduced to the form (1.1), here the parameter 𝜆2 can be regarded as the energy of

this system [2, 5, 6]. Boundary value problems with discontinuous inside the interval often appear

in mathematics, physics, geophysics, mechanics and other branches of natural properties (see Refs.

[9–17] and references there in). The well-known works [9, 11] are the first result about discontinuous

inverse spectral problems for the impulsive Sturm–Liouville operators. Direct and inverse problems

for the pencil L𝜆 with impulse on a finite interval have been investigated in Ref. [1]. The theory of

inverse problems for differential operators occupies an important position in the current developments

of the spectral theory of linear operators. Inverse problems of spectral analysis consist in the recovery

of operators from their spectral data. The interior spectral data used for reconstructing the differential

operators contain the known eigenvalues and some information on eigenfunctions at some interior

point in the defined interval. The similar problems for the Sturm–Liouville operators with impulse

and differential pencils L𝜆 were considered [18–20]. When we prepared this work for publication, the

work of the authors of Zhang et al. [21] was published. In this study, uniqueness theorems related to

the half-inverse problem for the Sturm–Liouville equation with discontinuous coefficient have been

proved. One of the important aspects of the study is that it did not use the Volterra integral equation.

Unlike other publications, the subject examined in our study is not made by reducing the proof of

the uniqueness theorem to the solution of Volterra type integral equation, but with the help of the

uniqueness theorem by the Weyl function.

2 PRELIMINARIES

Let the function 𝜑(x, 𝜆) be the solution of Equation (1.1) with the initial conditions

𝜑(0, 𝜆) = 1, 𝜑′(0, 𝜆) = 0 (2.1)

and the impulse condition (1.3). It is shown in Ref. [1] if q(x)∈L2[0,𝜋] and p(x) ∈ W1
2 [0, 𝜋] that there

exist functions A(x, t) and B(x, t) whose first-order partial derivatives are summable on [0,𝜋] for each

x∈ [0,𝜋] such that

𝜑(x, 𝜆) = 𝜑0(x, 𝜆) +

x

∫
0

A(x, t) cos 𝜆t dt +

x

∫
0

B(x, t) sin 𝜆t dt, (2.2)

where

𝜑0(x, 𝜆) = l+(x) cos[𝜆x − 𝛽+(x)] + l−(x) cos[𝜆(𝜋 − x) + 𝛽−(x)] (2.3)

and

l±(x) = 1

2

(
l(x) ± 1

l(x)

)
, l(x) =

{
1, 0 ≤ x ≤ 𝜋

2

𝛼,
𝜋

2
< x ≤ 𝜋

, 𝛽±(x) =

x

∫
𝜋
2
± 𝜋

2

2

p(t)dt.

It follows from (2.2) and (2.3) that the characteristic function of the pencil L(p, q, 𝛼) can be reduced

Δ(𝜆), where

Δ(𝜆) = 𝜑′(𝜋, 𝜆) (2.5)
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and
Δ0(𝜆) = 𝜑′

0(𝜋, 𝜆) = −𝛼+(𝜆 − p(𝜋)) sin(𝜆𝜋 − 𝛽+(𝜋)) + 𝛼−(𝜆 + p(𝜋)) sin(𝛽−(𝜋))

or Δ(𝜆) = <𝜓(x, 𝜆), 𝜑(x, 𝜆)>, where <y, z > ≔ y ′ z− yz′ and 𝜓(x, 𝜆) be a solution of (1.1) with the

initial conditions 𝜓(𝜋, 𝜆) = 0, 𝜓 ′ (𝜋, 𝜆) = − 1 and the impulse conditions (1.3).

One here supposes that the function q(x) satisfies the additional condition
𝜋

∫
0

{|y′(x)|2 + q(x)|y(x)|2}dx > 0 (2.6)

for all y(x) ∈ W2
2

([
0,

𝜋

2

)
∪
(
𝜋

2
, 𝜋

])
such that y(x)≠ 0 and

y′(0)y(0) − y′(𝜋)y(𝜋) = 0. (2.7)

Then it is shown in Ref. [1] that the eigenvalues of the boundary value problem L(p, q, 𝛼) are real

nonzero, simple, and does not have associated functions. Additionally eigenfunctions corresponding

to different eigenvalues of the problem L(p, q, 𝛼) are orthogonal in the sense of the equality

(𝜆1 + 𝜆2)(y1, y2) − 2(py1, y2) = 0, (2.8)

where (., .) denotes the inner product in L2[0,𝜋]. Denote by G𝛿 ≔ {𝜆 ∶ |𝜆 − 𝜆0
n| ≥ 𝛿 > 0, n ∈ Z},

where 𝛿 is sufficiently small positive number
(
𝛿 ≪

𝛽

2

)
. Then, [22] there exists a constant C𝛿 > 0 such

that |Δ(𝜆)| ≥ (|𝜆|𝛼+ − C) exp(|𝜏|𝜋), 𝜏 = Im𝜆, forall𝜆 ∈ G𝛿. (2.9)

Together with L(p, q, 𝛼), we consider the boundary value problem L̃(p̃, q̃, 𝛼) of the same form but

with different coefficients (p̃, q̃, 𝛼). It is assumed in what follows that is a certain symbol 𝛾 denotes

an object related to the problem L(p, q, 𝛼), then 𝛾̃ will denote the corresponding object related to

the problem L̃(p̃, q̃, 𝛼). Moreover, for the solutions 𝜑(x, 𝜆) and 𝜑̃(x, 𝜆) of the operators L(p, q, 𝛼)

and L̃(p̃, q̃, 𝛼), respectively, using (2.2)–(2.4) and by extending the range of A(x, t), Ã(x, t) evenly

with respect to the argument t and B(x, t), B̃(x, t) oddly with respect to the argument t, and by some

straight-forward calculations, we infer that there exist functions R1(x, t) and R2(x, t) whose first-order

partial derivatives are summable on [0,𝜋] for each x∈ [0,𝜋] such that for 0 ≤ x < 𝜋

2

𝜑(x, 𝜆)𝜑̃(x, 𝜆) = 1

2
[cos(2𝜆x − 𝛾+1 (x)) + cos(𝛾−1 (x))]

+

x

∫
0

[R1(x, t)e2i𝜆t + R2(x, t)e−2i𝜆t]dt, (2.10)

and for
𝜋

2
< x ≤ 𝜋

𝜑(x, 𝜆)𝜑̃(x, 𝜆) = (𝛼+)2
2

[cos(2𝜆x − 𝛾+1 (x)) + cos(𝛾−1 (x))]

+ (𝛼−)2
2

[cos(2𝜆(𝜋 − x) + 𝛾+2 (x)) + cos(𝛾−2 (x))]

+ 𝛼+𝛼−

2
[cos(𝜆(2x − 𝜋) − 𝛽+(x) − 𝛽−(x)) + cos(𝜆𝜋 − 𝛽+(x) + 𝛽−(x))]

+ 𝛼+𝛼−

2
[cos(𝜆(2x − 𝜋) − 𝛽−(x) − 𝛽+(x)) + cos(𝜆𝜋 + 𝛽−(x) − 𝛽+(x))]

+

x

∫
0

[R1(x, t)e2i𝜆t + R2(x, t)e−2i𝜆t]dt (2.11)
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where

𝛾±1 (x) = 𝛽+(x) ± 𝛽+(x), 𝛾±2 (x) = 𝛽−(x) ± 𝛽−(x). (2.12)

3 MAIN RESULTS

Now we state the main result of this work. It is assumed in what follows that if a certain symbol s
denotes an object related to L𝜆(p, q, 𝛼), then the corresponding symbol s̃ with tilde denote the analogous

object related to L̃(p, q, 𝛼). Let us denoted by 𝜑(x, 𝜆n), the eigenfunction which corresponds to 𝜆n.

Lemma 1 If 𝜆n = 𝜆n, n = 0,± 1,± 2, … then 𝛽+(𝜋) = 𝛽+(𝜋) and 𝛽−(𝜋) = 𝛽−(𝜋), that
is, the sequence {𝜆n} uniquely determines 𝛽±(𝜋).

Proof of the Lemma is easily obtained from the asymptotic expression of 𝜆n.

Lemma 2 If 𝜆n = 𝜆n, n = 0,± 1,± 2, … then 𝛼 = 𝛼, that is, the sequence {𝜆n}

uniquely determines number 𝛼.

Proof. Since, 𝜆n = 𝜆n and Δ(𝜆), Δ̃(𝜆) are entire functions in 𝜆 of order one by

Hadamard factorization theorem, for 𝜆∈C ▪

Δ(𝜆) ≡ CΔ̃(𝜆). (3.1)

On the other hand, (1.1) can be written as

Δ0(𝜆) − CΔ̃0(𝜆) = C[Δ̃(𝜆) − Δ̃0(𝜆)] − [Δ(𝜆) − Δ0(𝜆)]. (3.2)

Hence,

C[Δ̃(𝜆) − Δ̃0(𝜆)] − [Δ(𝜆) − Δ0(𝜆)] = −𝛼+(𝜆 − p(𝜋)) sin(𝜆𝜋 − 𝛽+(𝜋))
+ 𝛼−(𝜆 + p(𝜋)) sin 𝛽−(𝜋)

− C[−𝛼+(𝜆 − p̃(𝜋)) sin(𝜆𝜋 − 𝛽+(𝜋)) + 𝛼−(𝜆 + p̃(𝜋)) sin 𝛽−(𝜋)], (3.3)

if we multiply both sides of (3.3) with sin(𝜆𝜋 − 𝛽+(𝜋)) and integrate with respect to 𝜆 in (0, T) for any

positive real number T , then we get

T

∫
0

(C[Δ̃(𝜆) − Δ̃0(𝜆)] − [Δ(𝜆) − Δ0(𝜆)]) sin(𝜆𝜋 − 𝛽+(𝜋))d𝜆

=

T

∫
0

(
− 𝛼+(𝜆 − p(𝜋)) sin(𝜆𝜋 − 𝛽+(𝜋)) + 𝛼−(𝜆 + p(𝜋)) sin 𝛽−(𝜋)

− C[−𝛼+(𝜆 − p̃(𝜋)) sin(𝜆𝜋 − 𝛽+(𝜋)) + 𝛼−(𝜆 + p̃(𝜋)) sin 𝛽−(𝜋)] sin(𝜆𝜋 − 𝛽+(𝜋))d𝜆.

Since

Δ(𝜆) − Δ0(𝜆) = O(e|Im𝜆|𝜋), Δ̃(𝜆) − Δ̃0(𝜆) = O(e|Im𝜆|𝜋)
for all 𝜆 in (0, T)

C𝛼+
4

− 𝛼+

4
= O

(
1

T

)
.
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By letting T tend to infinity, we see that

C = 𝛼+

𝛼+
. (3.4)

Similarly, if we multiply both sides of (3.3) with sin𝛽−(𝜋) and integrate again with respect to 𝜆 in

(0, T), and by letting T tend to infinity, then we get

C = 𝛼−

𝛼−
. (3.5)

But since 𝛼 and 𝛼 are positive we conclude that C = 1. We have therefore proved that 𝛼 = 𝛼.

Lemma 3 The zeros {𝜆n} of the characteristic function Δ(𝜆) coincide with the eigen-
values of the boundary value problem L(𝛼, a). The functions 𝜑(x, 𝜆n) and 𝜓(x, 𝜆n) are
eigenfunctions corresponding to the eigenvalue 𝜆n and there exists a sequence {𝛽n} such
that 𝜓(x, 𝜆n) = 𝛽n𝜑(x, 𝜆n), 𝛽n ≠ 0..

Lemma 4 The equality
⋅
Δ(𝜆n) = −2𝜆n𝛼n𝛽n holds. Here

⋅
Δ
(
𝑑

d𝜆

)
Δ(𝜆).

Lemma 5 The problem L(𝛼, a) has countable set of eigenvalues. If one denotes by 𝜆1,

𝜆2, … the positive eigenvalues arranged in increasing order and by 𝜆−1, 𝜆−2, … the neg-
ative eigenvalues arranged in decreasing order, then eigenvalues of the problem L(𝛼, a)

have the asymptotic behavior

𝜆n = 𝜆o
n +

𝑑n
𝜆o

n
+ 𝛿n
𝜆o

n
, n → ±∞,

where 𝛿n ∈ l2 and dn is a bounded sequence, 𝜆o
n = n +

(
1

𝜋

)
𝛽+(𝜋) + hn, supn|hn| <∞.

Similar to the proofs of Ref. 1, so we omit the details. Let Φ(x, 𝜆) be the solution of (1.1) under

the conditions U(Φ) = 1, V(Φ) = 0, and under the impulse conditions (1.3). One sets M(𝜆)≔Φ(0, 𝜆).

The functions Φ(x, 𝜆) and M(𝜆) are called the Weyl solution and Weyl function for the boundary value

problem L𝜆(p, q, 𝛼), respectively. Using the solution 𝜑(x, 𝜆) defined in the previous sections one has

Φ(x, 𝜆) = −𝜓(x, 𝜆)
Δ(𝜆)

= S(x, 𝜆) + M(𝜆)𝜑(x, 𝜆),

M(𝜆) = −𝜓(0, 𝜆)
Δ(𝜆)

,

(
− 𝜑(𝜋, 𝜆)
𝜑′(𝜋, 𝜆)

= −𝜑(𝜋, 𝜆)
Δ(𝜆)

)
, (3.6)

where 𝜓(x, 𝜆) is a solution of (1.1) satisfying the conditions 𝜓(0, 𝜆) = 0, 𝜓 ′ (0, 𝜆) = − 1, and the

impulse conditions (1.3) and S(x, 𝜆) is defined from the equality

𝜓(x, 𝜆) = 𝜓(0, 𝜆)𝜑(x, 𝜆) − Δ(𝜆)S(x, 𝜆). (3.7)

Note that, by virtue of equalities ⟨𝜑(x, 𝜆), S(x, 𝜆)⟩≡ 1 and (3.6), on has

⟨Φ(x, 𝜆), 𝜑
(
x, 𝜆

)⟩ ≡ 1,⟨𝜑(x, 𝜆), 𝜓(x, 𝜆
)⟩ ≡ −Δ(𝜆) for x ≠ 𝜋

2
. (3.8)

The following theorem shows that the Weyl function uniquely determines the potentials and the

coefficients of the boundary value problem L𝜆(p, q, 𝛼).
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Theorem 1 If M(𝜆) = M̃(𝜆), then L𝜆(p, q, 𝛼) = L̃𝜆(p̃, q̃, 𝛼). Thus, the boundary value
problem L𝜆(p, q, 𝛼) is uniquely defined by the Weyl function.

Proof. Since ▪

𝜓 (𝜈)(x, 𝜆) = O(|𝜆|𝜈−1 exp(|Im𝜆|(𝜋 − x))), 𝜆 ∈ G̃𝛿, (3.9)

|Δ(𝜆)| ≥ C𝛿 exp(|Im𝜆|𝜋), 𝜆 ∈ G̃𝛿, C𝛿 > 0, 𝜈 = 0, 1, (3.10)

it is easy to observe that

|Φ(𝜈)(x, 𝜆)| ≤ C𝛿|𝜆|𝜈−1 exp(−|Im𝜆|x), 𝜆 ∈ G𝛿. (3.11)

Let us define the matrix P(x, 𝜆) = [Pjk(x, 𝜆)]j, k = 1,2, where

Pj1(x, 𝜆) = 𝜑(j−1)(x, 𝜆)Φ̃
′
(x, 𝜆) − Φ(j−1)(x, 𝜆)𝜑̃′(x, 𝜆),

Pj2(x, 𝜆) = Φ(j−1)(x, 𝜆)𝜑̃′(x, 𝜆) − 𝜑(j−1)(x, 𝜆)Φ̃
′
(x, 𝜆). (3.12)

Then we have

𝜑(x, 𝜆) = P11(x, 𝜆)𝜑̃(x, 𝜆) + P12(x, 𝜆)𝜑̃′(x, 𝜆),

Φ(x, 𝜆) = P11(x, 𝜆)Φ̃(x, 𝜆) + P12(x, 𝜆)Φ̃
′
(x, 𝜆). (3.13)

According to (3.6) and (3.11), for each fixed x, the functions Pjk(x, 𝜆) are meromorphic in 𝜆 with

poles and points 𝜆n and 𝜆n. Denote G0
𝛿 = G𝛿 ∩ G̃𝛿 . By virtue of (3.11), (3.13), and

𝜑(𝜈)(x, 𝜆) = O(|𝜆|𝜈 exp(|Im𝜆|x)), 𝜆 ∈ G0
𝛿, 𝜈 = 0, 1, (3.14)

we get |P12(x, 𝜆)| ≤ C𝛿|𝜆|−1, |P12(x, 𝜆)| ≤ C𝛿, 𝜆 ∈ G0
𝛿. (3.15)

It follows from (3.6) and (3.12) that if M(𝜆) ≡ M̃(𝜆), then for each fixed x the functions P1k are

entire in x. Together with (3.15) this yields P12(x, 𝜆)≡ 0, P11(x, 𝜆)≡A(x). Now using (3.13), we obtain

𝜑(x, 𝜆) ≡ A(x)𝜑̃(x, 𝜆), Φ(x, 𝜆) ≡ A(x)Φ̃(x, 𝜆). (3.16)

Therefore, for |𝜆|→ ∞ , arg𝜆∈ [𝜀,𝜋 − 𝜀] (𝜀> 0), we have

𝜑(x, 𝜆) = B
2

exp(−i(𝜆x − 𝛽1(x)))
(

1 + O
(

1|𝜆|
))

, (3.17)

where B = 1, for x < a and B = 𝛼+ for x > a. Similarly, one can calculate

Φ(x, 𝜆) = (i𝜆B)−1 exp(i(𝜆x − 𝛽1(x)))
(

1 + O
(

1|𝜆|
))

, |𝜆| → ∞, arg 𝜆 ∈ [𝜀, 𝜋 − 𝜀]. (3.18)

Finally, taking into account the relations ⟨Φ(x, 𝜆),𝜑(x, 𝜆)⟩≡ 1 and (3.11), we have 𝛼+ = 𝛼+,

A(x)≡ 1, that is, 𝜑(x, 𝜆) ≡ 𝜑̃(x, 𝜆), Φ(x, 𝜆) ≡ Φ̃(x, 𝜆) for all x and 𝜆. Consequently, L𝜆(p, q, 𝛼) =
L̃𝜆(p, p, 𝛼). The theorem is proved.

Theorem 2 If 𝜆n = 𝜆n for all n∈Z and p(x) = p̃(x) and q(x) = q̃(x) on
(
𝜋

2
, 𝜋

)
, then

p(x) = p̃(x) and q(x) = q̃(x) almost everywhere on (0,𝜋).
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Proof. Let 𝜑̃(x, 𝜆) be the solution of the equation ▪

−𝜑̃′′(x, 𝜆) + [2𝜆p̃(x) + q̃(x)]𝜑̃(x, 𝜆) = 𝜆2𝜑̃(x, 𝜆), (3.19)

with the initial value conditions

𝜑̃(0, 𝜆) = 1, 𝜑̃′(0, 𝜆) = 0 (3.20)

and the impulse conditions (1.3). Multiplying (1.1) by 𝜑̃(x, 𝜆) and (3.19) by 𝜑(x, 𝜆), respectively, and

subtracting, we get

𝜑̃′′(x, 𝜆)𝜑(x, 𝜆) − 𝜑′′(x, 𝜆)𝜑̃(x, 𝜆) = [2𝜆(p(x) − p̃(x)) + (q(x) − q̃(x))]𝜑(x, 𝜆)𝜑̃(x, 𝜆). (3.21)

Integrating the above equality from 0 to 𝜋 with respect to x, using the initial conditions at x = 0

and impulse conditions (1.3), we have

𝜋

2

∫
0

[2𝜆(p̃(x) − p(x)) + (q̃(x) − q(x))]𝜑(x, 𝜆)𝜑̃(x, 𝜆)dx

= (𝜑̃′(x, 𝜆)𝜑
(
x, 𝜆

)
− 𝜑′(x, 𝜆

)
𝜑̃
(
x, 𝜆

)
)
(||||

𝜋

2
−0

0 +
||||𝜋𝜋2 +0

)
,

from the hypothesis p̃(x) = p(x), q̃(x) = q(x) on
(
𝜋

2
, 𝜋

)
. Then we obtain

𝜋

2

∫
0

[2𝜆(p̃(x) − p(x)) + (q̃(x) − q(x))]𝜑(x, 𝜆)𝜑̃(x, 𝜆)dx

= 𝜑̃′(𝜋, 𝜆)𝜑(𝜋, 𝜆) − 𝜑′(𝜋, 𝜆)𝜑̃(𝜋, 𝜆). (3.22)

Denote

P(x) = p̃(x) − p(x),Q(x) = q̃(x) − q(x)

and

F0(𝜆) = 2𝜆

𝜋

2

∫
0

P(x)𝜑(x, 𝜆)𝜑̃(x, 𝜆)dx +

𝜋

2

∫
0

Q(x)𝜑(x, 𝜆)𝜑̃(x, 𝜆)dx. (3.23)

It follows from (2.2) to (2.3) and (2.10) that F0(𝜆) is an entire function of exponential type, and

there are some positive constants c1 and c2 such that

|F0(𝜆)| ≤ (c1 + c2|𝜆|) exp(|Im𝜆|𝜋) for all 𝜆 ∈ C. (3.24)

It is clear from the properties of 𝜑(x, 𝜆), 𝜑 ′ (x, 𝜆) and the boundary conditions (1.2)

F0(𝜆n) = 0, n ∈ Z, (3.25)

for each eigenvalue 𝜆n.

Define

F(𝜆) ≔ F0(𝜆)
Δ(𝜆)

,

which is an entire function from the above arguments and it follows from (2.9) and (3.24) that

F(𝜆) = O(1),
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for sufficiently large |𝜆|, 𝜆∈G𝛿 . Using Liouville’s theorem, [23] we obtain for all 𝜆 that

F(𝜆) = C,

where C is a constant.

Let us show that the C = 0. Now, we can rewrite the equation F0(𝜆) = CΔ(𝜆) as

2𝜆

𝜋

2

∫
0

P(x)𝜑(x, 𝜆)𝜑̃(x, 𝜆)dx +

𝜋

2

∫
0

Q(x)𝜑(x, 𝜆)𝜑̃(x, 𝜆)dx

= C𝜆[𝛼− sin(𝛽−(𝜋)) − 𝛼+ sin(𝜆𝜋 − 𝛽+(x))] + O(e|Im𝜆|𝜋).
By use of Riemann–Lebesgue Lemma, [23] we see that the limit of the left-hand side of the above

equality exists as 𝜆→∞, 𝜆∈R. Therefore, we get that C = 0. So, we have

F0(𝜆) = 0, for all 𝜆 ∈ C.

Then, from the equality (3.23) we obtain

𝜑̃′(𝜋, 𝜆)𝜑(𝜋, 𝜆) − 𝜑′(𝜋, 𝜆)𝜑̃(𝜋, 𝜆) = 0,

for all 𝜆∈C. Since

− 𝜑(𝜋, 𝜆)
𝜑′(𝜋, 𝜆)

= − 𝜑̃(𝜋, 𝜆)
𝜑̃′(𝜋, 𝜆)

,

we obtain

M(𝜆) = M̃(𝜆),

for all 𝜆∈C. The function M(𝜆) = − 𝜑(𝜋,𝜆)
𝜑′(𝜋,𝜆)

is the Weyl function of the boundary value problem for

Equation (1.1) on the
(
𝜋

2
, 𝜋

)
, with jump conditions (1.3) and boundary conditions y(0) = 0, V(y) = 0.

Theorem 3 If 𝜆n = 𝜆n for all n∈Z and p(x) = p̃(x), q(x) = q̃(x) on
(

0,
𝜋

2

)
, then

p(x) = p̃(x) and q(x) = q̃(x) almost everywhere on (0,𝜋).

Proof. If the operations in the proof of Theorem 2 are also performed for the func-

tion 𝜓(x, 𝜆) which provides the initial conditions 𝜓(𝜋, 𝜆) = 0, 𝜓 ′ (𝜋, 𝜆) = − 1 and (1.3)

discontinuity of Equation (1.1) ▪

𝜋

∫
𝜋

2

[2𝜆(p̃(x) − p(x)) + (q̃(x) − q(x))]𝜓(x, 𝜆)𝜓̃(x, 𝜆)dx

= 𝜓̃ ′(0, 𝜆)𝜓(0, 𝜆) − 𝜓 ′(0, 𝜆)𝜓̃(0, 𝜆)

equality is obtained.

H(𝜆) =

𝜋

∫
𝜋

2

[2𝜆(p̃(x) − p(x)) + (q̃(x) − q(x))]𝜓(x, 𝜆)𝜓̃(x, 𝜆)dx

function, H(𝜆)≡ 0 condition for ∀𝜆∈C

𝜓 ′(0, 𝜆)𝜓(0, 𝜆) − 𝜓 ′(0, 𝜆)𝜓̃(0, 𝜆) = 0, ∀𝜆 ∈ C
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obtained. From here for each 𝜆∈C

𝜓(0, 𝜆)
𝜓 ′(0, 𝜆)

= 𝜓̃(0, 𝜆)
𝜓̃ ′(0, 𝜆)

,

equality is obtained. The function M(𝜆) = − 𝜓(0,𝜆)
𝜓 ′(0,𝜆)

is the Weyl function of the boundary value problem

for equation on
(

0,
𝜋

2

)
with boundary conditions U(y) = 0, V(y) = 0 and without discontinuity. [1]

The Weyl function uniquely determined p(x) and q(x) on (0,𝜋).

ORCID
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