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Abstract
This paper is concerned with the synchronization of hyperchaotic Wang-Liu system by using the Pecora-Carroll complete 
replacement method. One of the most important features of this method is no need for a controller on the slave system which 
is the basic requirement of other synchronization methods. Initially in this study, dynamic analyses are given to describe 
the structure of the system. Then, the synchronization is investigated and master and slave systems that have two different 
dynamics are synchronized. At this point, the hyperchaotic master system forces the quasi-periodic slave system to behave 
as itself and they demonstrate the same hyperchaotic dynamics after a while. Besides the simulations, synchronization of 
the two systems is also verified by the experimental realization. FPAA and FPGA implementations of hyperchaos synchro-
nization are provided and results are considered. In the end, it is specified that the experimental results are well-coincides 
with the simulations.

Keywords  Hyperchaotic systems · Synchronization · Complete replacement · Field Programmable Analog Arrays · Field 
Programmable Gate Arrays

1  Introduction

Chaos is a term that simply defines the complexity of non-
linear dynamical systems. Chaotic systems are extremely 
sensitive to their system parameters and initial conditions 
and the dynamics of the system can change even small vari-
ations happen. First most-known observation of chaos was 
realized by Lorenz in his study about the weather forecast 
in 1969 and sensitivity to initial conditions is proved in that 
study [1]. Chaotic systems should also have at least one posi-
tive Lyapunov exponents and three system dimensions to be 
able to exhibit nonlinear chaotic dynamics.

Hyperchaotic systems are the type of chaotic systems that 
demonstrate more complex dynamics. Having more than 
one positive Lyapunov exponents and at least four system 
dimensions are the characteristics of hyperchaotic systems. 
Since Rössler [2] first invented the hyperchaos, several 

hyperchaotic systems have been proposed [3–8] and they 
intensively implemented in various areas such as communi-
cation, cryptology, nonlinear systems, and control [9–21].

Chaos synchronization has received great attention 
because of being a challenging problem in nonlinear sys-
tems [22]. Since Pecora and Carroll introduced the famous 
synchronization method in 1990 [23], several approaches 
have been proposed for three decades. Adaptive synchroni-
zation [24–27], complete synchronization [7, 28], projective 
synchronization [29–31], finite-time synchronization [32, 
33] and hybrid synchronization [21, 34] are some special 
impressive methods used for the synchronization of nonlin-
ear dynamical systems.

In the chaos synchronization phenomena, there are 
two nonlinear systems called master (drive) and slave 
(response) systems. The idea of synchronization is to con-
trol the slave system by using the signals coming from the 
master system [35]. Trajectories of the slave system can 
thus converge to the output of the master’s. One method 
used for the synchronization is the complete replacement 
that is proposed by Pecora and Carroll [36]. This method 
is implemented by coupling the master and slave systems 
with a common signal. Therefore, design of a controller on 
the slave system side is not required. That feature makes 
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the complete replacement method as an efficient and sim-
ple way of synchronization.

Chaotic and hyperchaotic systems can be experimen-
tally implemented on electronic circuits using passive 
elements, and integrated circuits including FPAAs (Field 
Programmable Analog Arrays) and FPGAs (Field Pro-
grammable Gate Arrays) [37]. The process of designing, 
implementing, and testing an electronic circuit causes lots 
of problems such as cost, time, complexity, efficiency, and 
feasibility of the system. At this point, integrated circuits 
namely FPAA and FPGA are an alternative and practi-
cal way to implement chaotic and hyperchaotic system 
[38]. Experimental realization based on FPAA has the 
advantages of simple and fast design for complex models, 
reduced cost, reconfigurability even during implementa-
tion, fast response and programmable structure [39–41]. 
On the other hand, an FPGA has the similar advantages 
with FPAA while providing higher performance, fast pro-
totyping and flexibility [42, 43].

The rest of this paper is organized as follows: Sect. 2 
includes the system description and simple dynamical 
analyses of the Wang-Liu system. In Sect. 3, synchroni-
zation of the master and slave systems is realized by using 
the complete replacement method and simulation results 
are provided. Methodology for the FPAA implementation 
is described in Sect. 4. The implementation results of the 
synchronized systems on FPAA and FPGA are given in 
Sects. 5 and 6, respectively. Finally, the motivation of this 
study, advantages of the complete replacement method for 
the synchronization and the simulation and experimental 
results are discussed in Sect. 7.

2 � System description

Four dimensional hyperchaotic system proposed by Wang 
and Liu [5] is given in Eq. (1):

where x, y, z, w are the state variables and a, b, c, d, h and k 
are the constant parameters of the dynamic model. For the 
values of (a, b, c, d, h, k) = (10, 40, 2.5, 10.6, 1, 4) and the 
initial conditions of (x0, y0, z0, w0) = (0.1, 0.1, 0.1, 0.1), Lya-
punov exponents of this dynamical system are calculated as:

λL1 = 1.1498 λL2 = 0.0276 λL3 = 0.0185 λL4 = -13.665
Since there exist more than one positive Lyapunov 

exponents, the system exhibits hyperchaotic behav-
ior. For different values of the d parameter, system (1) 

(1)

cẋ = a(y − x)
ẏ = bx − kxz + w
ż = −cz + hx2
ẇ = −dx

demonstrates also periodic, quasi-periodic and chaotic 
dynamical behaviors. Phase portraits for different dynam-
ics are obtained on Matlab and depicted in Fig. 1.

Dynamical structure of the Wang-Liu system is speci-
fied by the Lyapunov exponents and bifurcation diagrams on 
Matlab. The results are given in Fig. 2(a), (b), respectively. 
System (1) is analyzed by increasing the parameter d gradu-
ally while others are constant as a = 10, b = 40, c = 2.5, h 
= 4, and k = 1. In the Lyapunov exponents graph shown in 
Fig. 2(a), the system has two positive Lyapunov exponents 
for the values of d greater than 0. However, different types 
of behaviors are observed such as periodic, quasi-periodic 
and chaotic as the value of d is increased up to 80. Fur-
thermore, bifurcation diagram of the system has the same 
dynamics seen in the Lyapunov exponents. Thus, dynamics 
of the Wang-Liu system are verified, and consistent results 
are obtained. More detailed analysis of the system is pro-
vided in the relative references [5, 44].

3 � Synchronization 
with complete‑replacement method

In chaos synchronization, there are two systems, master and 
slave systems, to be synchronized. Master system defined 
with the subscript m is given in Eq. (2):

and the slave system with subscript s is described in Eq. (3):

Both master and slave systems have the constant param-
eters as (a, b, c, h, k) = (10, 40, 2.5, 1, 4). The only differ-
ence between the master and slave systems is the value of the 
d parameter. dm equals 10.6 for the master system while ds is 
77 for the slave system. Defining dm parameter as 10.6 makes 
the master system hyperchaotic. On the other hand, slave 
system exhibits quasi-periodic dynamics with ds equals 77.

Before the synchronization, these two systems are ana-
lyzed separately in terms of phase portraits and time series. 
Phase portraits for the master and slave systems are shown 
in Fig. 3(a), (b), respectively. In addition, time series for 
the x and z state variables of master and slave systems are 
provided and given in Fig. 3(c), (e). As obviously seen that 
these two systems have different behaviors on time even 
though only one parameter changes. Moreover, the state 

(2)

cẋm = a
(

ym − xm
)

̇ym = bxm − kxmzm + wm
żm = −czm + hxm2

ẇm = −dmxm

(3)

cẋs = a
(

ys − xs
)

ẏs = bxs − kxszs + ws
żs = −czs + hxs2
ẇs = −dsxs
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Fig. 1   Phase-space representation of Wang-Liu system for increasing 
d parameter while (a, b, c, k, h) equals (10, 40, 2.5, 1, 4). a hyper-
chaotic behavior when d = 10.6; b chaotic behavior when d = 50; c 

periodic behavior when d = 55; d quasi-periodic behavior when d = 77 
(Color figure online)

(b)(a)

Fig. 2   a Lyapunov exponents for increasing d value; b bifurcation diagrams of the system (Color figure online)
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of x and z variables for the master and slave systems are 
observed and given in Fig. 3(d), (f). Because the systems 
are out of synchronization, the graph of xm vs xs and zm vs zs 
has a complex shape.

In order to achieve synchronization of system (2) and (3), 
complete replacement method is adopted. The concept of 
this method is coupling/linking master and slave systems 
with a common signal and synchronizing them. There is no 
need to design a controller for the slave system, coupling is 
sufficient for the synchronization. The structure of the com-
plete replacement method is illustrated in Fig. 4.

Let the common signal be the y component of the master 
system. In this case, ym signal is transmitted to the slave sys-
tem as the common signal and applied to every point where 
ys variable is seen. Therefore, ys equation is eliminated and 
all ys terms are replaced by the ym on the slave system side. 
New form of the systems can be expressed in seven dimen-
sions as given below:

In system (4), ym signal forces the slave system to 
behave as itself. The slave system thus can no longer 
exhibit quasi-periodic behavior and trajectories of it con-
verge to the master system. Hence, these two systems 
demonstrate the same dynamics after a while and be 
synchronized. Phase portraits for the master and slave 

(4)

cẋm = a
(

ym − xm
)

̇ym = bxm − kxmzm + wm
żm = −czm + hxm2

ẇm = −dmxm
ẋs = a

(

ym − xs
)

żs = −czs + hxs2
ẇs = −dsxs

systems after synchronization are depicted in Fig. 5(a), 
(b), respectively. Furthermore, exact same graphs of time 
series for the xm - xs and zm - zs variables are shown in 
Fig. 5(c), (e), respectively. Besides these results, synchro-
nization is also observed on the xm variable and its coun-
terpart xs variable. The graph given in Fig. 5(d) includes 
a linear line with 45° of slope which indicates and demon-
strates the perfect synchronization between two systems. 
Fig. 5(f) also confirms the synchronization between the 
zm and zs signals.

4 � FPAA implementation methodology

Field Programmable Analog Arrays (FPAA) are the pro-
grammable platforms with producing analog outputs. This 
feature makes suitable FPAAs for the experimental realiza-
tion of nonlinear dynamical systems. The FPAA implemen-
tation steps need to be pursued are given as follows:

•	 Let ẋn = F(xn) is at least 3-dimensional (n ≥ 3) autono-
mous nonlinear system. This chaotic or hyperchaotic 
system is first constructed on Simulink to define volt-
age levels of the state variablesx1, x2, ..., xn . If the voltage 
levels are more than ± 1.5 V, then the system is rescaled 
to ± 1.5 V because of the voltage level limitation of FPAA 
board.

•	 Laplace Transform of the rescaled system is obtained 
to study in frequency domain instead of time domain as 
follows:

	   s.xn(s) = F(xn(s)) n = 3, 4, …, n.
•	 SumFilter blocks which are used for modeling the state 

variables of the dynamical system have the output func-
tion as given in Eq. (5):

	   In order to the Laplace-transformed system be com-
patible with the output function of SumFilter block, 
εxn(s)ε, n = 3, 4,… , n variables are added to the set of 
equations in the system.

	   Therefore, (s+1) terms are obtained in the denominator 
and equations of the system can be modelled by using 
SumFilter blocks.

Vout(s) =
2�f0

[

±G1Vin1(s) ± G2Vin2(s) ± G3Vin3(s)
]

s + 2�f0

s.xn(s) + xn(s) = F(xn(s)) + xn(s)

xn(s) =
F(xn(s)) + xn(s)

s + 1

Fig. 3   Simulation results of not synchronized master and slave sys-
tems a phase portraits for the x–z planes of master system; b phase 
portraits for the x–z planes of slave system; c time series of xm and 
xs state variables; d phase portraits of xm vs xs state variables; e time 
series of zm and zs state variables; f phase portraits of zm vs zs state 
variables
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(a) (b)

(c) (d)

(e) (f)

Fig. 4   Structure of the master and slave system for the complete replacement synchronization (Color figure online)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5   simulation results of synchronized master and slave systems a 
phase portraits for the x–z planes of master system; b phase portraits 
for the x–z planes of slave system; c time series of xm and xs state 

variables; d phase portraits of xm vs xs state variables; e time series of 
zm and zs state variables; f phase portraits of zm vs zs state variables 
(Color figure online)
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•	 New form of the system is now modelled on Anadigm 
Designer 2 which is the computer interface of the FPAA 
board.

•	 When the model is ready, experimental setup is prepared 
and input–output pins are connected as defined in the 
model.

•	 Finally desired results are observed by using an oscil-
loscope.

Fig. 6   FPAA implementation results for the not synchronized master and slave systems a phase portraits of x–z plane in master system; b phase 
portraits of x–z plane in slave system; c graph of xm vs xs state variables (Color figure online)

Fig. 7   FPAA model for the synchronized system on Anadigm Designer 2 (Color figure online)
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Fig. 8   FPAA implementation results for the synchronized master and slave systems a graph of xm vs xs state variables; b time series of xm and xs 
state variables: blue represents xm, red represents xs and purple is the xm-xs(difference signal) (Color figure online)
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5 � FPAA implementation of the synchronized 
Wang‑Liu system

FPAA implementation of hyperchaotic Wang-Liu system 
was realized in our previous study and system behavior was 
observed under the effect of corner frequency change [44]. 
In this Section, experimental realization of two synchro-
nized Wang-Liu systems is implemented on FPAA. Before 
the synchronization, master and slave systems given in Eqs. 
(2) and (3) are performed individually. Initial conditions of a 
nonlinear system cannot be defined in FPAA model. For this 
reason, different dynamic behaviors are obtained by chang-
ing the corner frequency values of SumFilter blocks. There-
fore, corner frequencies of all state variables are defined as 
0.83 kHz to obtain hyperchaotic dynamics for the master 
system. On the other hand, state variables of the slave sys-
tem have the corner frequencies as fx = fy = 0.5 kHz, fz = 0.3 
kHz and fw = 0.2 kHz and 2-T periodic behavior is observed. 
Phase portraits of x-z plane for the master and slave sys-
tems are given in Fig. 6(a), (b), respectively. These graphs 
demonstrate that two systems exhibit different dynamical 
behaviors. Not-synchronized structure of the systems is also 
obtained by the phase portraits of xm vs xs variables as shown 
in Fig. 6(c). When the complex shape of this graph is com-
pared to the simulations, expected results are observed.

Synchronized system described in Eq. (4) is then imple-
mented on FPAA. The implementation model constructed 
on Anadigm Designer 2 is given in Fig 7. First two FPAA 
chips demonstrate the modelled master system. As seen in 
the Fig. 7, ym signal obtained from the output of first FPAA 
chip is connected to the input of third chip where the slave 
system is defined. This modelled system is then uploaded to 
the AN231E04 FPAA board and outputs are measured with 
a digital oscilloscope. In order to specify whether two sys-
tems are synchronized, the synchronization curve is obtained 
by using the xm and xs state variables. The graph given in 
Fig. 8(a) exhibits a similar xm vs xs curve obtained in the sim-
ulations. Even if the result has noise because of the FPAA 
board and do not show a perfect linear line, it indicates the 
existence of synchronization. In addition, time series of the 
state variables is observed and depicted in Fig. 8(b). xm and 
xs signals exhibit almost the same behavior as time goes on 
and synchronization can be seen clearer in this way. How-
ever, due to the existence of noise, difference between the 
xm and xs signals is not equal to zero. Phase portraits for the 
synchronized master and slave systems is depicted in Fig. 9.

According to the results obtained from the FPAA imple-
mentation, it is observed that the graphs given in Fig. 8 are 
noisy. In order to eliminate this noise and further idealize 
the results, state variables of Eq. (4) are passed through a 
low-pass filter. The cut-off frequency of the low-pass filter 

Fig. 9   FPAA implementation results for the synchronized master and slave systems a phase portraits of x–z plane in master system; b phase por-
traits of x–z plane in slave system (Color figure online)



154	 Analog Integrated Circuits and Signal Processing (2022) 113:145–161

1 3

Fig. 10   FPAA implementation results for the synchronized master and slave systems after filtering: a synchronization curve (xm vs xs) b time 
series of xm and xs state variables: blue represents xm, red represents xs and purple is the xm − xs (difference signal) (Color figure online)
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Fig. 11   Simulink model of the system for the HDL code
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is specified as 1 kHz. The synchronization curve and related 
time series are shown in Fig. 10. These results are obviously 
revealed the positive effect of filtering when compared to 
the Fig. 8(a).

6 � FPGA implementation of the synchronized 
Wang‑Liu system

Field Programmable Gate Arrays (FPGA) are another effi-
cient and practical way of implementing nonlinear dynami-
cal systems. This section of study includes the experimental 
realization of synchronized and not synchronized master-
slave systems on FPGA. System (4) is first constructed on 
Simulink and HDL code is obtained by using Xilinx System 
Generator. Simulink model of the system is demonstrated in 
Fig 11. Then the HDL code is compiled by using Quartus 2 
which is the computer interface of Altera DE2-115 FPGA 
board and master-slave systems are implemented individ-
ually. The state of xm and xs variables is demonstrated in 
Fig. 12. This graph has a similar shape with Figs. 3(f) and 
6(c) which indicates that the master and slave systems are 
out of synchronization.

System (4) is then performed in the same way and syn-
chronization results on FPGA are provided. The linear line 
given in Fig. 13(a) represents the synchronization between 
the x variables of master and slave systems. Furthermore, 
time series of xm and xs is observed and same dynamics is 
obtained for the variables as seen in Fig. 13(b). The differ-
ence between xm and xs signals is also given to observe the 
synchronization error. On the other hand, synchronization 
is confirmed by the phase portraits. Fig. 14(a), (b) exhibit 
that the xm vs zm and xs vs zs graphs have similar behav-
iors on phase-space, nevertheless they are different before 
synchronization.

FPGA implementation of synchronized system has also 
some noise as in the FPAA implementation. However, since 
the FPGA platform is in a digital world, it does not have 
the opportunity to design filters in the computer interface. 
Therefore, a passive low-pass filter is designed by using R-C 
components and implemented to the output of state variables 
to eliminate the noisy part. Resistor and capacitor values for 
the filter are determined as 390 Ohm and 10 nF, respectively. 
The synchronization curve and time series obtained after 
filtering are shown in Fig. 15. Comparison of Figs. 13 and 
15 proves the advantage of the filtering and demonstrates 
that more accurate results are achieved.

Fig. 12   FPGA implementation results for the not synchronized master and slave systems: graph of xm vs xs state variables (Color figure online)



157Analog Integrated Circuits and Signal Processing (2022) 113:145–161	

1 3

Fig. 13   FPGA implementation results for the synchronized master and slave systems a graph of xm vs xs state variables; b time series of xm and 
xs state variables: blue represents xm, red represents xs and purple is the xm-xs(difference signal) (Color figure online)

Fig. 14   FPGA implementation results for the synchronized master and slave systems a phase portraits of x–z plane in master system; b phase 
portraits of x–z plane in slave system (Color figure online)
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7 � Discussion and conclusions

The motivation point of this study is to implement the hyper-
chaos synchronization on the programmable analog and digital 
platforms which is the FPAA and FPGA, respectively. As a 

consequence of the experimental realization, it is observed that 
both of two integrated circuit devices have their own advan-
tages. FPAA has a user-friendly interface and a dynamical 
system can be modelled with configurable blocks. However, 
FPGA interface offers coding as well as modeling with blocks. 
Additionally, FPGAs produce digital outputs while FPAA has 
the analog one. Hence, Digital to Analog Converter (DAC) is 
required for the FPGA implementation of an analog system. 
On the other hand, even if FPGA demonstrates higher perfor-
mance in general, FPAA is a more appropriate platform for the 
realization of analog circuits. Therefore, more accurate and 
reliable results can be obtained with FPAA implementation 
when the experimental results are considered.

Synchronization performance of two different implemen-
tation method also needs to be discussed. Table 1 demon-
strates the measurement results of difference signal obtained 
by subtracting xm and xs time series values. The difference 

Fig. 15   FPGA implementation results for the synchronized master and slave systems after filtering: a synchronization curve (xm vs xs) b time 
series of xm and xs state variables: blue represents xm, red represents xs and purple is the xm − xs (difference signal) (Color figure online)

Table 1   A quantitative comparison between difference signals 
obtained from FPAA and FPGA implementations

FPAA results FPGA results

Not filtered Filtered Not filtered Filtered

Max. of difference 
signal

1,382 V 51,81 mV 797,2 mV 755,1 mV

Min. of difference 
signal

1,311 V 43,89 mV 715,7 mV 638,7 mV

Avg. of difference 
signal

1,354 V 45,04 mV 747,3 mV 700,4 mV
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between two signals should be zero in order to perform a per-
fect synchronization ideally. However, the best performance 
is observed in the filtered FPAA implementation with the 
average peak-to-peak voltage level of 45,04 mV. This means 
that including a low-pass filter to the FPAA implementation 
enhance the synchronization performance compared to the not 
filtered results. On the other hand, filtering does not have a 
significant effect on FPGA performance and in both cases of 
FPGA implementation, voltage levels of difference signal are 
higher than the results of FPAA.

In this paper, synchronization of Wang-Liu system based 
on the complete replacement method is introduced. Lyapu-
nov exponents and the bifurcation diagrams are studied first as 
dynamical analysis. Then two systems with different dynamics 
are selected for the synchronization. Structure of the master 
system is specified as hyperchaotic and the slave system is 
quasi-periodic. For the synchronization of master and slave 
systems complete replacement method is used. At this point, 
master system forced the slave system to demonstrate hyper-
chaotic behavior. Simulation results proved the perfect syn-
chronization of two systems. Moreover, experimental realiza-
tion of the synchronized systems is provided using FPAA and 
FPGA boards. Both implementation results confirm the results 
obtained from simulations.
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