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1. Introduction. Inverse spectral problems involve reconstruction of an oper-
ator from its spectral characteristics. For inverse Sturm-Liouville problems, such
characteristics are two given spectra, one spectrum and normalizing constants,
spectral functions, nodal points, scattering data and the Weyl function. Such prob-
lems appear in mathematical physics, mechanics, electronics, geophysics and other
branches of natural sciences. The first results on inverse theory of the classical
Sturm-Liouville operator were given by Ambarzumyan and Borg [1, 6].

The half inverse Sturm-Liouville problem which is another important subject of
the inverse spectral theory has been studied firstly by Hochstadt and Lieberman in
1978 [18]. Since then, this result has been generalized to various versions. Recently,
some new uniqueness results in inverse spectral analysis with partial information on
the potential for some classes of differential equations have been given (see [15, 19]
and [27]). This kind results are known as Hochstadt and Lieberman-type theorems.

The time scale theory was introduced by Hilger in order to unify continuous and
discrete analysis [17]. From then on this approach has received a lot of attention
and has applied quickly to various area in mathematics. The literature for inverse
problems for differential operators on a continuous interval is vast (see [2, 12] and
[13]). However, differential operators defined on time scales are essentially more
difficult for investigating, and nowadays there are only a few studies about this
subject [3, 23, 25, 26]. Such problems is useful in many applied problems, for
example in string theory, in dynamics of population, in spatial networks problems,
etc.

A diffusion equation originated from the problem of describing interactions be-
tween colliding particles in physics [20]. In 1981, Gasymov and Guseinov [14] inves-
tigated the spectral theory of diffusion operators. They proved that the boundary
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value problem

−y′′ + [q(t) + 2λp(t)]y = λ2y, t ∈ (0, l)

y′(0)− hy(0) = 0

y′(l) +Hy(l) = 0

has countable many eigenvalues which are real, simple and different from zero,
under the condition

h |y(0)|2 +H |y(l)|2 +
l∫

0

(
|y′(t)|2 + q(t) |y(t)|2

)
dt > 0.

Inverse problems for diffusion operator on an interval have been studied by many
authors [7–11, 21, 22, 28–30]. However, there is no publication related to the inverse
problem for this class of operators on time scales.

In this paper, we consider a half-inverse problem for a diffusion operator on a
time scale and give a Hochstadt and Lieberman-type theorem.

We recall the some important concepts of the time scale theory.
If T is a nonempty closed subset of R it called as a time scale. The jump

operators σ, ρ and graininess operator on T are defined as follows:

σ : T → T, σ (t) = inf {s ∈ T : s > t} if t ̸= supT,
ρ : T → T, ρ (t) = sup {s ∈ T : s < t} if t ̸= inf T,
σ (supT) = supT, ρ (inf T) = inf T,
µ : T → [0,∞) µ (t) = σ (t)− t.

A point of T is called as left-dense, left-scattered, right-dense, right-scattered
and isolated if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t and ρ(t) < t < σ(t), respectively.

A function f : T → R is called rd-continuous on T if it is continuous at all
right-dense points and has left-sided limits at all left-dense points in T. The set of
rd-continuous functions on T is denoted by Crd(T) or Crd. If f is continuous on T
it is also rd-continuous.

Put Tκ :=

{
T− {supT}, supT is left-scattered

T, the other cases
, Tκ2

:= (Tκ)
κ
.

Let t ∈ Tκ. Suppose that for given any ε > 0, there exist a neighborhood
U = (t− δ, t+ δ) ∩ T such that∣∣[f (σ (t))− f (s)]− f∆ (t) [σ (t)− s]

∣∣ ≤ ε |σ (t)− s|

for all s ∈ U, then f is called differentiable at t ∈ Tκ. We call f∆ (t) the delta
derivative of f at t. The set

Cn
rd(T) := {f : f rd-continuously n-order delta-differentiable on T} .

A function F : T → R defined as F∆(t) = f(t) for all t ∈ Tκ is called an
antiderivative of f on T. In this case the ∆-integral of f is defined by

b∫
a

f (t)△t = F (b)− F (a) for a, b ∈ T.
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We give some necessary relations in the following lemma. Their proofs can
be found in [4], chapter1. Further knowledge about the concepts ∆-derivation,
∆-integration and dynamic equations on time scales can be found in [4] and [5].

Lemma 1. Let f : T → R, g : T → R be two functions and t ∈ Tκ.
i) lf f∆ (t) exists, then f is continuous at t.
ii) If t is right-scattered and f is continuous at t, then f is ∆-differentiable at t

and f∆ (t) =
fσ (t)− f (t)

σ (t)− t
, where fσ (t) = f (σ (t)) .

iii) If f∆ (t) exists, then fσ (t) = f (t) + µ(t)f∆ (t) .
iv) If f∆ (t) and g∆ (t) exist, then (f ± g)∆(t) = f∆(t) ± g∆(t), (fg)∆(t) =(
f∆g + fσg∆

)
(t) and if (ggσ) (t) ̸= 0, then

(
f

g

)∆

(t) =

(
f∆g − fg∆

ggσ

)
(t).

v) If f ∈ Crd(T), then it has an antiderivative on T.

Let T = [0, a1]∪T1, where T1 is a bounded time scale such that a2 := inf T1 >
a1 and l := ρ(supT1). Let us denote the following boundary value problem by
L = L(q, p, h,H)

ℓy := −y∆∆(t) + [q(t) + 2λp(t)]yσ(t) = λ2yσ(t), t ∈ Tκ2

(1)

U(y) := y∆(0)− hy(0) = 0(2)

V (y) := y∆(l) +Hy(l) = 0(3)

where q(t) and p(t) are real valued continuous functions on T; h, H ∈ R and λ is
a spectral parameter.

Together with L, we consider a boundary value problem L̃ = L(q̃, p̃, h,H) of
the same form but with different coefficients q̃(t) and p̃(t). We assume that if a
certain symbol s denotes an object related to L , then s̃ will denote an analogous
object related to L̃.

A function y, defined on T, is called a solution of equation (1) if y ∈ C2
rd(T)

and y satisfies (1) for all t ∈ T. The values of the λ parameteŗ for which (1)-(3) has
nonzero solutions are called eigenvalues, and the corresponding nontrivial solutions
are called eigenfunctions.

We state the main result of this article.
Let Λ := {λn, n ∈ Z} and Λ̃ :=

{
λ̃n, n ∈ Z

}
be the eigenvalues sets of L and L̃,

respectively. Put Gδ := {λ : |λ− λn| ≥ δ for all n} , where δ is a sufficiently small
number. We denote characteristic function of L by ∆(λ) and assume

(4) h |y(0)|2 +H |y(l)|2 +
l∫

0

(∣∣y∆(t)∣∣2 + q(t) |yσ(t)|2
)
∆t > 0.

Theorem 1. Assume that for given any δ > 0, there exist some Cδ > 0 such that

(5) |∆(λ)| ≥ Cδ |λ|α exp |τ | 2a1, λ ∈ Gδ, |λ| > λ∗

where α > 2, λ∗ is a sufficiently large number and τ = Imλ.
If Λ = Λ̃, p(t) = p̃(t) on T1 ∪ {a1} and q(t) = q̃(t) on T1 then q(t) = q̃(t) and

p(t) = p̃(t) on T.
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We note that, if it is taken T = [0, ℓ] in L, the classical diffusion operator is
obtained. One of the most important results related to the half-inverse problem
for the classical diffusion operator is proven by Yang and Zettl [30]. On the other
hand, a similar uniqueness theorem for the Sturm-Liouville operator on time scales
is given in [26]. This paper is a continuation of these investigations. We hope that
our results will contribute to the development of inverse spectral theory on time
scales and to obtain stronger results in some applied sciences.

2. Preliminaries. Let φ(t, λ), s(t, λ), c(t, λ) and ψ(t, λ) be the solutions of (1)
under the initial conditions

φ(0, λ) = 1, φ∆(0, λ) = h(6)

s(0, λ) = 0, s∆(0, λ) = 1(7)

c(0, λ) = 1, c∆(0, λ) = 0(8)

ψ(l, λ) = 1, ψ∆(l, λ) = −H(9)

respectively. It is clear that the Wronskian

W [c(t, λ), s(t, λ)] = c(t, λ)s∆(t, λ)− c∆(t, λ)s(t, λ)

does not depend on t. From (7) and (8) we have W [c(t, λ), s(t, λ)] = 1 and so
s(t, λ) and c(t, λ) are linear independent. Moreover, it can be seen that the relation

φ(t, λn) = χnψ(t, λn) is valid for each eigenvalue λn, where χn = φ(l, λn) ̸= 0 for
all n. The following theorem can be proven by using a method similar to that in
[24].

Theorem 2. s(t, λ), c(t, λ), φ(t, λ), ψ(t, λ) and their ∆-derivatives are entire func-
tions on λ for each fixed t.

It is clear that the characteristic function of L can be given as follows

(10) ∆(λ) =W [ψ,φ] = φ∆(l, λ) +Hφ(l, λ).

It follows from Theorem 2 that ∆(λ) is also an entire function and so L has a
discrete spectrum.

Theorem 3. The eigenvalues of the problem (1)-(3) are real and algebraicly sim-
ple.

Proof. It is proved in [16] that all eigenvalues of the problem (1)-(3) are real
numbers. Let us prove that they are also algebraicly simple. Let λn be an eigen-

value of (1)-(3). Obviously,
d∆(λ)

dλ
= φ∆

λ (l, λ) + Hφλ(l, λ), where φλ =
∂φ

∂λ
and

φ∆
λ =

∂φ∆

∂λ
. It will be sufficient to see

d∆(λ)

dλ

∣∣∣∣
λ=λn

̸= 0.

Write the equation (1) for φ(t, λ)
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(11) −φ∆∆(t, λ) + [q(t) + 2λp(t)]φσ(t, λ) = λ2φσ(t, λ).

By derivation according to λ, we get

(12) −φ∆∆
λ (t, λ)+2p(t)φσ(t, λ)+[q(t)+2λp(t)]φσ

λ(t, λ) = λ2φσ
λ(t, λ)+2λφσ(t, λ).

Now by using the standard procedure of multiplying (11) by φσ
λ, (12) by φ

σ, sub-
tracting and ∆−integrating, we obtain

(13)
[
φ(t, λ)φ∆

λ (t, λ)− φ∆(t, λ)φλ(t, λ)
]l
0
=

l∫
0

[φσ(t, λ)]
2
(2p(t)− 2λ)∆t.

Taking into account the initial conditions (6) we get

(14)

l∫
0

[φσ(t, λ)]
2
(2p(t)− 2λ)∆t = φ(l, λ)φ∆

λ (l, λ)− φ∆(l, λ)φλ(l, λ).

Putting λn instead of λ in (14) and making necessary calculations we get

l∫
0

[φσ(t, λn)]
2
(2p(t)− 2λn)∆t = φ(l, λn)φ

∆
λ (l, λn)− φ∆(l, λn)φλ(l, λn)

= φ(l, λn)
d∆(λ)

dλ

∣∣∣∣
λ=λn

.

On the other hand, from (4) we have

−λn
l∫
0

[φσ(t, λn)]
2
(2p(t)− 2λn)∆t

= h |φ(0, λn)|2 +H |φ(l, λn)|2 +
l∫
0

(∣∣φ∆(t, λn)
∣∣2 + q(t) |φσ(t, λn)|2

)
∆t > 0.

Hence
d∆(λ)

dλ

∣∣∣∣
λ=λn

̸= 0

This completes the proof. 2

It is known from [14] that φ(t, λ) satisfies the following representation on (0, a1)

(15) φ(t, λ) = cos (λt− α(t)) +

t∫
0

A(t, x) cosλxdx+

t∫
0

B(t, x) sinλxdx

where the kernels A(t, x) and B(t, x) are the solution of the problem
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∂2A(t, x)

∂t2
− 2p(t)

∂B(t, x)

∂x
− q(t)A(t, x) =

∂2A(t, x)

∂x2
,

∂2B(t, x)

∂t2
+ 2p(t)

∂A(t, x)

∂x
− q(t)B(t, x) =

∂2B(t, x)

∂x2
,

A(0, 0) = h, B(t, 0) = 0,
∂A(t, x)

∂x

∣∣∣∣
x=0

= 0

where

q(t) + p2(t) = 2
d

dt
[A(t, t) cosα(t) +B(t, t) sinα(t)] , α(t) =

t∫
0

p(x)dx.

On the other hand, φ∆(t, λ) is continuous at a1, and so the relation

(16) aφ′(a1 − 0, λ) = φ(a2, λ)− φ(a1, λ)

holds, where a := a2 − a1. Therefore we obtain that if a > 0, then the following
asymptotic formula holds for |λ| → ∞;

(17) φ(a2, λ) = −aλ sin (λa1 − α(a1)) +O (exp |τ | a1) ,

where τ = Imλ.

Now we are ready to prove our main result.

3. Proof of the main result.

Proof of Theorem 1. Let us write the equation (1) for φ and φ̃

(18) −φ∆∆(t, λ) + [q(t) + 2λp(t)]φσ(t, λ) = λφσ(t, λ)

(19) −φ̃∆∆(t, λ) + [q̃(t) + 2λp̃(t)]φ̃σ(t, λ) = λφ̃σ(t, λ).

It can be obtained from (18) and (19) that

(20)
[
φ∆(t, λ)φ̃(t, λ)− φ(t, λ)φ̃∆(t, λ)

]∆
= [q(t)− q̃(t) + 2λ(p(t)− p̃(t))]φσ(t, λ)φ̃σ(t, λ).

Taking P (t) = p(t)− p̃(t), Q(t) = q(t)− q̃(t) and ∆−integrating both sides of (20)
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on [0, l] ∩ T, we get

[
φ∆(t, λ)φ̃(t, λ)− φ(t, λ)φ̃∆(t, λ)

]l
0

=

l∫
0

[Q(t) + 2λP (t)]φσ(t, λ)φ̃σ(t, λ)∆t

=

a1∫
0

[Q(t) + 2λP (t)]φ(t, λ)φ̃(t, λ)dt

+

a2∫
a1

[Q(t) + 2λP (t)]φσ(t, λ)φ̃σ(t, λ)∆t

+

l∫
a2

[Q(t) + 2λP (t)]φσ(t, λ)φ̃σ(t, λ)∆t.

Since p(t) = p̃(t) on T1 ∪ {a1}, q(t) = q̃(t) on T1 and

a2∫
a1

[Q(t) + 2λP (t)]φσ(t, λ)φ̃σ(t, λ)∆t =(21)

Q(a1)φ
σ(a1, λ)φ̃

σ(a1, λ) (a2 − a1) ,

it is obvious that

φ∆(l, λ)φ̃(l, λ)− φ(l, λ)φ̃∆(l, λ) =

a1∫
0

[Q(t) + 2λP (t)]φ(t, λ)φ̃(t, λ)dt(22)

+aQ(a1)φ(a2, λ)φ̃(a2, λ).

By using (15),

φ(t, λ)φ̃(t, λ) = cos (λt− α(t)) cos (λt− α̃(t)) +

t∫
0

A(t, x) cosλx cos (λt− α̃(t)) dx

+

t∫
0

Ã(t, x) cosλx cos (λt− α(t)) dx+

t∫
0

B(t, x) sinλx cos (λt− α̃(t)) dx

+

t∫
0

B̃(t, x) sinλx cos (λt− α(t)) dx+

t∫
0

A(t, x) cosλxdx

t∫
0

Ã(t, x) cosλxdx

+

t∫
0

B(t, x) sinλxdx

t∫
0

B̃(t, x) sinλxdx+

t∫
0

A(t, x) cosλxdx

t∫
0

B̃(t, x) sinλxdx

+

t∫
0

Ã(t, x) cosλxdx

t∫
0

B(t, x) sinλxdx.
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By extending the range of A(t, x) and Ã(t, x) evenly and B(t, x) and B̃(t, x)
oddly with respect to the argument x, we can write

φ(t, λ)φ̃(t, λ) =
1

2
[cos(α(t)− α̃(t)) + cos (2λt− θ(t))](23)

+
1

2

 t∫
0

Hc(t, x) cos (2λx− θ(x)) dx−
t∫

0

Hs(t, x) sin (2λx− θ(x)) dx


where

Hc(t, x) = 2A(t, t− 2x) cos (θ(x)− α̃(t)) + 2Ã(t, t− 2x) cos (θ(x)− α(t))

−2B(t, t− 2x) sin (θ(x)− α̃(t))− 2B̃(t, t− 2x) sin (θ(x)− α(t))
+A1(x) cos θ(x) +A2(x) cos θ(x) +B1(x) sin θ(x) +B2(x) sin θ(x),

θ(x) = α(x) + α̃(x),

and

Hs(t, x) = 2A(t, t− 2x) sin (θ(x)− α̃(t)) + 2Ã(t, t− 2x) sin (θ(x)− α(t))

+2B(t, t− 2x) cos (θ(x)− α̃(t)) + 2B̃(t, t− 2x) cos (θ(x)− α(t))
+A1(x) sin θ(x) +A2(x) sin θ(x)−B1(x) cos θ(x)−B2(x) cos θ(x)

with

A1(x) =

t−2x∫
−t

A(t, s)Ã(t, s+ 2x)ds+

t∫
−t+2x

A(t, s)Ã(t, s− 2x)ds,

A2(x) = −
t−2x∫
−t

B(t, s)B̃(t, s+ 2x)ds−
t∫

−t+2x

B(t, s)B̃(t, s− 2x)ds,

B1(x) =

t−2x∫
−t

A(t, s)B̃(t, s+ 2x)ds+

t∫
−t+2x

A(t, s)B̃(t, s− 2x)ds,

B2(x) =

t−2x∫
−t

B(t, s)Ã(t, s+ 2x)ds+

t∫
−t+2x

B(t, s)Ã(t, s− 2x)ds.

Let

H(λ) :=

a1∫
0

[Q(t) + 2λP (t)]φ(t, λ)φ̃(t, λ)dt(24)

+aQ(a1)φ(a2, λ)φ̃(a2, λ).

Since φ(l, λn)φ̃
∆(l, λn) − φ∆(l, λn)φ̃(l, λn) = 0, H(λn) = 0 for all λn ∈ Λ and so

χ(λ) :=
H(λ)

∆(λ)
is an entire function on λ.
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On the other hand, from (17) and (23), we obtain

H(λ) = O(λ2 exp 2 |τ | a1)

for all complex λ. From assumptions of the theorem it can be calculated that

(25) |χ(λ)| ≤ C |λ|2−α
, λ ∈ Gδ, |λ| > λ∗.

By the Liouville theorem χ(λ) = 0 for all λ. Hence, H(λ) ≡ 0.
It follows from (17) that the equalities

φ(a2, λ) = −aλ sin (λa1 − α(a1)) +O(1),

φ̃(a2, λ) = −aλ sin (λa1 − α̃(a1)) +O(1)

are valid for sufficiently large λ on the real axis. From (17), (23), (24) and well-
known Riemann-Lebesgue lemma, the following equality obtained for λ ∈ R as
λ→ ∞,

a1∫
0

[Q(t) + 2λP (t)] [cos (α(t)− α̃(t)) + cos (2λt− θ(t)) + o(1)] dt(26)

+2aQ(a1)
[
a2λ2 sin (λa1 − α(a1)) sin (λa1 − α̃(a1)) +O(λ)

]
= 0.

Therefore, we have q(a1) = q̃(a1) and so
a1∫
0

[Q(t) + 2λP (t)]φ(t, λ)φ̃(t, λ)dt = 0. By

integrating again both sides of the equality (20) on (0, a1), we get

(27) φ′(a1, λ)φ̃(a1, λ) = φ(a1, λ)φ̃
′(a1, λ).

Put ψ(t, λ) := φ(a1 − t, λ). It is clear that ψ(t, λ) is the solution of the following
initial value problem

−y′′ + [q(a1 − t) + 2λp(a1 − t)]y = λy, t ∈ (0, a1)

y(a1) = 1, y′(a1) = −h .

It follows from (27) that

(28) ψ′(0, λ)ψ̃(0, λ) = ψ(0, λ)ψ̃′(0, λ).

Taking into account Theorem 4.1. in [28] it is concluded that q(t) = q̃(t) and p(t) =
p̃(t) on [0, a1] . This completes the proof. 2

Remark 1. If ℓy := −y∆∆(t)+q(t)yσ(t) = λyσ(t) on T and a1 < a2, it is sufficient
to take α > 1 instead of α > 2 in condition (5). This assertion is proven in [26].

Example 1. Let us consider the problem (1)-(3) on the time scale T = [0, a1] ∪
[a2, l] , where a1 < a2 and l − a2 = a1.
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Since φ(t, λ) satisfies the equation (1) for t = a1, it follows that

(29) (a2λ2 + bλ+ c)φ(a2, λ) + aφ′(a2 + 0, λ) + φ(a1, λ) = 0,

where a = a2 − a1, b = −2a2p(a1), c = −a2q(a1)− 1.

It can be calculated from (16) and (29) that the following asymptotic formulas hold
for |λ| → ∞ :
(30)

φ(t, λ) =

 cosλt+
h

λ
sinλt+O

(
1

λ
exp |τ | t

)
, t ∈ [0, a1],

a2λ2 sinλa1 sinλ(t− a2) +O (λ exp |τ | (t− a2 + a1)), t ∈ [a2, l],

(31)

φ∆(t, λ) =

{
−λ sinλt+ h cosλt+O (exp |τ | t) , t ∈ [0, a1),

a2λ3 sinλa1 cosλ(t− a2) +O
(
λ2 exp |τ | (t− a2 + a1

)
), t ∈ [a2, l].

It follows from ∆(λ) = φ∆(l, λ) +Hφ(l, λ) that the asymptotic relation

(32) ∆(λ) =
a2

2
λ3 sin 2λa1 +O

(
λ2 exp |τ | 2a1

)
is valid for |λ| → ∞.

Hence ∆(λ) satisfies the condition (5) and so Theorem 1 can be given as follows
on this time scale.

Theorem 4. If l − a2 = a1, Λ = Λ̃, p(t) = p̃(t) on {a1} ∪ [a2, l] and q(t) = q̃(t)
on [a2, l], then q(t) = q̃(t) and p(t) = p̃(t) on [0, a1] ∪ [a2, l].

Example 2. Consider the problem (1)-(3) on the time scale T = ∪m
j=0 [a2j , a2j+1] ,

where ai ̸= ak for i ̸= k, a0 = 0 and
m∑
j=1

(a2j+1 − a2j) = a1. It can be proven by

using similar methods that

∆(λ) = (−1)
m+1

λ2m+1 sinλa1

m∏
j=1

(a2j − a2j−1)
2
cosλ(a2j+1 − a2j)

+O(λ2m exp 2 |τ | a1).

Therefore, the condition (5) is valid. Hence Theorem 1 can be given as follows on
this time scale.

Theorem 5. If Λ = Λ̃, p(t) = p̃(t) on {a1} ∪ ∪m
j=1 [a2j , a2j+1] and q(t) = q̃(t) on

∪m
j=1 [a2j , a2j+1], then q(t) = q̃(t) and p(t) = p̃(t) on T.
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