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Abstract
Nodules of thyroid cancer occur in the cells of the thyroid as benign or malign types. Thyroid sonographic images are mostly 
used for diagnosis of thyroid cancer. The aim of this study is to introduce a computer-aided diagnosis system that can classify 
the thyroid nodules with high accuracy using the data gathered from ultrasound images. Acquisition and labeling of sub-
images were performed by a specialist physician. Then the number of these sub-images were increased using data augmenta-
tion methods. Deep features were obtained from the images using a pre-trained deep neural network. The dimensions of the 
features were reduced and features were improved. The improved features were combined with morphological and texture 
features. This feature group was rated by a value called similarity coefficient value which was obtained from a similarity 
coefficient generator module. The nodules were classified as benign or malignant using a multi-layer deep neural network 
with a pre-weighting layer designed with a novel approach. In this study, a novel multi-layer computer-aided diagnosis sys-
tem was proposed for thyroid cancer detection. In the first layer of the system, a novel feature extraction method based on 
the class similarity of images was developed. In the second layer, a novel pre-weighting layer was proposed by modifying 
the genetic algorithm. The proposed system showed superior performance in different metrics compared to the literature.
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1  Introduction

The abnormal growth of the thyroid cell tissue causes a 
benign (non-cancer) or malignant (cancer) type of nodule 
formation [1]. The specialists use “fine needle aspiration” 
or surgical methods for the diagnosis of these nodules. 
Although most of the thyroid tumors are benign, biopsy 
and surgery are applied to most of the patients one or more 
times. Besides, these methods require many resources such 
as staff and materials [2]. As an alternative method, spe-
cialists diagnose the disease by interpreting the ultrasound 
(US) images. American Radiology College (ACR) built a 
risk grading system called “ACR-Thyroid Imaging Report-
ing and Data System (TIRADS)” for interpretation of US 
images and categorization of nodules [3]. As an example, 
TIRADS 1 represents a benign nodule while TIRADS 5 
represents a high-risk malignant nodule [4]. But the accu-
racy of the ultrasound-based diagnosis depends on the 
knowledge and experience of the radiologist and the qual-
ity of the sonography which causes errors on the diagnosis 
[5]. Therefore, computer-aided diagnosis (CAD) systems 
were developed to deal with the diagnosis errors. Such 
systems intend to reduce the interpretation errors by pro-
viding a second opinion in the specialist’s decision pro-
cess [6]. Deep learning (DL) is commonly used in the 
current CAD systems [7, 8, 9, 10] that were built for the 
diagnosis of thyroid nodule [11]. Li et al. introduced a DL 
approach based on R-CNN for the diagnosis of thyroid 
cancer [12]. Buda et al. implemented a DL architecture 
based on ResNet101 to obtain the nodule borders [13]. Li 
et al. tried to enhance the accuracy of the thyroid cancer 
detection in the ultrasound images using deep neural net-
works (DNN) [14]. Ma and Wu introduced a cascade DNN 
model for the segmentation of nodules [15]. Abdolali et al. 
introduced a DNN model based on masking for the detec-
tion of thyroid nodules [16].

In addition, there are segmentation studies performed 
for the detection of thyroid nodules in the literature. 
Koundal et al. [17] proposed a automated (fully) method 
based on intuitionistic fuzzy set for lesion segmentation 
on thyroid ultrasound images. Koundal et al. [18] intro-
duced a method called “Spatial Neutrosophic Distance 
Regularized Level Set” (SNDRLS) for the identification 
of thyroid nodules. Li et al. [19, 20] proposed a deep active 
contour model for nodule segmentation. Li et al. [19, 20] 
introduced a Transformer and CNN-based method for the 
segmentation of malignant thyroid lesions. Koundal et al. 
[21] introduced a CAD system for segmentation of thy-
roid lesions on ultrasound images. Their proposed method 
performs both speckle noise removal and segmentation.

The determination of thyroid nodules using 3D high-
resolution ultrasound (HRUS) images increases the 

accuracy of the diagnosis [22]. Acharya et al. obtained 
100% accuracy, sensitivity, and specificity metrics using 
HRUS for the detection of thyroid cancer from ultrasound 
images [23]. In our study, the ultrasound dataset does not 
consist of 3D high-resolution images. Therefore, the study 
of Acharya et al. was not included in the comparison with 
the other works in the literature shown in Table 6. Thus, 
the performance of the study was evaluated objectively.

In this study, a novel multi-layer DL-based CAD archi-
tecture is proposed for the classification of thyroid nodules 
using US images. A novel feature extraction algorithm and a 
hybrid pre-weighting optimization layer were introduced to 
increase the classification accuracy in the proposed architec-
ture. This study was organized under the following sections.

In Sect. 1, general descriptions for thyroid cancer and 
ultrasound imaging are given and the deep learning stud-
ies in the literature related with the ultrasound images and 
the thyroid cancer are examined. In Sect. 2, the methods 
and materials used in the study are explained in detail. In 
Sect. 3, the classifier layer and system performance testing 
approach are introduced. In Sect. 4, the achievement of the 
proposed architecture is measured using various metrics and 
the obtained results are compared with the literature. Sec-
tion 5 is the conclusion part.

2 � Materials and Methods

In this study, B-mode thyroid ultrasound images which were 
provided by Pedraza et al. via an open-access web appli-
cation, were used. In this application, there are 33 benign 
images and 66 malignant images. Malignant classification 
was determined by the biopsy results. TI-RADS categories 
of images in each class were determined by the specialists 
and inserted into the database [24]. In this study, the seg-
mentation of nodules was realized manually by a radiologist. 
In this study, a computer diagnostic system that diagnoses 
thyroid cancer on B-mode thyroid ultrasound images was 
proposed. The stages of the proposed system were developed 
as software using Matlab 2016 and “Visual Studio Com-
munity 2017 IDE Python Anaconda environment”. The dia-
gram given in Fig. 1 shows the architecture of the proposed 
system.

2.1 � Medical Image Pre‑processing

In the download page of the open-access database system, 
there are directories called “benign” and “malignant”. There 
are sub-directories under each directory. These sub-directo-
ries contain an xml file and an ultrasound image belonging 
to a specific patient. The content of the xml file includes 
the coordinates of the nodule borders marked by the spe-
cialist and the information about the diagnosis provided by 
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the specialist. Unfortunately, some of these sub-directories 
only contain the xml file where the ultrasound images do not 
exist. Therefore, the ultrasound images were obtained manu-
ally by taking the screenshots of the web application. The 
borders of the nodules marked by the specialists can be seen 
in these images. The software developed using Matlab Image 
Processing Toolbox depends on the freehand mouse event. 
The coordinates of the nodule borders were easily obtained 
by the radiologist who can control the mouse by pressing the 
left button and moving it through a straight red line. Region 
of interest (ROI) was obtained using this coordinate informa-
tion. Figure 2 shows a sample benign class and Fig. 3 shows 
the binary mask obtained after pre-processing phase.

2.2 � Medical Image Data Augmentation

Small-scale datasets are one of the main problems that 
researchers face in medical imaging studies that depend on 

the artificial intelligence techniques. Data augmentation 
method which depends on minor variations on the images 
is a method used to deal with this problem [25, 26]. But you 
should be careful not to lose the descriptive features of the 
nodules while applying such methods. For example, rotation 
of the image may not be suitable because the shadow can 
never be seen in the reverse direction of ultrasound rays [22]. 
Zing et al. indicate that the death risk increases depending 
on the size of the tumor. According to this study, zooming 
the ultrasound image would not be a suitable data augmenta-
tion technique because it would change the tumor size [27]. 
Suitable data augmentation techniques are given in Table 1. 
These techniques were applied using ImageDataGenerator 
class of Keras library in Python environment and a total of 
1188 synthetic image data were obtained.

In this study, 33 original images of benign class were 
named as reference images and were not included in 
the augmented dataset to be able to evaluate the study 

Fig. 1   Architectural diagram of the proposed system

Fig. 2   Ultrasound image belonging to benign class Fig. 3   Binary mask
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more objectively. This method depends on the similar-
ity between images; therefore, having same images in 
both reference image dataset and training dataset would 
increase the performance but would not provide an objec-
tive evaluation. The dataset containing 1254 images (396 
benign images and 858 malignant images with 66 original 
malignant images) were obtained.

2.3 � Similarity Coefficient Generator

Usually, mean square error (MSE), peak signal-to-noise 
ratio (PSNR), structural similarity index measure (SSIM) 
metrics are used to measure the structural information 
similarity between the reference image and the compared 
image [28–30]. Mathematical equations of these metrics 
are given in Eqs. 1, 2 and 3.

Here, f and g are images of same size (MxN). μf and 
μg are the mean of the pixels in the images, σf,σg standard 
deviation and σfg is the covariance value between images, 
C1, C2, and C3 are constants [31].

Algorithm  1 was implemented to obtain Similarity 
Coefficient (sc) value where IR(1), IR(2), IR(3),…, IR(33) 
represent reference images and ID(1), ID(2), ID(3),…, 
ID(1254) represent the images in the dataset. Similarity 
Measurement Method (SMM) is used for performance 
evaluation. For example, SMM(f, g) = MSE(f, g) means that 
MSE will be calculated between images. SV represents the 
similarity vector of size 1 × 33.

(1)MSE (f , g) =
1

MN

M∑
i=1

N∑
j=1

(
fij − gij

)2

(2)PSNR (f , g) = 10 log10
(
2552∕MSE(f , g)

)

(3)SSIM (f , g) =

(
2�f�g + C1

�
2

f
�2
g
+ C1

)
.

(
2�f �g + C2

�
2

f
�2
g
+ C2

)
.

(
�fg + C3

�
f
�
g
+ C3

)

This algorithm was run individually for MSE, PSNR, 
and SSIM methods and sc values were calculated. The 
most discriminative method and the statistical value were 
determined via the statistical tests applied using SPSS [32, 
33]. The tests showed that the most discriminative value 
(having the smallest p value) was the variance calculated 
using SSIM method.

2.4 � VGG16 Feature Extraction

The convolutional neural networks (CNNs) are complex, 
multi-layer DNN that contain the trained filters and pool-
ing in its architecture [34]. VGG16 architecture is a CNN 
model that was proposed by Simonyan and Zisserman 
[35].

Transfer learning is a machine learning technique and 
is based on the transfer of learning parameters. The goal 
of this method is to reuse a DNN model pre-trained with 
a dataset with large amount of data in another classifica-
tion and feature extraction task [36]. In practice, a pre-
trained CNN which was trained with a dataset with large 
amount of samples is trained again with a smaller dataset. 

Table 1   Image data augmentation techniques

Technique Parameter

Width shift range − 0.01, 0.01
Height shift range − 0.01, 0.01
Shear range 0.1, 0.2, 0.3, 0.4
Brightness range 0.2–1.5 (0.2–0.5, 

0.2–0.8, 0.6–1.0, 
1.0–1.5)
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ImageNet is a natural image dataset that contains more 
than 14 million images. This dataset was used in the lit-
erature as a pre-training dataset for neural network studies 
that contain medical images [25].

Neural network models that depend on DL are quite 
commonly used in the literature for classification of medi-
cal images. In most of these studies, medical images are 
provided as inputs of the deep neural network for classi-
fication tasks [37]. In this study, medical images are not 
directly applied to the classifier. Initially, VGG16 deep neu-
ral network was pre-trained using ImageNet dataset. Then 
deep numerical features were obtained from the thyroid US 
images using pre-trained VGG16.

In this study, the strategy while choosing the pre-trained 
DNN was to prefer the model with the lowest performance 
[38]. Thus, the power of the proposed method is presented 
more objectively. Otherwise the performance of the pre-
trained model would affect the system performance and the 
superiority of the proposed method would not be presented 
objectively.

Figure 4 shows the proposed VGG-16 architecture. In this 
architecture, the section from the Conv 1–1 layer to the pool-
ing layer was separated and used for feature extraction. As 
a result, a deep feature vector of size 7 × 7 × 512 is obtained 
from an input image. Depending on the dimensions of the 
augmented ultrasound dataset, 1254 feature vectors of size 
7 × 7 × 512 were obtained.

2.5 � VGG16 Feature Selector and Fixer

The large data size is a problem for classification algorithms. 
Such data increase both computational cost and memory 
usage. Furthermore, a reduction in the feature space causes 
a more comprehensible model and will have a positive effect 
on the classification power [29, 30]. Therefore, only 20 of 
25.088 (7 × 7 × 512) features obtained from VGG16 model 
in the previous stage were selected for each image. Chi2 
method was used in feature selection process which imple-
ments a statistical significance between label values and 
classes. This process was implemented using “sklearn.fea-
ture_selection” python module in an Anaconda environment.

After this process, a feature matrix of size 1254 × 20 was 
obtained. But when the feature vectors of different classes 

are analyzed, it can be seen that zero value has been pro-
duced too many times. Having the same values in the feature 
vectors of different classes (especially for the features hav-
ing the same indices in the feature vectors) decreases the 
classification performance by negatively effecting the dis-
crimination of the classifier. Algorithm 2 was implemented 
to deal with this case. The main goal of this algorithm is to 
replace the zero-valued features in the feature vector with the 
maximum-valued element in that vector. This was called the 
feature fixer in Fig. 1.

2.6 � Morphological/Texture Feature

There are some specific points in the process where spe-
cialists examine the ultrasound images for diagnosis. For 
example, in the medical literature, echotexture is a specific 
concept related with the infrastructure of the nodule [39]. 
This concept corresponds to the texture analysis method in 
image processing. Usually, the statistical features depending 
on the histograms containing grey level or the grey level 
coexistence matrices are constructed using such analysis 
[40]. The structural view of the nodule in the ultrasound 
image is another discriminative point [41]. Morphological 

Fig. 4   VGG-16 architecture
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analysis is realized to extract the structural features of the 
nodule such as margin and shape [42].

In this study, four texture features called contrast, energy, 
homogeneity, and correlation and six morphological features 
called area, axis rate, form factor, roundness, aspect, and 
perimeter were extracted.

Grey-Level Co-Occurrence Matrix (GLCM) depends on 
the estimation of the second-order compound state probabil-
ity density function Pd (x, y| m, z). This matrix represents the 
transition probability from grey level x to grey level y when 
the distance between the pixels is m and the angle between 
the pixels is z [43]. Contrast, which is a measure of pixel 
density, is also a measure of local variations in the image. 
Energy is the measure of irregularity in the image texture. It 
uses a measurement method based on the repetition of pixel 
pairs. Homogeneity is inversely proportional with the con-
trast and it measures the regularity of grey level distribution. 
Correlation measures the linear dependency of pixel pair 
grey levels [44]. The number of pixels within the borders 
of the nodules in the medical image is called the area. The 
feature called LtoS is calculated by dividing the long axis of 
the nodule to the short axis. Perimeter is the total number 
of pixels that generate the nodule borders. Roundness is the 
ratio of the area to the long axis. Form factor is calculated by 
dividing the 4 times pi value to the square of the perimeter 
value. The aspect value is calculated by a ratio operation. It 
is obtained by dividing the pixel area covering the nodule by 
the surrounding pixel length of that nodule [45].

In this part of the study, a total of ten morphological 
and texture features were extracted. By applying a t-test 
(Mann–Whitney U test) using SPSS; contrast, energy, homo-
geneity, correlation, area and roundness which are signifi-
cantly discriminative (p < 0.05) were defined as the feature 
group among many features.

2.7 � Feature Combiner and New Feature Generator

The feature matrix of size 1254 × 20 obtained from VGG16 
architecture and the morphological/texture feature group of 
size 1254 × 6 were combined and a feature matrix of size 
1254 × 26 was obtained with a process called feature com-
biner. f represents the feature parameter. The calculation per-
formed by New Feature Generator is given mathematically 
in Eq. 4 for n = 1, 2, 3, …, 26 and m = 1, 2, 3, …, 1024.

2.8 � Pre‑optimizer Layer

Goreke et al. designed a pre-weighting layer based on ABC 
optimization algorithm in the classifier architecture proposed 
for the prediction of COVID-19 [46]. In this study, a novel pre-
weighting layer called Pre-optimizer Layer was implemented 
based on the previously mentioned pre-weighting layer. At the 
output of this layer, a pre-weighting vector of size 1 × n con-
sisting of pre-weighting coefficients is obtained. This vector 
is called the Pre-optimization Factor Vector (POF) in Fig. 1.

In genetic algorithm, having an efficient initial population 
plays a significant role in the solution of the problem [47]. 
Even the initial population is randomly generated in most of 
the genetic algorithm studies, there are some methods for gen-
erating an initial population [48, 49]. In this study, a novel 
method was proposed to generate the initial population. The 
steps of this method are given in Algorithm 3.

The cascade architecture of Pre-Optimizer Layer was 
designed on the principle of running the SVM algorithm inside 
the optimization algorithms (ABC, SVM, HARMONY). The 
accuracy parameter (Acc) which is a performance measure 
of the SVM classifier, was used as the cost functions of the 
optimization algorithms. The mathematical equation of the 
accuracy parameter is given in Eq. 5. Here, true positive (TP) 
and true negative (TN) represent the number of malignant and 
benign classes that are correctly classified; false positive (FP) 
and false negative (FN) represent the number of malignant and 
benign classes that are wrongly classified [50].

Optimization algorithms use the function given in Eq. 6 as 
the fitness function (Obj). Each optimization algorithm is used 
for searching the optimum values of pre-weighting coefficients 
(s1, s2, s3, …, sn).

(4)NewFeatureMatrix =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11

sc1

f12

sc1

f13

sc1
...

f1n

sc1
f21

sc2

f22

sc2

f23

sc2
...

f2n

sc2

. . .

. . .

fm1

scm

fm2

scm

fm3

scm
...

fmn

scm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)AccSVM =
TP + TN

TP + FP + FN + TN

(6)Obj = (1∕Acc)

Table 2   Performance comparison of optimization algorithms

Performance Worst Best Mean Std mean

ABC-SVM 96,20,319 97,60,159 96,73,705 0.457669
PSO-SVM 96,00,797 97,20,319 96,40,637 0.452503
HAR-SVM 95,60,956 96,80,478 96,08,765 0.429097
MGA-SVM 96,80,478 97,60,159 97,46,879 0.255105
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(7)

Data Set Matrix for SVM =

⎡

⎢

⎢
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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... sn ×
f2n
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. . .

s1 ×
fm1
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s2 ×
fm2
scm

s3 ×
fm3
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... sn ×
fmn
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Using this method, the initial population of the genetic 
algorithm was generated from the optimum values 
obtained from three different optimization algorithms. 
The reason to use the genetic algorithm as the final opti-
mizer in this layer is that it contains the natural selection 
and crossover mechanisms in its structure. Because even 
if one of the optimization algorithms generate the best 
performing pre-weighting vector, some of the coefficients 
in this vector may not be the optimal values. Similarly, 
it is also possible that there can be a coefficient with the 
optimal value inside the vector generated by a worse per-
forming algorithm. The best performing vector that con-
tains the optimal values can be obtained with the crosso-
ver and natural selection mechanisms that already exist 
in the nature of genetic algorithm. The mutation phase of 
the genetic algorithm is realized by generating a random 
value between the minimum- and maximum-valued genes 
inside the chromosome. The standard genetic algorithm 
is given in Algorithm 4. The individual performances of 
the optimization algorithms with the SVM classifier are 
shown in Table 2. The accuracy parameter of the SVM 
classifier was used as the performance metric. Every 
method was repeated 20 times using different initial pop-
ulation values. Then worst, best, mean values, and stand-
ard deviation were calculated. As shown in Table 2, the 
best performance was obtained with the modified genetic 
algorithm proposed in this study.

Table 3   Deep neural network 
architectures and hyper 
parameters

Parameter ANN CNN RNN LSTM

Unit 32-16-8 512-256 – –
Layers 1-2-3 1-2 1 1
Activation function ReLU ReLU ReLU ReLU
Learning rate 1e–3 1e–3 1e–3 1e–3
Loss function Binary 

cross 
entropy

Binary cross entropy Binary cross entropy Binary cross entropy

Epocs 250 250 250 250
Optimizer SGD SGD SGD SGD
Decay 1e–5 1e–5 1e–5 1e–5
Momentum 0.3 0.3 0.3 0.3
Full conn.unit – 2048-1024-512 2048-1024-512 2048-1024-512
Full conn.layer – 1-2-3 1-2-3 1-2-3
RNN unit – – 512
LSTM unit – – – 512
Dropout – 0.25 0.25

Table 4   The performances of DL classifiers with diverse architec-
tures

Acc accuracy, AUC​ area under the curve

Classifier Acc Recall Precision F1-score AUC​

ANN 0.9927 0.9927 0.9927 0.9927 1
CNN 0.9991 0.9991 0.9991 0.9991 1
LSTM 0.9981 0.9981 0.9981 0.9981 1
RNN 0.9995 0.9995 0.9995 0.9995 1
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The accuracy value of the Support Vector Machine clas-
sifier constitutes the cost function for the generation of 

Pre-Optimization Factor Vector (POF) given in Fig. 1. The 
POF vector is obtained as a result of running the modified 
genetic algorithm that tries to minimize the reverse of the 
cost function.

3 � Classifier Layer and System Performance 
Test Approach

The New Feature Matrix given by Eq. 4 in the Multiplier 
section (Fig. 1), is weighted with the pre-weighting coef-
ficients (p1, p2, p3, …, pn) that generate the POF vector. 
The numerical dataset obtained after this process is called 
Power Feature Matrix and is represented mathematically 
by Eq. 8.

Fig. 5   Model accuracy graphs of the classifiers a RNN classifier b ANN classifier c CNN classifier d LSTM classifier
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Various deep neural network architectures used in this 
study and their hyper parameters are shown in Table 3.

The train-test split approach which produces cleaner 
results especially in the clinical applications, is chosen as 
the deep-learning training strategy [51].

(8)

Powered FeatureMatrix =

⎡
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⎥

⎥
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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4 � Results and Discussion

In this study, the performances of the proposed multi-lay-
ered classifier architecture and the powered feature matrix 
were measured using the metrics defined between Eqs. 9 
and 12.

Furthermore, receiving operating characteristic (ROC) 
curve was used to calculate AUC​ (area under the curve) [52].

(9)Accuracy = (TP + TN)∕ (TP + TN + FP + FN)

(10)Recall = TP ∕ (TP + FN)

(11)Precision = TP ∕ (TP + FP)

(12)
F1 − score = 2 × precision × recall ∕precision + recall

Fig. 6   ROC graph of the classifiers a RNN classifier b ANN classifier c CNN classifier d LSTM classifier
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The performances of DL classifiers with diverse archi-
tectures are given in Table 4.

These results are the average of the results obtained 
over the test data in each epoc in the training process of 
the deep neural network.

After the experiments, RNN architecture with the high-
est accuracy was chosen as the deep learning classifier. The 
model accuracy graphs and ROC graphs of the classifiers are 
given in Figs. 5 and 6.

Figure 5 is given to reveal the validity and reliability of 
the model, and Fig. 6 is given to reveal the performance of 
the model at all classification thresholds [46]. In addition, 
the graphical representation of the performances obtained 
from other methods in the literature is given in Fig. 7 using 
confusion matrices [46].

In addition, to examine the effect of Algorithm 2 on the 
proposed system, a dataset was created by bypassing Algo-
rithm 2 and applied to the RNN classifier layer.

Obtained performance results are given in Table  5. 
According to the results in Table 5, Algorithm 2 contributes 
positively to the average performance of the system.

The performance of the proposed method was compared 
with the studies in the literature and the results are given in 
Table 6. Additionally, the performance comparison of the 
studies performed with the same dataset used in this study 
is given in Table 7.

For Table 6, the graph was created according to the 
accuracy parameters of the studies in the literature given 
in Fig. 8.

5 � Conclusion

In this study, a novel DL-based CAD design that classifies 
the thyroid nodule as “benign” or “malignant” from the thy-
roid US images, having a better accuracy than the studies in 
the literature, was proposed.

Fig. 7   The confusion matrices of the proposed method and other methods

Table 5   The effect of Algorithm 2 on the system performance

Algorithm 2 Acc Recall Precision F1-score AUC​

Non used 0.9992 0.9992 0.9992 0.9992 1
Used 0.9995 0.9995 0.9995 0.9995 1
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In this study, an algorithmic method based on the statisti-
cal computation was developed for putting forth the struc-
tural similarity between benign and malign images. The 
software module called the Similarity Coefficient Generator 
generates the value called the Similarity Coefficient (sc).

Images are directly applied to the classifier, in most of 
the studies in the literature related with the classification of 
medical images using deep neural networks. In this study, a 
different approach was introduced. Initially, the numerical 
feature data were extracted from the images using a pre-
trained VGG16 network and the size of the numerical feature 

data was reduced using chi2 method for having a positive 
effect on the classification performance. Then the zero-val-
ued elements of each feature vector in the reduced feature 
data matrix were replaced with the maximum value of that 
vector using the designed algorithm. Thus, the decrease in 
the classification accuracy because of having the same val-
ues (zero values) with the same indices in the vectors of 
different classes, was tried to be resolved.

In the literature review, no study was found that dealt with 
this aspect of the subject.

Table 6   Performance comparison of proposed method and the literature works

No References Method Other metrics (%) Accuracy (%)

1 Ding et al. [53] SVM Sen = 94.6
Spec = 92.6

93.6

2 Acharya et al. [23] KNN Sen = 98
Spec = 99.8
ROC = 98.7

98.9

3 Acharya et al. [54] SVM-FUZZY – 98.1
4 Acharya et al. [55] FUZZY – 99.6
5 Raghavendra et al. [56] SVM Sen = 90.32

Spec = 98.57
AUC = 94.45

97.52

6 Chi et al. [57] (Dataset-2) CNN—Random Forest Sen = 86
Spec = 99

96.34

7 Mugasa et al. [6] Random Forest and Recursive Partitioning 
Classifiers

Sen = 99.64
Spec = 90.23

96

8 Ma et al. [15] CNN Sen = 82.41
Spec = 84.41
AUC = 89

83.02

9 Seo et al. [58] AlexNet Sen = 71.05
Spec = 93.19
AUC = 89.5

89.52

10 Song et al. [59] ResNet-18/ImageNet Sen =  93.96
Spec = 92.68

93.75

11 Ma et al. [15] Cascade CNN AUC = 98.51 –
12 Pedraza et al. [24] VGG16/ImageNet Precision = 88.08

Recall = 90.08
–

13 Ying et al. [60] Multi-layer CNN Precision = 99.74
Recall = 98.62
F1-score = 99.18

99.47

14 Kang et al. [61] Multi-stage multi-task learning F1-score = 89.15 AUC = 96.08 90.75
15 Proposed method Multi-layer RNN Recall = 99.95 Precision = 99.95

F1-score = 99.95
AUC = 1.00

99.95

Table 7   Comparison of the 
proposed method with literature 
studies using the same dataset

References Method Other metrics Accuracy (%)

Zhu et al. [36, 62] ResNet-18 Sen = 93.96 spec = 92.68 93.75
Chi et al. [57] Random Forest classifier Sen = 99.1 spec = 93.90 98.29
Nguyen et al. [63] Modified Resnet Sen = 94.92 spec = 63.74 90.88
Proposed method Multi-layer RNN Recall = 99.95 Precision = 99.95

f1-score = 99.95
AUC = 1.00

99.95
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The texture and morphological features were extracted 
with the suggestion of the specialist, the significant ones 
(according to the p value) were chosen and added to the 
numerical feature vector obtained from VGG16 network.

In this study, a novel pre-optimization method with a high 
accuracy was developed by modifying the genetic algorithm 
for the CAD system. An approach with a performance better 
than the combined ABC-SVM pre-optimization method of 
Ref. [46] was introduced.

In this study, the proposed DL-based multi-layer clas-
sifier architecture was compared with the studies that used 
various artificial intelligence methods, and different metrics 
were provided to demonstrate that the proposed architecture 
shows a superior performance.

Furthermore, the studies that used the same dataset with 
this study were also compared and it was proved that the 
proposed approach has a better classification accuracy.
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