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1. Introduction

The inverse nodal problem for a Sturm-Liouville operator consists in reconstructing the operator from
zeros of its eigenfunctions, namely nodal points. This problem was studied firstly by McLaughlin in 1988
[16]. She showed that the potential of a Sturm-Liouville problem with Dirichlet boundary conditions can
be determined by a given dense subset of nodal points. Immediately after, Hald and McLaughlin gave some
numerical schemes for the reconstruction of the potential [9]. In 1997, X.F. Yang gave a solution algorithm of
an inverse nodal problem for the Sturm-Liouville operator with separated boundary conditions [31]. Inverse
nodal problems for Sturm-Liouville operators with the classical boundary conditions have been studied in
the papers ([1], [4-8], [10], [12-15], [21,22,24], [28-30], [32,33]).

Nonlocal boundary conditions appear when we cannot measure data directly at the boundary. This kind
conditions arise in various some applied problems of biology, biotechnology, physics and etc. As it is known
there are two kinds of nonlocal boundary conditions. One class of them is called integral type conditions, and
the other is the Bitsadze-Samarskii-type conditions. Bitsadze and Samarskii are considered the originators
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of such conditions. Nonlocal boundary conditions of the Bitsadze-Samarskii type were first applied to elliptic
equations by them [3]. Some important results on the properties of eigenvalues and eigenfunctions of nonlocal
boundary value problems for Sturm-Liouville type operators have been published in various publications
(see, for example, [20,23] and the references therein).

Some inverse problems for Sturm-Liouville and Dirac operators with nonlocal boundary conditions are
investigated in [2,17,18]. In the literature, there are only a few studies about inverse nodal problems with
nonlocal boundary conditions. Moreover all of them include integral type conditions. Inverse nodal problems
for this-type operators with different nonlocal integral boundary are studied in ([11,19,25,26]). Especially,
C.F. Yang et al. solved inverse-nodal Sturm-Liouville problems with nonlocal integral-type boundary con-
ditions at only one or both end-points (see [11] and [26]).

In the present paper, we consider Sturm-Liouville problems under some the Bitsadze-Samarskii type
nonlocal boundary conditions and obtain the uniqueness of coefficients of the problem according to a set of
nodal points. Moreover, we give an algorithm for the reconstruction of these coefficients.

Let us consider the following boundary value problem L = L (g, h, H, 0,71, &0, &1):

ly = -y +qlx)y=Xy, z€Q=(0,1) (1)
Ul(y) == y'(0) + hy(0) — voy(&) =0, (2)
V(y) :=9'(1) + Hy(1) = y(&) =0, (3)

where ¢(x) is a real valued continuously differentiable function, h, H € R U {0}, v; # 0 are real numbers
for i = 0,1, & are rational numbers in (0,1) for ¢ = 0,1, and X is the spectral parameter.

(2) and (3) are nonlocal conditions of a Bitsadze-Samarskii type. It is clear that if {§o, = 0 and & =1, (2)
and (3) are not other than the classical separated boundary conditions. On the other hand, while {, = 1
and & = 0 (2) and (3) turn into non-separated conditions. Inverse nodal problems for this type of boundary
conditions are studied by C.F. Yang [27]. Therefore, we focus on the case & € (0,1) in our investigation.
In fact, since & and &; are arbitrary rational numbers, the problem we consider involves a relatively large
class of nonlocal boundary conditions.

The main goal of this paper is to solve inverse nodal problems for (1)-(3) in each of the following cases

i)h, HER,
i) h=00, HER
iii) he R, H =oc.

We note that if h = oo, H € R, and h € R, H = oo the boundary conditions can be written as

y(0) =0,
y'(1) + Hy(1) = ny(61),

and

y'(0) + hy(0) = 70y(&o),
y(1) =0,

respectively.
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2. Spectral properties of the problem

Let S(z,A) and C(x, A) be the solutions of (1) under the initial conditions

respectively. It can be calculated that C(x,\) and S(z,\) satisty the following asymptotic relations for
|[A] = oo (see [11] and [34])

Ol = osko + Q) + 01 0)+ 0 (g ewwlrle). (@)
S = g o (L el ) )
where k= v\, 7 = [Imk|, Q(z) = § [, ¢(t)dt and ¢1(x ):M (5 al )

The characteristic function of problem (1)-(3)

U
A(N) = det <V(0) () (6)

and the zeros of the function A(\) coincide with the eigenvalues of the problem (1)-(3). Clearly, A()) is
entire function and so the problem has a discrete spectrum.

Let {\,},,~( be the set of eigenvalues and ¢(x, A,,) be the eigenfunction corresponding to the eigenvalue
An. Some asymptotic formulas of A, and ¢(z, A,,) are given in the following Lemmas.

Lemma 1. The numbers {)‘n}nzo are real for sufficiently large n and they satisfy the following asymptotic
relation for n — oo:

n 1
Vi =k = k)4 2 o)
nm n

nm, ifh, HeR,
ifh=00, HEeER, and
or H=00, heR,

0 _
where k, = 1

Q1)+ H—h—(=1)"[y1 cos (nm&1) — o cos (nw(l —&))], if h, H ER,
in =13 H+Q()— (—=1)"ysin((n+3) &), ifh=00, HER,
Q1) —h+~ocos ((n+3) 7o), ifh€R, H =oo.

Proof. We give the proof for the case: h, H € R; the other cases are similar. From (6), we have that

A(X) = hS"(1,A) = 40C (&0, N)S'(1,A) + HhS(1,X) — v HC (&0, M)S(1, )
—hy1S(€1, ) +717C (€0, A)S (€1, A) — C'(1, ) +7%C" (1, ) S (&0, A)
—HC(1,X) + HyS(&0, \)C (1, A) + 71C (&1, A) — 11705 (60, A)C (&1, ).

Using (4) and (5), we obtain the following asymptotic formula for A(X) as |k| — oo:
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sin k

k

AQY) = [k sin — cos kQ(1) + q1<1>} 90101 N)S(E0, A) — 60, NS (1, )]

sink cosk

+h [cosk + #Q(l)} + Hh [ —_ ?Q(l)}

it eosk+ 222 (1) + 21 0)] + a0 [5(60 VO Y) — a0 V(L)

+7170 [C (€05 M) S(€1,A) — S(&0, M) C (&1, N)]

ink k
= Som) + COZfl o <§1)}

[ sink k 1
N hsmk S hCOZQ&Q(fl)} +0 <k3 eXP|T>

471 [cos k& +

and so
A(N) = ksink + wcosk + 1 cos (k&) — o cos k(1 — &) + O (exp|7]), (7)

where w = h — H — Q(1). Let G(e) = {k: |k —nn| > e} for n = 1,2,.... It follows from (7) that there
exist some M (g) > 0 such that |A(X)| > M(e) |k|exp|7| for sufficiently large |k| in G,,(€). Therefore A,
must be a real number for sufficiently large n.

Moreover, if we apply Rouché theorem to hy(A) = ksin k and ha(X) = wcos k + 1 cos (k1) — o cos k(1 —
&) + O (exp|7]) on OG,(¢) for sufficiently small £, we can see that zeros of A(X) satisfy

kn =07+ fn, pn =o0(1), n— 0.
It follows from (7) that
. 1
sin (nm 4+ puy) + O(=) = 0.
n
Hence sin (u,,) = O(2) and so p, = O(3). Thus

1
kn:mr—l—O(E), n — o0o. (8)

Using (7) and (8) together, we get

1
sin k,, + Y cos kn + M cos (kn&1) — 20 cos (kn(1—&)) +0(—) =0.
nmw nw nm n

Therefore, we obtain

E _ lCOS (knfl) + ECOS (kn(l - 50)) + 0(1) (9)

tan k,, = —
nt  nw  cosk, nmw cos k, n

On the other hand, we have

COS (kn&) o (71)71M +O(l), (10)

nm cos ky, nmw n

and

costbnll &) _(_pyneostnm =&0)) |, 1y (1)

n cos ky, nmw n
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Using (10) and (11) in (9), we get

)HM +%(,1)HM + O(l)'

w
tank, = —— — y1(—1
nm nm nm n

Using Taylor’s expansion of Arctangent, the proof can be concluded. O
It is clear that
(@, ) =U(S(x,\n)C(z, A\n) — U(C(x, A\p))S(x, A\p)-
From (12) and Lemma 1, we can prove easily the following lemma:

Lemma 2. The asymptotic formula

. 1
cos kpx + %Sinknx—i— z—gsinkn (x—&)+0 (k_2> , for h, H € R,

” 1
oz, \n) = “r}cﬂ—%@(:ﬁ)ﬁ-O(k—g), for h =00, H € R,
e . "
mk};:l ) 4 COSk};g DQ(x) + O (k—g) , forheR, H= 00

is valid for sufficiently large n.

3. Inverse nodal problems: uniqueness and reconstruction

(13)

We can see from Lemma 2 that ¢(x,\,) has exactly n — 1 nodal points in (0,1). Let X =
{#f :n=0,1,2,...and j = 1,2,...,n — 1} be the set of nodal points. We assume that fol q(z)dx = 0. Oth-

erwise, the term ¢(z) — fol q(x)dx is determined uniquely, instead of g(x).
Lemma 3. The elements of X satisfy the following asymptotic formulas for sufficiently large n,

J+1/2  h—H+(=D"4, (j+1/2)  (Q(z}) —h)
+ +
n n2m2 ryn n2m?
0 .
+n27r2 cos (nm&p) + o (#) , ifh, HeR,

j H — (—1)"; sin ((n + %) 7r§1) 7

+

n+3 (n+%)2ﬂ'2 (n+3)
2l = QW) L o(L),  ifh=oo, HeR,
(n+3)" 7
j+% ) j+% h—Q(x),)
+ [h—~gcos((n+ %) 7 - +
e Py

cos ((n + l) 7r§0)
+Y% (n+ %)22 = +0(

3~

where A, = [y1 cos (nw1) — v cos (nw(1 — &))].

), ifH=o0, heR

Proof. As before, we consider only the first case. One can obtain similarly desired formulas for the other

cases. Use the asymptotic formula (13) to get



6 A.S. Ozkan, I. Adalar / J. Math. Anal. Appl. 520 (2023) 126904

(Qaf) —h)

. . J , , 1
0=z, \,) =coskpzl, + ———~sink,z), + 20 gink, (2], — &) +o|—
ko kn, kn,

and so

7r) (Q(’I')h)+ﬁsmk"(z¥l&))+o(i>.

J
n
kn kny, sin k27,

This yields

n R a
kn, k2 k2 sink,a),

o — (j+1/2)7 N (Q(z3) — h) +Esinkn (2, — &) +0<i>

Using knzd = (j +1/2) 7+ O(%), n — oo we can show

k2 sin k@7, n2m?

sinky, (24, — &) _cos (nmép) o (i)
n?)’

On the other hand, we have

1 1
2o\ )

by using Lemma 1. Therefore, it is concluded that,

. j4+1/2 h—H+(-1)"A, (j+1/2 xi)—h 1
l‘%zj—i_ / + _2(2 ) (.7+ /)+ (Q( 2>2 )+ ZOQCOS(nﬂfo)‘f‘O(_z)- O
n nem n nem nem n

According to Lemma 3 the existence of a dense subset Xy of X is obvious.
8.1. The Case h, H € R

Consider the problem L=1L (qN,iNz,fI ,%ﬁl,fo,fl) under the same assumptions with L. It is assumed
in what follows that if a certain symbol s denotes an object related to the problem L then s denotes the
corresponding object related to the problem L.

The following theorem is the first of our main results in this article.

Theorem 1 (Uniqueness). If Xo = Xo then q(z) = q(z) in (0,1), h = E, H = fI, Yo = Yo and y1 = 1.
Thus, the potential g(x) in (0, 1), the coefficients vo, v1, h and H are uniquely determined by Xj.

Proof. Step 1. Put &, = PO ond & = ]2, where p;,r; € Z for i = 0,1. For each fixed z € [0, 1], there exists
. TO Tl .
a sequence (z,) converges to x. Clearly the subsequence (#7,) converges also to @ for m = 2rgrin. On the

other hand, lim A,, = v1 — v9. Therefore we can see from Lemma 3 the following limit exists and given
m—r oo
equality holds:

m—o0

lim m?7? <x{n - %) =fx)=(h—H+ym —v)z+Qx)—h+. (15)

Direct calculations in (15) yield
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Wo_h:f(o)a
7 _H:f(]')a
q(x) =2(f'(x) + £(0) — f(1)).

Since Xy = X then f(z) = f(z) and so ¢(z) = ¢(z), a.e. in (0,1).
Step 2. To show h = h and 79 = Jo consider a sequence {z}} C X, converges to & and write the
equation (1) for ¢(z, A,) and @(z, \p):

—@" (m,xn> +q(x)p (m,xn> =M@ (:C,Xn> ,
—" (2, M) + q(2)p (2, An) = A

If we apply the procedure:
(i): multiplied by ¢ (2, A,) and @ (w, )\n), respectively; (ii): subtracted from each other and (iii): inte-
grated over the interval (o, %) the equality

@ (€0 M) & (60:3n) = & (€0:30) @ (60, An) = (R = ) / 7 (2. 3) ¢ (@A) do
o

is obtained. From Lemma 1 the following estimate holds for sufficiently large n

@ (€0, M) B (00 ) = @ (808 ) @ (60, M) = 0(1), n = ox. (16)
Using (16) and Lemma 2 we get
{(p’({o, An) — @ («507}”)} cosnmép = o(1), n — oo.
The last equality yields
(ﬁ - h) cos® nméo + (70 — o) cosnméy = o(1), n — oo.
Therefore, we conclude that h=h and Yo = Yo-

Step 3. Finally let us prove y; = 71 and H = H. Consider another sequence {#1} C X, converges to &;.
If we apply above procedure but take the integral from &; to z7,, we get

7 (6 30) @ (@A) — @ (€M) (6, 00) =o(1), n - oo

instead of (16). From (3), we have

2 (60 [F02 o] e ) [P0 BP0

Using Lemma 1 and Lemma 2, it can be calculated that

sinné, [(H h I;": h) (=" 4+ (i - ;) cosnm (1 —50)] = 0(%), n — 00.

Al Al nm nmw \ 7 ga!
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This yields

sin nw&y l(l)" (H —h_ HN_ h) + Y% <i — i) cosnm (1 — go)] =o0(1).

M M T1m
Hence 73 =71 and H = H. This completes the proof. O

Corollary 1 (Reconstruction algorithm). Let Xy, & = PO nd & = P1 e given. Then q(z), v — h and
To 1
— H can be reconstructed by the following algorithm.:

i) Denote m = 2rorin;
it) Find f(x) by (15);
i1t) Find q(x), o — h and v1 — H by the formulas
q(z) =2 (f'(z) + £(0) — f(1)),
Yo — h = f(0)7
—H = /().

Note that if one of the pairs (h, H) and (yo,71) @s given, we can find the other pair.

Example 1. Consider the nonlocal BVP

by = —y" +q(x)y =Xy, z€(0,1)
L:$ Uly)=y(0)+hy(0) = 701/(%),
V(y) =y (1) + Hy(1) = ny(L),

where q(z) € C'[0,1], 70, 71, h, and H € R are unknown coefficients. Let Xo = {7} be the given subset
of nodal points which satisfy the following asymptotics

G+1/2)m 27T)
n

L) <1 (1) eos (52) —cos (32))] G4 12y (B0
" n n2m? n 2n2n3

3 T 1
+W COS (2“3) +0 ﬁ .

Let m := 70n. One can calculate that,

mnm%Q@a]>f@>m+(mmf—%>+3
m

m—o0 27

According to Theorem 1, we find

and

Y —h=f(0)=2
—-H=f(1)=

If the pair (h, H) is given as, for example, h = 1 and H = 2 then we find 79 = 3 and ~; = 6.
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3.2. The Case h =00, H € R

In this subsection, we consider the equation (1) with one Dirichlet boundary condition

Uly) :=y(0) =0 (17)

and with the nonlocal boundary condition (3).

Let Xy be a dense nodal points-set. For each fixed x in (0, 1), it can be choosen a sequence (x{l) C Xo
which converges to x. Therefore we can show from Lemma 3 that the following limit exists and is finite for
m = 2rin:

1\? , j
li S I =
mesco (m + 2> i (xm m+ %) 9(x)

s 1
— (usin 360~ H)o + 3 [ att)dr
0

Thus, we can prove the following theorem using methods similar to one in the proof of Theorem 1.

Theorem 2. If Xy = Xy then q(z) = q(z) a.e. in (0,1), H = ﬁ, and v1 = 1. Moreover if Xy and & = Py

1
is given, q(x) and 1 sin §&§ — H can be reconstructed by the following formulas:

q(z) =2(g'(z) —g(1)),
.
~1 sin 551 — H=g4(1).
Example 2. Consider the nonlocal BVP

-y +q(r)y =Ny, =e€(0,1)
L: y(0) =0,
y' (1) +2y(1) —my(3) =0,

where g(z) € C'[0,1] and 7, are unknown real coefficients. Let Xo = {2} be the given subset of nodal
points which satisfy the following asymptotics

j 2= (=1)"3sin (7))

IR B O N CE

Sy iy tar ) ()
-z ol —= |-
2(n+%)27r3 n+i n4+i\2n+1 2 n?

To find ¢(z) and 77 we take m = 10n and calculate the following limit

2 . .
; 1 2 (.. J _ B . sinmr x [fx 1
AE&(’"U) T (xmw>9<x>(3sm52)“ o +2<22>'

Thus, we find

dla) = 2(¢/ (@) — (1)) = cosmo -+~ 3,
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8.8. The Case H =00, h € R

In this subsection, we consider the equation (1) with nonlocal boundary condition (2) and one Dirichlet
boundary condition

V(y) =y(1) =0. (18)

Let m := 2rgn. Here, ry denotes the denominators of &g.
Let X, be a dense nodal points-set. For each fixed z in (0,1), it can be choosen a sequence (xfz) C Xo
which converges to x. Therefore we can show from Lemma 3 that

2 . 1
1 i J+ 3
li 2 J 2 _
im <m—|— 2> ™ <xm - %) = 1/}(30)

x

s s 1
= (h — 7o cos Efo)x — h + 7o cos 550 + 3 /q(t)dt.
0

Thus, we can give the following theorem.

Theorem 3. If X, = X, then q(z) = q(z) a.e. in (0,1), h = L and vo = Jo. Moreover if Xo and & = Po
To
are given, q(x) and Yy cos & — h can be reconstructed by the following formulae:

q(z) =2 (' (z) +v(0)),
Yo cos Téo — h = (0).

Example 3. Consider the nonlocal BVP

by = —y" +q(x)y=Xy, z€(0,1)
L: U(y) :==4'(0) + y(0) = 20y(3),
)=

V(y) ==y(1) =0,

where q(x) € C1[0,1] and 7y are unknown coefficients. Let Xo = {x{l} be the given subset of nodal points
which satisfy the following asymptotics

T 2n +1 i+ 3 1
:E%:j ?+[12005<n+ w)} ’ 23 - 2
n+3 3 (n+3)" 7 (n+3) =2

2oos (Mdn) e GEToL ey (%)
ard)m 2w wrp)e AP

Let m := 6n. One can calculate that,

1\ 2 _ .
”}i_rgloo(m—&—E) 72 (arfn—%) =(x) = (1—2005%)%—1+2005§—T—;.

According to Theorem 3, we find

@) = 2(#/(2) + 9(0)) =sinmr — 2,

Yo = 20(0) +2 = 2.
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